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Abstract

We show that polynomial time Turing equivalence and a large class
of other equivalence relations from computational complexity theory
are universal countable Borel equivalence relations. We then discuss
ultrafilters on the invariant Borel sets of these equivalence relations
which are related to Martin’s ultrafilter on the Turing degrees.

1 Introduction

1.1 Universal resource bounded equivalence relations from
computability

In this paper, we study the global complexity of resource bounded reducibil-
ities from computability theory. If C is a subset of the Turing reductions
such as the polynomial time Turing reductions, and x, y ∈ P(2<ω) are lan-
guages, then we write x ≤CT y if x is Turing reducible to y via a Turing
reduction in C. Similarly, if C is a subset of the many-one reductions, then
we analogously write x ≤Cm y if x is many-one reducible to y via a many-one
reduction from C. Now these relations are not transitive for arbitrary C.
However, we will be particularly interested in the special case where we fix
a function g : N → N which is strictly increasing, time constructible, and
g(n) ≥ n2, and let C be the union over k of all reductions computable in
O(gk)-time or O(gk)-space. Note that here we use gk to denote the k-fold
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composition of g, gk = g ◦ . . . ◦ g︸ ︷︷ ︸
k times

, and not its k-fold product. In this case,

since there is only a polynomial amount of overhead required to simulate
the composition of two reductions, it is easy to see that the associated re-
ducibilities are transitive and symmetrize to equivalence relations which we
study below.

Previous investigations of the global properties of resource bounded re-
ducibilities in computability have focused mainly on the theory of these
structures [1,6,10,17]. We take a different approach, using the framework of
Borel reducibility between Borel equivalence relations. A Borel equivalence
relation E on a standard Borel space X is an equivalence relation that is a
Borel subset of X×X. If E and F are both Borel equivalence relations on X
and Y , then E is Borel reducible to F , noted E ≤B F , if there is a Borel func-
tion f : X → Y such that for all x, y ∈ X, we have x E y ⇐⇒ f(x) F f(y).
Such a function induces an injection f̂ : X/E → Y/F , and we can view Borel
reducibility as comparing the difficulty of classifying E and F by invariants,
where if E ≤B F , then any complete set of invariants for F can be used as a
set of complete invariants for E. Borel reducibility is also sometimes viewed
as describing Borel cardinality, where the injection f̂ is a Borel witness that
the quotient of E injects into the quotient of F .

A Borel equivalence relation is said to be countable if all of its equiv-
alence classes are countable. See [8] for an introduction to the theory of
countable Borel equivalence relations. It is an important fact that there are
maximal countable Borel equivalence relations under ≤B, and such equiv-
alence relations are said to be universal [5]. Our first theorem is that the
resource bounded equivalence relations discussed above are universal (see
Theorem 3.1).

Theorem 1.1. Suppose g(n) ≥ n2 is a strictly increasing time-constructible
function. Then any countable Borel equivalence relation E such that

≡TIME(∪kO(gk))
m ⊆ E ⊆≡SPACE(∪kO(gk))

T is a universal countable Borel equiv-
alence relation.

For example, polynomial time many-one equivalence and polynomial
time Turing equivalence are both universal countable Borel equivalence re-
lations, corresponding to the case g(n) = n2. It is an open question of
Kechris [9] whether Turing equivalence is a universal countable Borel equiv-
alence relation.
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1.2 Ultrafilters, universality, and relativization

