MANY CHEERFUL FACTS

presents

 $e^{\pi \sqrt{163}}$ is an almost-integer
a talk by Chul-hee Lee

13:10-14:00 on Thursday, October 25, in room 87.
 Note the exceptional location.

It is a very famous fact that $x^{2}+x+41$ generates prime numbers for $x=0,1, \cdots, 39$. However, this is not the end of the story. There is a great sequel to this:

$$
e^{\pi \sqrt{163}}=262537412640768743.99999999999925007 \cdots
$$

In fact, both of these are cheerful facts about the ring of integers $\mathbb{Z}\left[\frac{-1+\sqrt{-163}}{2}\right]$ involving lots of beautiful mathematics. In this talk, I will introduce what's behind the scenes and try to give an explanation. With this in hand, we can produce more examples:

$$
\begin{gathered}
e^{\pi \sqrt{43}}=884736743.99977746603 \cdots \\
e^{\pi \sqrt{67}}=147197952743.9999986624 \cdots
\end{gathered}
$$

> I am the very model of a modern Major General, I've information vegetable, animal, and mineral, I know the kings of England, and I quote the fights historical From Marathon to Waterloo, in order categorical; I'm very well acquainted, too, with matters mathematical, I understand equations, both the simple and quadratical, About binomial theorem I'm teeming with a lot o' news, With many cheerful facts about the square of the hypotenuse!

$$
\text { - Gilbert \& Sullivan } P \circ P
$$

