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1. Introduction

In this article we survey the emerging field of descriptive graph combina-
torics. This area has developed in the last two decades or so at the interface
of descriptive set theory and graph theory, and it has interesting connec-
tions with other areas such as ergodic theory and probability theory.

Our object of study is the theory of definable graphs, usually Borel
or analytic graphs on Polish spaces. We investigate how combinatorial
concepts, such as colorings and matchings, behave under definability con-
straints, i.e., when they are required to be definable or well-behaved in the
topological or measure theoretic sense.

To illustrate the new phenomena that can arise in the definable context,
consider for example colorings of graphs. As usual a Y-coloring of a graph
G = (X, G), where X is the set of vertices and G C X? the edge relation, is
amap c: X — Y such that :Gy = ¢(z) # c(y). An elementary result in
graph theory asserts that any acyclic graph admits a 2-coloring (i.e., a col-
oring as above with |Y| = 2). On the other hand, consider a Borel graph
G = (X,@G), where X is a Polish space and G is Borel (in X?). A Borel
coloring of G is a coloring c: X — Y as above with Y a Polish space and
c a Borel map. In contrast to the above basic fact, there are acyclic Borel
graphs G which admit no Borel countable coloring (i.e., with |Y| < Ry);
see Example 4.14. Moreover for each n > 2, one can find acyclic Borel
graphs G, which admit a Borel n-coloring but no Borel m-coloring for any
m < n; see the first paragraph of Subsection 5,(B). However, sometimes re-
sults of classical graph theory have definable counterparts. For example,
another standard result in graph theory asserts that every graph of degree
at most d admits a (d + 1)-coloring. It turns out that every Borel graph of
degree at most d actually admits a Borel (d + 1)-coloring; see Proposition
5.4. Another interesting example of the interplay between combinatorics
and definability is the following. An edge coloring of a graph G is a map
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8 1. Introduction

that assigns to each edge (viewed as a two element set) a color (in some
set Y) such that adjacent edges have distinct colors. A classical theorem
of Vizing states that in any graph of maximum degree d there is an edge
(d + 1)-coloring. This is in general optimal, although, by a result of Konig,
this upper bound can be lowered to d if the graph is bipartite; see Theo-
rem 6.10, and Remark 6.11. However, it turns out that for Borel graphs of
maximum degree d there is always an edge (2d — 1)-coloring and this is
optimal, even among d-regular acyclic graphs; see Theorem 6.12.

Although there were a few isolated results that can now be viewed as
belonging to the theory developed here, most notably concerning the mea-
surable chromatic numbers of the unit distance graph in R? and related
graphs (see Example 5.1), the first systematic study of definable graph
combinatorics appears to be the paper Kechris-Solecki-Todorcevic [KST].
Since that time the theory has developed in several directions that will be
surveyed in detail in this article. An appealing aspect of this theory is the
variety of methods employed in its study, which include methods of effec-
tive and classical descriptive set theory, graph theory (including random
graphs and the more recently developed graph limits), probability theory,
ergodic theory, topological dynamics, ultraproducts, and infinite games
(via Borel determinacy).

Acknowledgments. We would like to thank A. Bernshteyn, P. Burton, W.
Chan, C. Conley, M. Inselmann, S. Jackson, D. Lecomte, B. Miller, S. Todor-
cevic, and R. Tucker-Drob for many valuable comments/contributions dur-
ing the preparation of this paper. ASK was partially supported by NSF
Grants DMS-1464475 and DMS-1950475. ASM was partially supported
by NSF Grant DMS-1204907 and the John Templeton Foundation under
Award No. 15619.



2. Outline

We next give an overview of the contents of this survey. It is divided into
two parts. Part I, containing Chapters 3-9, deals with graph colorings.
Part II, containing Chapters 10-16, deals with matchings. Here is a more
detailed description of the contents of each chapter.

Chapter 3 gives the standard preliminaries concerning colorings and
graph homomorphisms, both in the classical and the definable context.

Chapter 4 focuses on the dividing line between graphs that have count-
able vs. uncountable Borel chromatic number. Section 4.1 contains a char-
acterization of when an analytic graph has countable edge Borel chromatic
number, while 4.2 contains some basic facts concerning graphs that have
countable Borel chromatic number and 4.3 includes examples of interest-
ing Borel graphs that have uncountable Borel chromatic number. In 4.4 we
discuss the G-dichotomy of [KST], which gives the exact obstruction for
an analytic graph to have countable Borel chromatic number. It is used in
4.5 to study the structure of the “thin" analytic sets of countable Borel chro-
matic number (with respect to a given analytic graph of uncountable Borel
chromatic number). In 4.6 applications are given to the definable version
of Hedetniemi’s Conjecture concerning the chromatic number of products
of graphs. In 4.7 and 4.8 extensions and additional dichotomy theorems
for various classes of analytic graphs, related to our previous dividing line,
are given, primarily due to Feng, Lecomte, Louveau and B. Miller. Sec-
tion 4.9 deals with injective versions of the G,-dichotomy, from [KST] and
more recent work of Lecomte and B. Miller. The Gy-dichotomy provides
a l-element basis for the quasi-order of analytic graphs with uncountable
Borel chromatic number under Borel homomorphism. In 4.10 we discuss
results of Lecomte and B. Miller concerning basis problems for such quasi-
orders defined by reducibilities as opposed to homomorphisms. Subsec-
tion 4.11 presents recent work of Carroy, Lecomte, B. Miller, Soukup and
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10 2. Outline

Zeleny, concerning the Borel complexity of countable Borel colorings. B.
Miller has in the last few years developed an important theory which pro-
vides a unified approach to many dichotomy theorems in descriptive set
theory (not necessarily dealing with graphs) based on graph dichotomies
extending the Gy-dichotomy. This is discussed in 4.12.