Suppose E is a countable Borel equivalence relation on a standard Borel
space X. We say that a set A ⊆ X is E-invariant if ∀x, y ∈ X if xEy,
then x ∈ A ⇐⇒ y ∈ A. Of course, the Borel E-invariant sets form a σ-
algebra. Ultrafilters on this σ-algebra of invariant Borel sets are important
tools used in the study of Borel reducibility of equivalence relations. Such
ultrafilters arise naturally from E-ergodic probability measures on X and
E-generically ergodic Polish topologies on X. More recently, work started
by Simon Thomas in [20] and continued in [12] and [11] has used ultrafilters
related to Martin’s ultrafilter on the Turing degrees to derive structural
consequences about universal equivalence relations of various kinds. For
example, in [12], these ultrafilters from computability were used to show
that if E is a universal countable Borel equivalence relation on a standard
Borel space X, and A ⊆ X is Borel, then either E � A is universal or
E � (X \A) is universal. This answered a question of Jackson, Kechris, and
Louveau [8]. These ultrafilters which preserve the Borel cardinality of their
associated equivalence relations are promising candidates for resolving other
questions from the theory of countable Borel equivalence relations known to
be resistant to measure and category techniques. See [11] for an introduction
to them.

It is an interesting problem to find other natural examples of such ul-
trafilters on countable Borel equivalence relations. For example, [21] has
investigated whether there could be a cone measure for the quasiorder of
embeddability among countable groups. Here, we consider such ultrafilters
for resource bounded equivalence relations from computability theory.

The ultrafilters we consider are defined via games very similar to the
game defining Martin’s ultrafilter on the Borel Turing invariant sets (see
[13]). Martin considered the game GA where two players alternate defining
longer and longer initial segments of an oracle x, and at the end, player I
wins if the resulting oracle is in the payoff set A. Martin has shown [13]
that player I has a winning strategy if and only if A contains a Turing cone,
that is, a set of the form {x : x ≥T y} for some oracle y. Similarly, player II
has a winning strategy if and only if the complement of A contains a Turing
cone. Hence, by Borel determinacy [14], the set of Borel Turing-invariant A
that contain a Turing cone forms an ultrafilter on the Borel Turing-invariant
sets, which is known as Martin’s ultrafilter or Martin measure.

It is folklore that Martin’s proof generalizes to any quasi-order ≤Q such
that given a strategy σ in the game and an oracle x which is ≥Q an encoding
of σ, then x ≡Q σ ∗ x where σ ∗ x is the outcome of playing σ against x.

3



While this condition encompasses a large number of quasi-orders, it does
not include Turing equivalence restricted to sub-exponential time or space
bounds, since strategies in games take an exponential amount of space to
encode. Nor does it include many-one equivalence, or its time or space
restricted versions, since even if x ≥m σ where σ is a strategy in Martin’s
game, a many-one reduction relative to x cannot combine information about
x and this strategy to determine σ ∗ x. Here then, we may ask to what
extent there can be an analogue of Martin’s ultrafilter for these equivalence
relations.

First, we note that standard relativization barriers show that there can-
not be an ultrafilter defined via cones for these equivalence relations. For
example, relativizing the theorem of Baker, Gill, and Solovay [2] giving or-
acles x and y relative to which Px = NPx and Py 6= NPy shows that
both the oracles relative to which P = NP and P 6= NP are cofinal under
polynomial time Turing reducibility ≤P

T , and so there is no cone ultrafilter
on the ≡P

T -invariant sets. Further, there can be no cone ultrafilter for ≤m
since the collection of oracles that are many-one equivalent to their com-
plement are cofinal under ≤m but do not contain a ≤m-cone. However,
it turns out that Martin’s game still defines an ultrafilter with interesting
structure-preserving properties, even though it does not have a definition
via cones.

Theorem 1.2. Let E be a countable Borel equivalence relation as in The-
orem 1.1. Let GA be Martin’s game in [13] where the two players I and II
alternate defining the elements of an oracle x and I wins if x ∈ A. Then
the collection of E-invariant Borel sets A such that player I has a winning
strategy in the game GA is an ultrafilter on the Borel E-invariant sets. Fur-
thermore, for any A ∈ U , E � A is a universal countable Borel equivalence
relation.

