MANY CHEERFUL FACTS

presents

"Nine Magic Discriminants"

a talk by Matthew Satriano

13:10-14:00 on Thursday, November 15, in room 1015.

Many of us are probably familiar with the result that the ring of integers of the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$ is a PID if and only if $d=1,2,3,7,11,19,43,67$, or 163. But probably not too many of us have ever seen a proof. After saying a few words about the very interesting history of this class number problem, I'll present Heegner's proof, which relates the question to modular forms and a certain degree 24 polynomial.

> I am the very model of a modern Major General,
> I've information vegetable, animal, and mineral,
> I know the kings of England, and I quote the fights historical
> From Marathon to Waterloo, in order categorical;
> I'm very well acquainted, too, with matters mathematical,
> I understand equations, both the simple and quadratical,
> About binomial theorem I'm teeming with a lot o' news,
> With many cheerful facts about the square of the hypotenuse!

- Gilbert \& Sullivan, $P \circ P$

The website for Many Cheerful Facts is http://www.math.berkeley.edu/~mcf