Chapter 5 explores a second dividing line, that of graphs with finite
vs. countably infinite Borel chromatic number. Section 5.1 discusses inter-
esting examples of Borel graphs with countably infinite Borel chromatic
number. In 5.2 we present some basic facts from [KST] concerning upper
bounds for the Borel chromatic number of analytic graphs of bounded de-
gree as well as recent results of Conley and B. Miller on Baire measurable
chromatic numbers of locally finite analytic graphs. In 5.3 we consider the
problem of calculating the Borel chromatic number of the graph gener-
ated by finitely many Borel functions and present the known results from
[KST], and the more recent work of Conley, Meehan, B. Miller and Palam-
ourdas. In 5.4 and 5.5 we deal with universality results concerning classes
of locally countable Borel graphs and Borel functions, including in partic-
ular a study of the shift graph on increasing sequences of integers. Finally
in 5.6 we discuss the basis problem for the class of Borel graphs with infi-
nite Borel chromatic number and the work of Pequignot, Todorcevic and
Vidnyéanszky:.

Chapter 6 is devoted to the study of graphs with finite Borel chro-
matic number. In 6.1 we consider an analog of the G-dichotomy for the
property of having Borel chromatic number < 2, due to Carroy, B. Miller,
Schrittesser and Vidnyanszky. As we mentioned earlier, a Borel graph of
degree < d admits a Borel (d + 1)-coloring. In 6.2 we first discuss the
result of Marks, whose proof brought in this area game-theoretic argu-
ments and Borel determinacy, establishing the optimality of this bound
for Borel d-regular, acyclic Borel graphs. Next we discuss results of Con-
ley, Kechris, Marks and Tucker-Drob on the extent to which the classical
Brooks’ bound (that a finite graph of degree < d admits a d-coloring except
for two obvious exceptions) holds in the Borel, measurable (with respect
to a given measure) or Baire measurable context. We conclude with results
of Bernshteyn that apply a measurable version of the Lovasz local lemma
to compute bounds for approximate measurable chromatic numbers. In
6.3 we are concerned with Vizing’s Theorem that a finite graph of degree
< d admits an edge (d + 1)-coloring. In [KST] it was shown that an an-
alytic graph of degree < d admits an edge Borel (2d — 1)-coloring. We
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discuss here Marks’ result, again proved using game theoretic methods,
that this bound is optimal and also results and problems concerning the
measure or Baire category framework, including very recent work of Bern-
shteyn, Csoka, Lippner and Pikhurko. In 6.4 we present results of Conley,
Kechris and B. Miller concerning hyperfinite graphs, i.e., locally count-
able Borel graphs whose connected components define a hyperfinite Borel
equivalence relation. A free Borel action of a marked group, i.e., a finitely
generated group with a given symmetric finite set of generators, defines
a natural Borel graph of bounded degree on the space of the action and
6.5 deals with coloring problems for such graphs in the Borel, measurable
or Baire measurable context. Results of Bernshteyn, Conley, Cséka, Gao,
Jackson, Kechris, Lippner, Marks, Pikhurko, Seward and Tucker-Drob are
presented here. In 6.6 we look at such graphs in the context of ergodic
theory, i.e., for measure preserving actions of marked groups on standard
measure spaces. We consider combinatorial parameters, such as measur-
able independence or chromatic numbers, associated with each action and
in particular with the Bernoulli actions of free groups. We present here re-
sults of Bernshteyn, Conley, Kechris, Lyons, Marks, Nazarov and Tucker-
Drob that involve a variety of methods from ergodic theory, spectral the-
ory, random graphs and ultraproducts. In 6.7 we consider connections of
the results in 6.6 to problems in probability theory concerning invariant,
random colorings in Cayley graphs of marked groups.

In Chapter 7 we survey the possible chromatic numbers in the Borel,
measurable and Baire measurable contexts, for various classes of definable
graphs, and in Chapter 8 we discuss results concerning other coloring con-
cepts.

Chapter 9 provides a quick introduction to connections with the theory
of graph limits of bounded degree finite graphs and contains pointers to
the relevant current bibliography.

Chapter 10 contains the basic preliminaries about matchings in graphs.
Chapter 11 deals with Marks’ result that the classical Kénig Theorem (ev-
ery regular, bipartite graph admits a perfect matching) fails in the Borel
context. On the other hand, in Chapter 12 we discuss theorems of Conley,
B. Miller and Marks, Unger on the existence of perfect matchings in the
Baire category context and in Chapter 13 we present results of Elek, Lipp-
ner, Lyons and Nazarov about matchings in the measure theoretic context.
In Chapter 14, in analogy with 6.5, we discuss results of Conley, Csoka,
Kechris, Lippner, Lyons, Nazarov, Tucker-Drob on matchings in graphs
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generated by free, measure preserving actions of marked groups and in
Chapter 15 their applications to invariant, random perfect matchings on
Cayley graphs. Finally Chapter 16 surveys results connecting equidecom-
posability and paradoxical decompositions for group actions with match-
ings. It includes results of Grabowski, Mathé, Pikhurko on equidecompos-
ability of sets in R" using Lebesgue measurable pieces and Marks, Unger
using Borel pieces, extending the classical Banach-Tarski Paradox and the
result of Laczkovich related to his solution of the Tarski Circle Squaring
Problem. Also includes work of Marks, Unger on paradoxical decompo-
sitions using sets with the property of Baire, which extends the work of
Dougherty and Foreman, in connection with their solution to the Mar-
czewski Problem on the existence of Banach-Tarski paradoxical decom-
positions with pieces that have the property of Baire. It concludes with
another proof of the Dougherty and Foreman result.



Part 1
COLORINGS
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3. Preliminaries on graphs and
colorings

Let L = (R;);es be a relational language, where R; has arity n; > 1. Given
two L-structures A = (X, (RA)ic1), B = (Y, (RB)ic1) a homomorphism of A

(2

to Bisamap f: X — Y such thatforeachi € I and a,,...,q,, € X,
RMay,. .. a,) = RE(f(a1),..., fan,)).
If such a homomorphism exists we write
A=<B
and if an injective homomorphism exists we write
A <™ B.

A reduction of A to B is a map f: X — Y such that for each i € I and
a1,...,0,, € X,

RA(ay,...,an,) <= REB(f(a1),..., f(an,)).
If such a reduction exists we write
A<B
and if an injective reduction exists we write
ALC B.