There is some connection here with issues in computability and com-
plexity theory surrounding the phenomenon of relativization. In recursion
theory, proofs almost always relativize. That is, we can take most any proof
in the subject, change all Turing machines used in the proof to grant them
access to an additional oracle x, and the proof will remain valid. And while
early sweeping attempts to formalize this phenomenon failed, such as Rogers’
homogeneity conjecture (see [15, §13.1], [16, §12], [18], and [19]), Martin’s
ultrafilter on the Turing degrees yields a somewhat weaker explanation of
the ubiquity of this phenomenon. If ψ(x) is a Borel property of a Turing
degrees, then either ψ(x) is true on a cone of oracles, or ψ(x) is false on
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a cone of oracles. Hence, every reasonable fact about the Turing degrees
eventually relativizes above some Turing cone.

As we’ve noted above, Baker, Gill, and Solovay’s result implies that
the polynomial time analogue of this result is false. However, since Martin’s
cone theorem becomes true once we enlarge beyond iterated exponential time
Turing equivalence, we can show that the connection between sets in our ul-
trafilter and cones (and hence the meta-theorem preventing the existence of
relativization barriers on a cone) occurs once E grows beyond iterated ex-
ponential time Turing equivalence. That is, if E contains ≡ELEMENTARY

T ,
then A ∈ U if and only if A contains a ≤ELEMENTARY

T -cone. This fact tells
us something interesting about relativization barriers themselves – that on
a cone, such barriers can always be found inside the exponential hierarchy.
Suppose ψ is a ≡P

m invariant property (such as whether two naturally defined
relativized complexity classes coincide). Suppose also that there is a rela-
tivization barrier for ψ which itself relativizes, so that for every z, there are
x ≥P

m z and y ≥P
m z relative to which ψ(x) is true, and ψ(y) is false. Then for

a ≤P
m-cone of z, we can find such x and y so that x, y ∈ ELEMENTARYz.

A consequence of this is that if ψ is invariant on ≡ELEMENTARY
T -classes,

then it must be either true or false on some ≤ELEMENTARY
T -cone, and hence

ψ can not admit a Baker-Gill-Solovay-type relativization barrier.
In another direction, we show that the set of languages x ∈ P(2<ω)

for which Px = NPx is in the ultrafilter U defined in Theorem 1.2. While
oracles relative to which P = NP are often considered to be somehow “rare”
(for example meager [4] and Lebesgue null [3]) here we have a natural sense
in which the set of oracles relative to which P = NP is large–it has the
maximal possible Borel cardinality.

2 Preliminaries

We begin by reviewing some notation and conventions. Given any set S,
we will often exploit the bijection via characteristic functions between its
powerset P(S), and 2S , the space of functions from S to {0, 1}, and move
freely between these two representations. We use the notation 2n for the
set of finite binary strings of length n and 2≤n for finite binary strings of
length ≤ n. The set of all finite strings is noted 2<ω. We use ras to note
the concatenation of the strings r and s.

Define P(2<ω) to be the Polish space of subsets of 2<ω. If x, y ∈ P(2<ω),
then their recursive join is x ⊕ y = {0as : s ∈ x} ∪ {1as : s ∈ y}. The
recursive join of finitely many elements of P(2<ω) is defined similarly. We use
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the notation Ac to denote the complement of a set A. A function g : N→ N
is said to be time constructible if g(n) is computable in O(g(n))-time.

In computational complexity, the issue of correctly relativizing and mod-
eling oracle access is a delicate and complicated matter. See [7] for a dis-
cussion of some of these issues. The theorems we will prove, however, will
be quite robust with respect to this issue, and the only assumption we will
make is the standard convention that a computation which uses n space may
query only oracle strings of length at most n.

If E and F are equivalence relations on the spaces X and Y , then a
function f : X → Y is a homomorphism from E to F if for all x, y ∈ X we
have x E y =⇒ f(x) F f(y). A function f : X → Y is a cohomomorphism
from E to F if for all x, y ∈ X we have f(x) F f(y) =⇒ x E y.

3 A universality proof

In this section, we prove the following theorem from the introduction.

Theorem 3.1. Suppose g(n) ≥ n2 is a strictly increasing time-constructible
function. Then any countable Borel equivalence relation E such that

≡TIME(∪kO(gk))
m ⊆ E ⊆≡SPACE(∪kO(gk))

T is universal.

Proof. We let E∞ note a universal countable Borel equivalence relation that
is generated by a continuous action of the free group on two generators
F2 = 〈α, β〉 on 2ω. For example, we can use the shift action of F2 for
the purpose (see [5]). We will show that E is universal by constructing a
continuous reduction f̂ from E∞ to E.

The key to our proof is that given γ ∈ F2, we can code f̂(γ · x) into
f̂(x) rather sparsely so that if |γ| = k is the length of γ as a reduced word,
then strings of length n in f̂(γ · x) are coded by strings of length greater
than gk(n) in f̂(x). From here our basic idea is as follows: given x, y ∈ 2ω

such that x ��E∞ y and a Turing reduction that runs in gk-time, we wait
till we have finite initial segments of x and y witnessing that γ · x 6= y for
any γ of length ≤ k. Then if n is large enough, we can change the value
of strings of length n in f̂(x) without changing f̂(y) restricted to strings of
length ≤ gk(n). This makes it easy to diagonalize. The remaining technical
wrinkle of the proof is that we must be able to simultaneously do a lot of
this sort of diagonalization. This proof is inspired by the proof of Theorem
2.5 in [12].

We now give a precise definition of the coding we will use. Let c : 2<ω →
2<ω be the function where c(r) = 0g(|r|)a1ar is g(r) zeroes followed by a 1
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followed by r. It is clear that if x ∈ P(2<ω), then c(x) = {c(r) : r ∈ x} is
many-one reducible to x in O(g)-time, since g is time constructible.

Given f : 2ω → P(2<ω), let f̂ : 2ω → P(2<ω) be the unique function
satisfying

f̂(x) = f(x)⊕ c
(
f̂(α · x)⊕ f̂(α−1 · x)⊕ f̂(β · x)⊕ f̂(β−1 · x)

)
.

While this definition of f̂ is self-referential, note that if y is a language, and s
is a string in y, then s is coded by a string of a greater length in f(x)⊕c (y).
Hence, for each string s, there is a unique end-segment rs of s and a word
γs ∈ F2 so that s is in f̂(x) if and only if rs is in f(γs · x). So f̂ is uniquely
defined.

Now it is clear that given any f , the associated f̂ is a homomorphism

from E∞ to E, since ≡TIME(∪kO(gk))
m ⊆ E. We claim that if f is a sufficiently

generic continuous function, then f̂ will also be a cohomomorphism from

E∞ to ≡SPACE(∪kO(gk))
T and hence also a cohomomorphism from E∞ to E.

By generic here, we mean for the following partial order for constructing
a continuous (indeed, Lipschitz) function from 2ω to P(2<ω). Our partial
order P will consist of functions p : 2n → P(2≤n) such that if m < n and
r1, r2 ∈ 2n extend r ∈ 2m, then p(r1) and p(r2) agree on all strings of length
≤ m. Given a p : 2n → P(2≤n) and r ∈ 2n, we will often think of p(r) as a
function from 2≤n to 2. If p has domain 2n, then we will say p has height
n. If p, p∗ ∈ P are such that the height of p is m and the height of p∗ is n,
and m ≤ n, then say that p∗ extends p, noted p∗ ≤P p, if for all r∗ ∈ 2n

extending r ∈ 2m, we have that p∗(r∗) extends p(r) (as functions).
If p ∈ P, then we can define p̂ analogously to the definition of f̂ above. In

particular, for each γ ∈ F2, we have some partial information about p(γ · r)
based on the longest finite initial segment of γ · r that we know (recall that
the action of F2 on 2ω is continuous). Hence, given a finite string r, p̂ will
map r to a partial function from finite strings to 2 that amalgamates all this
partial information.

Because of our coding scheme, if r ∈ 2<ω, the length of r is |r| = n, and
γ ∈ F2 is of length k, then whether r ∈ f̂(γ · x) is canonically coded into
f̂(x) at some string of length greater than gk(n).