The notation A C B means that A is a substructure of B. Letting A = B
denote the isomorphism relation, it follows that an injective reduction of

15



16 3. Preliminaries on graphs and colorings

A into B is an isomorphism of A with a substructure of B. For a structure
A as above and Y C X we denote by A|Y the substructure of A with
universe Y.

Let A be a class of sets in Polish (or standard Borel) spaces, e.g., closed,
Borel, analytic, etc. If A = (X, (R#);c;) is a structure with X Polish (or
standard Borel), we say that A is in A if R* C X" is in A in the product
space X", i € I.

Let now ® be a class of functions between Polish (or standard Borel)
spaces, e.g., continuous, Borel, etc. If A = (X, (RA)ic1), B = (Y, (RB)ic1),
where X, Y are Polish (or standard Borel) spaces, we write A <4 B if there
is a ®-homomorphism from A to B. Similarly for jg:j, <s,Cq,=e. We use
the subscript ¢ when @ is the class of continuous functions, B when @ is the
class of Borel functions, BM for the case of Baire measurable functions, p
when @ is the class of y-measurable functions (for a Borel measure y) and
UM in the case of universally measurable functions.

We are primarily interested in graphs in this paper. By a directed graph
we mean a structure D = (X, D), where D C (X)?, with (X)? = {(z,y) €
X2z # y}, ie, D is a non-reflexive binary relation. Let also D~! =
{(z,y): (y,z) € D}. We usually write xDy instead of (z,y) € D and let
D(z) = {y: xDy}. A graph is a structure G = (X, G), where G is a non-
reflexive, symmetric binary relation. Thus the class of graphs is contained
in the class of directed graphs. Every directed graph D gives rise to the
(symmetrized) graph Gp = (X, Gp), where

Gp = {(z,y): tDyoryDz} = DU D™".

Foragraph G = (X, G) we also view G as the set of unordered pairs {z, y},
where xGy, i.e., the edges of G.

If D = (X,D),E = (Y,E) are directed graphs, we say that D is a
subgraph of E'if X C Y and D C E. It is an induced subgraph if moreover
D = E N X% In the general model theoretic notation, this means that
D C E. For a directed graph E = (Y, E) and X C Y, we denote by E|X
the induced subgraph with vertex set X.

A path of length n > 1in a graph G = (X, () is a sequence of vertices

20, %1, ..., T, € X with x;Gz,11,Vi < n. It is simple if zy,2q,...,2, are
distinct. A cycle of length n > 3 or n-cycle in G is a path zg, x1,...,z,,
where z,, = zy. Itis simple if x, ..., x,_; are distinct. A graph G is acyclic

if it has no simple n-cycle, for n > 3.
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The connected components of a graph G = (X, () are the equivalence
classes of the equivalence relation on X:

rEqgy <= thereis a G-path from z to y.

For a directed graph D, we let Ep = E¢g,,.

A graph G = (X, G) is connected if it has a single connected compo-
nent. For such a graph we define the distance dg(z,v), for z # y € X, by
da(z,y) = the least n such that there is a G-path of length n from z to y
(we also put dg(z, ) = 0). We extend this notation to arbitrary graphs by
letting dg(x,y) = oo if "z Egy.

We apply these notions to directed graphs D = (X, D) by postulating
that they hold for Gp. We can also define the concept of a directed path of
length n > 1in D to be a sequence x, 1, ..., z, with z; Dz, ,Vi < n, and
similarly for directed cycles.

The out-degree, odp(x), of a vertex x in D is the cardinality |D(z)| and
the in-degree of x, idp(z), is the cardinality | D! (x)|, where clearly D~ (z) =
{y: yDz}. When G is a graph, we simply talk about the degree of z,

deg,(z) = |G(x)|.

We also let A(G) be the least upper bound of deg(z),» € X. The graph
is called bounded degree, resp., locally finite, locally countable, if A(G) is fi-
nite, resp., each deg(z) is finite, A(G') < ¥y. The graph G is d-regular if
deg(x) = d for every vertex x. A directed graph D satisfies one of these
properties if the graph G'p does.

An equivalence relation is called finite, resp., countable, if each equiva-
lence class is finite, resp., countable. Thus G is locally countable iff E¢ is
countable.

Given a family of functions F;: X — X,j € J, we denote by Dy,) =
(X, D(p,)) the directed graph where

vDipyy = v #y& 3j(Fj(z) =y)

and by G ;) its symmetrization.

An independent set in a directed graph D = (X, D) is a subset A C X
such that z,y € A = —(zDy). This coincides with the concept of an
independent set in Gp. A Y-coloring of D is a map c: X — Y such that

Dy = c(z) # c(y),
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i.e., a homomorphism from D into Ky = (Y,(Y)?). Equivalently this
means that for each y € Y, ¢ '({y}) is independent. Again this coincides
with the notion of coloring of G p. The chromatic number of D, x(D), is the
smallest cardinality of a set Y for which there is a coloring c: X — Y. For
example, for a graph G, x(G) < 2iff G has no odd cycles. Such graphs are
called bipartite. In particular, an acyclic graph is bipartite. Note also that if
G is locally countable, then x(G) < .

For every graph G, we let L(G) be its line graph, L(G) = (G, L(G)),
where G is the set of edges of G, viewed as 2-element sets, and

{z, g} L(G){z, w} = {z,y} # {7 w} & {z,y} N {z, 0w} #0,

i.e., two edges are connected in L(G) if they have a common vertex. The
edge chromatic number of G, in symbols x'(G), is the chromatic number of
L(G).

Given now a directed graph D = (X, D) in a Polish (or standard Borel
space X) and a class of functions ® as before, we define the ®-chromatic
number of D as being the smallest cardinality of a Polish space Y for which
there is ®-coloring c¢: X — Y of D. We denote it by xo(D). Again this is
the same as xo(Gp). Thus xs(D) € {1,2,3,...,R¢,2%}, because these
are the possible cardinalities of Polish spaces. We again use xz, X5Mm, Xu
(for a Borel measure ) for the case of Borel, Baire measurable, ji-measurable
chromatic numbers. Clearly x < xpm < X5, X < X < xB. We also let

xm = sup{x,: uis a Borel probability measure},

which we call the measure chromatic number. Similarly we define the num-
ber \3(G) for a graph G. We also let x/,(G) be the minimum of x3(G|C),
where (' varies over Eg-invariant conull Borel sets and analogously define
Xpu(G). Finally we put X}, = sup,, X},

When D = (X, D) is a directed graph on a standard Borel space X
and p is a Borel probability measure on X, we also define the approximate
p-measurable chromatic number of D, in symbols x;?(D), to be the smallest
cardinality of a standard Borel space Y such that for each € > 0, there is a
Borel set A C X with (X \ A) < e and a y-measurable coloring ¢c: A — Y
of the induced graph DJ|A. Clearly x/?(D) < x.(D). Again x;?(D) =
X;7(Gp). We define analogously the approximate measure chromatic number
X+
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Finally, the pi-independence number of D, in symbols i, (D), is the supre-
mum of the p-measures of D-independent Borel sets. Clearly i,(D) =
i,(Gp). Moreover we have the following obvious inequality:

if i,(D) > 0, while x{?(D) = 2% if i,(D) = 0. Thus graphs with small in-
dependence number have large (approximate) measurable chromatic num-
ber. Moreover, by an easy exhaustion argument, we have that x;7(D) < N,
iff there is a Borel set Y C X with p(Y) = 1 such that x5(D|Y) < Ny iff for
every Borel A C X with p(A) > 0, there is a D-independent Borel B C A
with p(B) > 0.

Remark 3.1. Geschke [G11] also considers weak Borel chromatic numbers
which correspond to arbitrary colorings but in which the points having
the same color form a Borel set.



20

3. Preliminaries on graphs and colorings




4. Countable vs. uncountable
Borel chromatic numbers

4.1 Edge chromatic numbers

We start with the following basic fact:

Proposition 4.1 ([KST, 4.10]). Let G = (X, G) be an analytic graph on a stan-
dard Borel space X. Then the following are equivalent

() Xp(G) <Ry,
(ii) G is locally countable.

Remark 4.2. Proposition 4.1 is proved in [KST, 4.10] for Borel graphs but
easily extends to analytic graphs, since every analytic graph G (on a stan-
dard Borel space) which is locally countable is a subgraph of a locally
countable Borel graph H with the same set of vertices. This follows from
the First Reflection Theorem (see [K95, 35.10]).

Note that if G is Borel locally countable, N € {1,2,...,N}, where we
identify n > 1 withn = {0,...,n — 1}, and ¢: G — N is surjective and
a Borel edge coloring, then for each n € N,c¢ '({n}) is the graph G, of
a Borel involution 7;, of X and thus G = Gr,). Thus Proposition 4.1 for
Borel G is equivalent to the statement that every locally countable Borel
graph is generated by a countable family of Borel involutions.

There is a related proposition for directed graphs. Let D = (X, D) be a
directed graph. Its shift graph (also called the directed line graph of D) is the
directed graph sD = (D, sD), where sD consists of all pairs ((z,y), (v, 2))
with 2Dy, yDz.

21



22 4. Countable vs. uncountable Borel chromatic numbers

Proposition 4.3 ([KST, 4.11]). Let D be an analytic directed graph on a standard
Borel space X. Then xp(sD) < X,.

Remark 4.4. Similar comments as in Remark 4.2 apply here.

4.2 Countable Borel chromatic numbers

We first note the following reformulation of the existence of a countable
Borel coloring (i.e., xp < Ny).

Proposition 4.5 ([KST, 4.3, 4.4]). Let D = (X, D) be an analytic directed graph
on a standard Borel space X. Then x (D) < X iff there is a Polish topology o

generating the Borel structure of X such that Va(z & D(x)’ ).

Proof. = : If c: X — N is a Borel coloring of D, then there is a Polish
topology generating the Borel structure of X in which cis continuous (with
N discrete). Then A4,, = ¢~ '({n})is o-clopen and if z € A, then A,ND(z) =
0, so x is not in the closure D(z) .

<=: Let {U, } be an open basis for the topology o. Let

P(z,n) <= €U, &U,ND(z) =0.

Then P C X x N is co-analytic and Vz3nP(x,n), so by the Number Uni-
formization Property for co-analytic sets (see [K95, 35.1]), there is a Borel
function f: X — N such that Vo P(z, f(z)). Then c¢(z) = Uy, is a count-
able Borel coloring of D. ]

Corollary 4.6 ([KST, 4.5]). Let D = (X, D) be an analytic directed graph on
a standard Borel space X such that Vx(D(x) is finite), i.e., D has locally finite
out-degree. Then xp(D) < N,. In particular, this holds for locally finite Borel
graphs G and graphs of the form G = Gp, . p,, Fi: X — X Borel, 1 <i <n.

.....

Recall that if X is a standard Borel space, R C X",n > 1,and Ais a
class of sets in Polish spaces closed under continuous preimages, we say
that R is potentially A if there is a Polish topology o generating the Borel
structure of X such that R is in A in the space X™ with the product o-
topology. Equivalently this means that there is a A-relation S C Y™, Y a
Polish space, with R <z S. We now have
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Corollary 4.7. Let D = (X, D) be a directed graph on a standard Borel space
which is potentially closed. Then x (D) < N,.

It is not hard to see that the converse is not true.

Example 4.8. First notice that if X is an uncountable Polish space, then
the diagonal {(z,y) € X?: x = y} is not potentially open, i.e., it is not
the union of countably many Borel rectangles. It follows that if X,Y are
uncountable standard Borel spaces, then there is Borel subset of X x Y
which is not the union of countably many Borel rectangles. Now let X
be again an uncountable standard Borel space and let X = A; L A; be a
decomposition of X into two uncountable Borel sets. Let B C A; x A,
be such that B is not the union of countably many Borel rectangles. Then
G = (X,G), where G = X?\ (BUB'U(A;)*U(A)?) is a Borel graph with
x5(G) = 2 (as A;, A, are G-independent) but G is not potentially closed
(since X2\ G is not potentially open).