Let p0 be the condition of height 1 where p0(r) = ∅ for all r. Hence, if
f : 2ω → P(2<ω) extends p0, then every string in f(x) must have length ≥ 2.
For convenience, the generic function we construct will extend p0. Note that
since g(n) ≥ n2, if f is O(gk−1) for some k, then f(n) ≤ g(n)k for sufficiently
large n.
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Suppose we are given a Turing reduction ϕe that runs in gk-space, and
r, s ∈ 2m such that γ · r is incompatible with s for all γ ∈ F2 where |γ| ≤ k.
Let Dr,s,k,e be the set of p of height ≥ m such that if p has height i, then
there exists an n ≥ m so that if t ∈ 2i, then p̂(t) is defined on all strings of
length ≤ gk(n), and for all r∗, s∗ ∈ 2i extending r and s, we have that ϕe
is not a gk-time reduction of p̂(s∗) to p̂(r∗) as witnessed by some string t
of length n, so that ϕe(p̂(r

∗))(t) 6= p̂(s∗)(t). We claim that Dr,s,k,e is dense
below p0. The theorem will follow from this fact.

Given any p ≤P p0 where p has height j, we must construct an extension
p∗ of p so that p∗ ∈ Dr,s,k,e. Fix an n and an i such that i � n � j with
the precise bounds we give below. Define q of height i where for all r, q(r)
contains only the strings in p(r � j). We require that 2j+14k+1 log2(n)2 < n,
and that i � n is large enough so that for all r ∈ 2i, q̂(r) is defined on all
strings of length ≤ gk(n). Such an i exists by the continuity of the action
of F2 on 2ω.

Given any r∗ ∈ 2i we compute an upper bound on how many elements
q̂(r∗) could have of length ≤ gk(n). Clearly every q(t) has less than 2j+1

elements. It will be enough to establish an upper bound on the number of
words γ ∈ F2 so that some element of q(γ · r∗) is coded into q̂(r) via a string
of length ≤ gk(n).

Since q extends p0, any element of any q(γ ·r∗) must be a string of length
≥ 2. Now if γ ∈ F2 is such that some string of length ≥ 2 in q(γ · r∗) is
coded into q̂(r∗) below gk(n), then it must be that g|γ|(2) ≤ gk(n). Since
g(n) ≥ n2, we have that gi(2) ≥ 22

i
. Hence, |γ| ≤ k + log2 log2(n). This is

because otherwise

g|γ|(2) ≥ gk+dlog2 log2(n)e(2) = gk ◦ gdlog2 log2(n)e(2) ≥ gk(n)

and furthermore g|γ|(2) > gk+dlog2 log2(n)e if log2 log2(n) is an integer, and
gk+dlog2 log2(n)e(2) > gk(n) if log2 log2(n) is not an integer, contradicting
g|γ|(2) ≤ gk(n) either way. Thus, there are most 4k+1 log2(n)2 such group
elements γ since there are at most 4l+1 words of F2 of length ≤ l.

Since each q(γ · r∗) must have less than 2j+1 elements, q̂(r∗) contains
at most 2j+14k+1 log2(n)2 strings of length ≤ gk(n). Let S be this set of
all possible strings in q̂(r∗) of length ≤ gk(n), so we have picked n so that
|S| < n. Note that S does not depend on r∗.

We see now that amongst all of the r∗ extending r, there are ≤ 2n−1

possibilities for what any q̂(r∗) restricted to strings of length ≤ gk(n) could
be: they are all elements of P(S). Let u0, u1, . . . be a listing of the elements
of P(S). Recall that based on our definition of recursive join and p̂, strings
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of length n − 1 in p(s∗) are coded into p̂(s∗) using strings of length n that
begin with 0. Define p∗ to be equal to q except on extensions s∗ of s. There,
if σ is the lth string of length n− 1, then put σ ∈ p∗(s∗) if and only if σ is
not accepted by ϕe run relative to ul. We then have that p∗ ∈ Dr,s,k,e as
desired. Recall here that γ · r∗ is incompatible with s∗ for all γ ∈ F2 where
|γ| ≤ k, since r∗ and s∗ extend r and s respectively.