It was shown however in Lecomte-Miller [LM, 5.7] that the converse
to Corollary 4.7 holds if D = (X, D) is a graph in a Polish space X with
D\ D C{(z,y): z =y}.

Also Lecomte-Miller [LM, 5.8] show the following: Let X be a standard
Borel space and R C X? be Borel. Define the following directed graph
Dpg = (X?\ R, Dg), where

(x,y)Dr(z,w) <= zRw.

Then R is potentially closed iff x5(Dg) < Ro.

We next mention some very useful consequences of the existence of
countable Borel colorings.

First recall that given a graph G = (X, G) a kernel of G is a maximal
independent set A C X. Thismeans thatz # y € A = (z,y) ¢ G and
for any x ¢ A, there is y € A with (z,y) € G. Below for any A C X, we let
Ng(A) ={y: 3z € A(xGy)}. Thus G(z) = Ng({z}), for z € X.

Proposition 4.9 ([KST, 4.2]). Let G = (X, G) be a graph on a standard Borel
space such that for any Borel A C X, the set Ng(A) is Borel (e.g., if G is Borel
locally countable). If xp(G) < Ny, then every Borel independent set can be ex-
tended to a Borel kernel.
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Let £ be an equivalence relation on a set X. Denote by [E]<* the set of
finite nonempty subsets of X which are contained in a single E-class. If ¥
is a Borel equivalence relation on a standard Borel space X, [E]<* forms a
standard Borel space. The intersection graph G = ([E]<*>°, G) (relative to
E), with vertex set [E]<*, is defined by

AGIB < A# B& AN B # 1.

Proposition 4.10 ([KM, 7.3],[CM2, Proposition 2]). The intersection graph
of a countable Borel equivalence relation has countable Borel chromatic number,

xs(Gr) < N,.

Note that Proposition 4.10 generalizes Proposition 4.1, when applied
to £ = Eg.

One further application of Propositions 4.9 and 4.10 is the existence of
appropriately maximal finite (partial) subequivalence relations of a given
countable Borel equivalence relation.

Let £ be an equivalence relation on a space X. An fsr (finite partial
subequivalence relation) is an equivalence relation /' on a set Y C X such
that F' C E and each F-class is finite. Given ¥ C [E]<* we say that an fsr
FonY C X is UV-maximal if [y|r € ¥,Vy € Y, and if A € [E]<* is a finite
set disjoint from Y, then A ¢ U. We now have:

Proposition 4.11 ([KM, 7.3]). If E is a countable Borel equivalence relation and
U C [E]<* is Borel, then there is a Borel V-maximal fsr.

Remark 4.12. We record here some reformulations (in certain cases) of the
condition that the Baire measurable chromatic number is countable. Let
D = (X, D) be a directed graph on a Polish space X with x(D) < N,.
Then the following are equivalent:

(i) xpm(D) <N,

(ii) There is a dense G5 set Y C X and a countable partition of Y into
relatively open independent sets.

(iii) There is a dense G5 set Y C X such that for any nonempty relatively
open U C Y, there is a nonempty relatively open V' C U which is
independent.
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(i) = (i) follows from the fact that any set with the Baire property
becomes open relative to a dense G; set, and (ii) = (iii) is obvious. For
(iii) = (), let {U,} be a maximal collection of pairwise disjoint, rela-
tively open, independent subsets of Y. Then |J, U, is dense open in Y,
so comeager in X. Using y(D) < Ry, let {V},} be a countable decompo-
sition of X \ |, U, into independent sets. Then {U,,V,} is a countable
decomposition of X into independent sets with the Baire property.)

In case D = D f,), where F},: X — X are homeomorphisms of a Pol-
ish space X (so that x(D) < ¥;), then we can add another equivalence,
analogous to Proposition 4.5.

(iv) The set {z: 2 & D(x)} is comeager.

(By Proposition 4.5 and the fact that x(D) < 8;, we have that (iv) =
(i). To see that (i) = (iv), assume that the Borel set A = {z: z €
D(x)} is not meager. Then find an open nonempty set U C X, and, us-
ing xpm (D) < Vo, an independent set B C X, with the Baire property,
such that C = AN Bis comeager in U. If € CNU, then D(z) NU # 0,
so there is F, with F,(U) NU # (. But F,(C) is comeager in F,(U), so
C' N F,(C) # 0, contradicting the independence of C'.)

4.3 Examples of graphs with uncountable Borel
chromatic number

We discuss here some examples of Borel, locally countable, bipartite or
acyclic graphs that have uncountable Borel chromatic number. Such graphs
have of course chromatic number equal to 2. These examples are based
on the simple observation that if the ;-measurable chromatic number of
a graph is countable, then there must exist a y-positive measure indepen-
dent set, and similarly for category. The graphs in these examples are such
that all independent sets are null or meager.

Example 4.13 ([Sz], [T85]). These are the first examples in the literature
that we are aware of. Let X = R and let G; = (X,G;), i = 1,2, with
tGyy <= 3n € N(|z —y| = a,), where a,, — 0 are positive, linearly
independent over the rationals (Székely) and Gy <= 3k € Z(|lz —y| =
3F) (Thomas). These are Borel, locally countable bipartite graphs (they
have no odd cycles — but have 4-cycles), so that x(G;) = 2 but xpu(G;) =
xu(Gi) = xB(Gi) = 2™, where u = Lebesgue measure. This is because
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if A C R is non-meager with the Baire property or has positive measure,
then A — A = {z —y: z,y € A} contains an open interval around 0, so
there are =,y € A with zG,y, i.e., A is not independent. Other examples of
a similar nature are discussed in [So, §46].

Example 4.14 ([KST, 3.1]). Let S, be the Polish group of all permutations
on N and let (g,) € (S.)" be such that {g,,: n € N} is dense in S, and
generates a free subgroup of S.. Let F,,: Soo — S be given by F,(g) =
gng- Then G, is Borel, locally countable and acyclic, so x(Gr,)) = 2, but
(by an argument similar to that of the previous example) x51 (G (r,)) =

x8(G(r,)) = 2%.

A variant of this example is given in [CK, 2.2, a)] to produce Borel,
acyclic, locally countable graphs G with x,(G) = xsu(G) = xB(G) = 2%
(for an appropriate Borel probability measure ).

Example 4.15 ([CK, 2.2, b)]). Let I' = F, = the free group with X, many
free generators {7,: n € N}. Let S = {7f': n € N}. Leta: I' x X — X be
a Borel free, measure preserving, mixing action of I on (X, ), a standard
(probability) measure space. We write v-x = a(7, ) if a is understood. For
example, a could be the shift action of I" on 2%, restricted to its free part (i.e.,
the set of x € 2" for which v -z # z,Vy € T'\ {1}), with x the usual product
measure on 2'. Let G(S,a) be the “Cayley graph" associated with this
action: G(S,a) = (X,G(S,a)), where zG(S,a)y <= 3Fy € S(y-z = y).
This is a Borel, locally countable, acyclic graph, so x(G(S,a)) = 2, but
xu(G(S,a)) = xp(G(S,a)) = 2™. This is because, by the mixing property
of the shift action, if A C X has positive measure, then for some n, v,,- ANA
has positive measure, so there are z,y € A with zG(S, a)y.

It was shown in [CK, 4.6], that this fails if we only assume that the ac-
tion is ergodic, in fact there are free, measure preserving, ergodic actions
of F, with x,(G(S,a)) = 2. However it is easy to see that if a is a free,
measure preserving, weakly mixing action of F, then x,(G(S,a)) > 2.
Otherwise there would be a Borel set A C X with 0 < p(A) < 1 such that
YoYm + A = A for m,n € N, and therefore A would be I'-invariant, where
I' < F is the index 2 subgroup of F, which is the kernel of the homo-
morphism 7: Fo, — Z/27Z that sends the generators to 1. Since, by weak
mixing, I" acts ergodically, we have a contradiction. There are examples of
free, weakly mixing actions a of F., with x,(G(S,a)) = 3 (see [LN, Section
5]).
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Example 4.16 ([KST, 6.1]). Let (s,,)nen be a sequence of elements of 2<%, the
set of finite binary sequences, such that (i) |s,| = n and (ii) (s,) is dense,
ie., Vs € 2°N3n(s C s,). Define the graph G5 = Gy = (2%, Gy) as follows

xGoy <= In(zin =y|n = s, & x(n) # y(n) & Ym > n(z(m) = y(m)).

Then G| is acyclic (so x(Gy) = 2) but X (Go) = x5(Go) = 2%°. Indeed
if A C 2" is a non-meager set with the Baire property, there is some basic
nbhd N, = {z € 2V: t C 2}, ¢ € 2<%, such that A is comeager on N,. By
density we can assume that ¢ = s,, for some n. Since 7(t"i'z) =t (1 — i)z is
a homeomorphism of Ny, m(ANN;) N (ANN;) # (), so A is not independent.

Remark 4.17. Notice that in the preceding proof that x (Go) = 2™ one
only needs that (s,,) is dense below some ¢ € 2<%, i.e., 3tVs D t3n(s C s,).
Conversely, using Remark 4.12, it is easy to see that if x5 M(G((f")) = 2%,
then (s,) must be dense below some t € 2<VN. If we choose s,, = 0", then
Y5(GY™) = X, (see [KST, §6 (B)]), while if we take s,, = 011 (for n > 0),
then y5(G{™) = 2.

In [KST, §6 (C)], it was mentioned that xy/(Gy) = 2% (where xpar
is the universally measurable chromatic number). This is not correct and in
fact Miller [M08] proved that x,(Go) = 3 (and x,(Go) = 3, for the usual
product measure p on 2V), and assuming CH (or even add(null))= 2%)
,we have xya(Go) = 3. In fact, Miller [M08, 3.1] showed, more generally,
that if G = (X, () is an acyclic, locally countable Borel graph and Eg is
hyperfinite, then x/(G) < 3.

On the other hand, if one considers the bigger graph G, = (2%, G}),
where G, O G, is defined by =Gy <= 3ln(z(n) # y(n)) (see [CK,
3.7]), then G} has no odd cycles, so x(G;) = 2, but x5(G;) = xsm(Gy) =
xu(Gyp) = 2% (for the usual product measure p on 2) by a simple density
argument.

Note that the equivalence relation F¢, induced by G| is £\, where we
putxEyy <= In¥m > n(z(m) = y(m)), and the same is true for Gy,

The graph G| plays a special role, since as we will see next it is the
“minimum” graph with uncountable Borel chromatic number.
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4.4 The Gj-dichotomy

Recall the notion of homomorphism for graphs discussed in Section 2.
Note that G < H = x(G) < x(H) and similarly G <p H = x5(G) <
x5(H). We now have:

Theorem 4.18 (The G(-dichotomy, [KST, 6.3]). For any analytic graph G =
(X, G) on a Polish space X, exactly one of the following holds:

(i) xB(G) <Ry,
(ii)) Gy <. G.

Note that alternative (i) can be also stated as: G <p Ky = (N, (N)?).
Thus the Gy-dichotomy can be stated as follows: For any analytic graph
G, we have that G A5 Ky < G, <5 G, ie, (K, Gy) is a dual pair in
the terminology of [HN, Section 3.8]. The following is also trivially a dual
pair: (K, K,), where K, is the n-clique.

Problem 4.19. Are there any other dual pairs for <p among analytic (or Borel)
graphs?

It follows from Theorem 4.18 that having countable Borel chromatic
number is quite robust. A subset A C X of a standard Borel space X is
called globally Baire if for any Borel function f: Y — X,Y a Polish space,
/7' (A) has the property of Baire. The globally Baire sets form a o-algebra.
We call a function f: X — Y on standard Borel spaces globally Baire mea-
surable if the preimage of any Borel set is globally Baire. We denote by x5
the corresponding chromatic number for the class of globally Baire mea-
surable colorings. Then we have for any analytic graph G on a standard
Borel space X : x5(G) <Ny <= xaa(G) < N,.