4 Relativization barriers and largeness notions for
sets of polynomial time degrees

Martin’s ultrafilter is defined by a game where two players alternate defining
the bits of a real, as follows:

Definition 4.1. Let U be the collection of ≡P
m-invariant Borel sets A ⊆

P(2<ω) such that player I has a winning strategy in the following game GA.
Players I and II alternate defining which strings are in a language x where on
turn n, player I decides membership in x for all strings of length n beginning
with a 0, and on turn n, player II decides membership in x for all strings
of length n beginning with a 1, so x is the recursive join of the languages
played by I and II. Then player I wins the game if x ∈ A.

We now show that U is a σ-complete ultrafilter for ≡P
m-invariant sets.

Proposition 4.2. U is a σ-complete ultrafilter on the ≡P
m-invariant Borel

sets.

Proof. Because A is ≡P
m-invariant, it is easy to check that for any definition

of a recursive join ⊕ such that the map (x, y) 7→ x ⊕ y is polynomial time
many-one equivalent to our canonical definition in Section 2, the winner of
the game does not change. Hence, we can see that A ∈ U iff Ac /∈ U by
simply switching the roles of players I and II in GA.

Similarly, suppose we are given countably many strategies σ0, σ1, . . . for
player I in the games GA0 , GA1 , . . . respectively. By changing the definition
of recursive join, we may assume that in the game GAi , player I decides
membership in x for all string which begin with the string 0i+1a1 of i + 1
zeroes followed by a one, and player II decides membership in x for all other
strings. Now we can use the strategies σ0, σ1, . . . simultaneously to give
a strategy for player I in the game where player I decides x on all strings
beginning with 0. This combined strategy shows that player I wins the game
with payoff set

⋂
iAi. Hence, U is σ-complete.
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Next, an easy extension of Theorem 3.1 shows the following:

Theorem 4.3. Let E be a countable Borel equivalence relation as in Theo-
rem 3.1. Then Definition 4.1 defines an ultrafilter on the Borel E-invariant
sets such that for any A ∈ U , E � A is a universal countable Borel equiva-
lence relation.

Proof. Given a winning strategy σ for player I in the game GA, and any
y ∈ P(2<ω), let σ ∗ y be the outcome of playing the strategy σ against
player II playing y. Then if we replace the definition of f̂ in the proof with

f̂(x) = σ ∗
(
f(x)⊕ c

(
f̂(α · x)⊕ f̂(α−1 · x)⊕ f̂(β · x)⊕ f̂(β−1 · x)

))
then f̂ remains a homomorphism of E∞ into E. This is because for all x,
f̂(α · x), f̂(α−1 · x), f̂(β · x), and f̂(β−1 · x) are coded in f̂(x) so that they
are O(g)-time computable from f̂(x). Hence, by induction, if γ is a word of
length k, then f̂(γ · x) is O(gk)-time computable from f̂(x).

Furthermore, a trivial modification of the proof of Theorem 3.1 shows
that with this new definition of f̂ and the associated p̂, the sets Dr,s,k,e are

still dense and hence if f is a sufficiently generic continuous function, then f̂
will be a Borel reduction. Finally, f̂ must be an embedding whose range is
contained in the set A, since σ is a winning strategy for player I in GA.

Now an easy argument essentially repeating Gill, Baker, and Solovay’s
proof shows that if A = {x : Px = NPx}, then there is a winning strategy
for player I in the game GA; player I simply ensures that the outcome of
the game is a language that is polynomial time equivalent to its PSPACE
completion. Thus, we have the following corollary

Corollary 4.4. Let A = {x : Px = NPx}. Then ≡P
m� A and ≡P

T � A are
universal countable Borel equivalence relations.

We finish by noting that the ultrafilter U in Definition 4.1 can be com-
bined with Theorem 4.3 to provide an alternate way of proving many of the
results in section 3 of [12]; one simply uses them to replace Martin’s measure
and arithmetic equivalence in that paper.
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