Similarly the condition Gy <. G in (ii) can be replaced by <z, but,
contrary to the statement in [KST, §6 (C)], not by <y ,. This follows again
from Miller [M08, 3.2], which implies, under CH (or even add(null))= 2%),
that if K5 is the 3-clique, then both x5(K3) = 3 and Gy <yn K.

Finally, in relation to the Gy-dichotomy, we can ask whether there are
other interesting examples of Borel graphs which are minima in <z among
analytic graphs of uncountable Borel chromatic number. Note that any
such graph must be bipartite and have x,, < 3.
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4.5 Analytic sets that have countable Borel chro-
matic number

Let G = (X, G) be an analytic graph on a Polish space X with uncountable
Borel chromatic number. For an analytic set A C X, we interpret x5(G|A) <
N, as meaning that A can be partitioned in countably many Borel, relative
to A, G-independent sets. If we view G|A as an analytic graph on X,
ie., as the graph (X, G N A?), this is equivalent to stating that the Borel
chromatic number of this graph is countable. Put

In, = I = {A C X: Aisanalytic & x5(G|A) < No}.

Using the G-dichotomy it is easy to see that Zy, is a o-ideal of analytic
sets. Next note that, as a subset of the power set of X, Zy, is coanalytic on
analytic, i.e., for any Polish space Y and any analytic set B C Y x X the
set

B={yecY:B, €1}

is coanalytic. To see this notice that
y¢ B < 3f € C2Y, X)V*a € 2WBGoa(f(a), f(B) € B, & f(a)Gf(B)).

Here C'(2Y, X) is the Polish space of all continuous functions f: 28 — X
with the uniform metric (with respect to some fixed metric on X), see [K95,
4.19]. Also for any topological space Z, V*z € ZP(z) means that {z €
Z: P(z)} is comeager in Z. Granting this equivalence, and using the fact
that the map (f,«) — f(«) is continuous and the category quantifier V*
preserves analyticity (see [K95, 29.22]), it follows that B is coanalytic.

To prove the equivalence, notice that the direction — is obvious
from the Gy-dichotomy. To establish the direction <=, assume that y € B
but f satisfies the right-hand side. Let A = {a € 2V: VBGoa(f (), f(B) €
B, & f(a)Gf(B))}. This is comeager, so contains a dense G5 set C' which
is Ep-invariant and therefore Go|C <p G|B, (via f). Since x5(Gy|C) is
uncountable, this contradicts that y € B.

From the First Reflection Theorem (see [K95, 35.10], it follows then that
if A is an analytic set in Zy,, then there is a Borel set B O A which is also in
Zy,- Moreover

Iy, ={K C X: K iscompact & K € Iy,}
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is a coanalytic o-ideal of compact sets (see [KLW] and [MZ] for the theory
of such o-ideals). From the G-dichotomy it also follows immediately that
Iy, has the inner approximation property (see [KLW, 3.2]), i.e., any analytic
set not in Zy, contains a compact set not in Zy,. In particular, Iy, is calibrated
(see [KLW, 3.2]), i.e., if K,,, K are compact subsets of X, K,, € I, and every
compact subset of K \ |, K, is in Iy, then K € Iy,. (In fact Iy, is strongly
calibrated, see [KLW, 3.3]). Next we calculate the descriptive complexity of
Iy, as a subset of the Polish space K (.X) of compact subsets of X.

Proposition 4.20. The set Iy, is complete coanalytic.

Proof. By [KLW, §1, Theorem 7] it is enough to show that Iy, is not G5. We
will define a continuous function g: 2% — K(2V) such that identifying 2"
with the power set of N, we have:

(i) If A C Nis finite, then g(A) is finite.

(ii) If A C N is infinite, then Gy|g(A) has uncountable Borel chromatic
number.

Granting this let f: 2% — X be a continuous homomorphism from G,
into G and let h: 2V — K(X) be defined by h(A) = {f(z): z € g(A)}.
Then h is continuous, and A is finite iff h(A) € Iy,, so Iy, is not Gs.

To define g, consider the sequence (s,,) for G,. We will assign to each
A C N of natural numbers a tree 7’4 of binary sequences and take g(A4) =
[Ta].

Define first a strictly increasing sequence (k;);en of natural numbers as
follows: Set kg = 0, and let k;; > k; be the least number such that for every
finite binary string ¢ of length < k;, there is an element of (s,,) extending ¢
of length < k;;1 — 1. Now define 74 to be the tree which exactly branches
at all levels between k; and k;,, for every i € A. Thatis, T4 is the set of
strings ¢ such that for all ¢ ¢ A and for every k < |t| such that k; < k < k; 14
we have t(k) = 0. O

Next we show that the o-ideal Iy, is not thin (in the sense of [KLW, 3.3]),
i.e., there exist continuum many pairwise disjoint compact sets (A, ), eon
such that xp(G|A,) = 2% for all x € 2.

Proposition 4.21. The o-ideal Iy, is not thin.

Proof. We use the following result of Zeleny, see [MZ, Theorem 3.35]: Ev-
ery calibrated, thin, coanalytic o-ideal of compact sets is Gis. Then by
Proposition 4.20 and the paragraph preceding it, Iy, is not thin. O
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Recall that a basis for a o-ideal I of compact sets is a hereditary subset
B of I such that for every K € I there is a sequence (K,) of sets in B with
K =, K,. We also say that I has the covering property if for any analytic
set A for which all its compact subsets are in 7, there is a sequence (k)
of elements of I such that A C |, K,. A result of Debs-Saint Raymond
[DSR] (see also [KL, page 208]) asserts that for every coanalytic, calibrated
o-ideal I of compact sets, which is locally non-Borel (i.e., for compact F
not in [, the set I/ N K(F) is not Borel), if I has a Borel basis, then I has
the covering property. Note that I, satisfies all the hypotheses of this
theorem, and thus if it has a Borel basis, it also has the covering property.

Problem 4.22. Does the ideal Iy, have a Borel basis? Does it have the covering
property?

Using the result of Uzcétegui [U, Theorem 3.2] and Theorem 4.42 be-
low, it can be shown that the answer to Problem 4.22 is negative for any I,
where G is a locally countable analytic graph (in particular for Gy). On the
other hand, William Chan pointed out that there is a positive answer for
any analytic graph in which every Borel independent set is countable (e.g.,
the complete graph on 2%), since in this case Iy, is the o-ideal of countable
compact sets.

We also mention that Zapletal [Za, 4.7.20] shows that the forcing asso-
ciated with the ideal Igf is not proper. Finally Zapletal [Zal, Section 4]
studies I for certain graphs G invariant under an action of a countable
group and charaterizes when a set A belongs in I in terms of dichotomies
concerning homomorphisms of certain graphs to G|A.

4.6 Hedetniemi’s Conjecture

The product of two graphs G = (X,G), H = (Y, H) is the graph G x H =
(X xY,G x H), with (z,y)G x H(z',y') <= zGz’ & yHy'. Clearly
X(G x H) < min{x(G),x(H)}. A well-known conjecture of Hedetniemi
states that for any two finite graphs G and H,

X(G x H) = min{x(G), x(H)}.

See Zhu [Z] for a survey of Hedetniemi’s Conjecture. Let C'(k), for k£ > 2,
be the following statement: For any finite graphs G, H,

X(G),x(H) 2k — x(Gx H) = k.
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Then Hedetniemi’s Conjecture is equivalent to Yk > 2 C'(k). It is obvious
that C'(2) holds and it is easy to see that C'(3) holds, since the product of
two odd cycles contains an odd cycle. El-Zahar and Sauer [ES] proved
C(4) but C(k) for k > 5 is unknown. The version of Hedetniemi’s Conjec-
ture for infinite graphs is false. Hajnal [H85] constructed two graphs G, H
with x(G) = x(H) = ¥y but x(G x H) = X; see also [KST, §6,(E),(F)], [R].
However we can ask if Hedetniemi’s Conjecture holds for Borel chromatic
numbers.

Problem 4.23. If G, H are analytic graphs, is it true that
xB(G x H) = min{x5(G), xs(H)}?

For each k € {2,3,...,R,2%}, let Cp(k), the following statement: For
any analytic graphs G, H,

x8(G),xp(H) >k = xp(G x H) > k.

Equivalently, Problem 4.23 can be stated as follows: Is the statement C'z (k)
true for all £ € {2,3,...,R,,2%}? Trivially Cp(2) holds. An immediate
consequence of the G-dichotomy gives an affirmative answer when k =
%o,

Corollary 4.24 ([KST, 6.11]). If G, H are analytic graphs with uncountable
Borel chromatic number, then G x H also has uncountable Borel chromatic num-
ber.

Using Corollary 4.24 and a result of Louveau [Lo] (see Theorem 4.31
below), one can also establish C'z(3).

Proposition 4.25. If G, H are analytic graphs with xg(G), xg(H) > 3, then

Proof. First notice that we can assume that G = (X,G),H = (Y, H) are
bipartite. Because if yo, y1, ..., %21 = Yo is a simple odd cycle of length
2n + 1,n > 0, contained in H, and c is a Borel 2-coloring of G x H, then
d(x) = c(z,yo) is a Borel 2-coloring of G.

Therefore, by Theorem 4.31, XB(G"dd), xs(H "dd) are uncountable, so
by Corollary 4.24, x5(G°* x H*™) is uncountable, and, since G** x H°%
is a subgraph of (G x H)*¥, it follows that the Borel chromatic number
of (G x H)*¥ is uncountable. The graph G x H is also bipartite, so, by
Theorem 4.31 again, x5(G x H) > 3. O
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We do not know any other results along these lines. Is Cz(4) true?
Also in [H85] it is shown that (for arbitrary graphs) if x(G) > R, x(H) <
N, then x(G x H) = x(H). Is this true for Borel chromatic numbers of
analytic graphs?

Finally in [TV, Proposition 5.2] a counterexample to a ‘lightface" ver-
sion of Problem 4.23 is given. It is shown that there exist two (lightface)
A1 graphs G, H which have no finite A} coloring but the product G x H
has a A{ 3-coloring.

Addendum. It has been now shown in [Sh] that Hedetniemi’s Conjec-
ture fails: There is a large k such that C(k) is false. However it is not clear
what happens for small &, for example C'(5) is still open.

4.7 Extensions

As pointed out by Louveau [Lo], the proof of the G-dichotomy theorem
in [KST] actually shows the following stronger statement about directed

graphs. Let D, be the directed graph D{™ = Dy = (2, Dy) where
xDoy <= In(z|n =y|n = s, & z(n) < y(n) & VYm > n(x(m) = y(m)).

Clearly Gp, = Gy. Then we have that for any analytic directed graph
D = (X, D) on a Polish space X, exactly one of the following holds:

(i) xp(D) < Ro,

(ii) Dy =, D.

Furthermore, Lecomte [L09] and Louveau [Lo] also pointed out that
the G-dichotomy extends to finite-dimensional directed hypergraphs. The
papers Lecomte [L09] and Miller [M11], [M12] contain appropriate gen-
eralizations of the G-dichotomy to infinite-dimensional directed hyper-
graphs.

Certain extensions of the G,-dichotomy to x-Souslin graphs are proved
in [Ka]. Also extensions of the G-dichotomy for graphs and hypergraphs
in the context of determinacy are given in [CaK]

If X is a Hausdorff topological space, then (X)? is an open subspace of
X2. Note that the graph G is a (relatively) closed subset of (2V)2. For open
graphs (even in analytic spaces), Feng proved the following stronger di-
chotomy, which can be viewed as a definable version of the Open Coloring
Axiom (OCA) of Todorcevic, see [To].
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Theorem 4.26 ([Fe, 1.1]). Let X be a Polish space and A C X an analytic
subset of X. If G = (X, G) is a graph such that G C A? and G is open in A?,
then exactly one of the following holds:

(i) xB(G) <Ry,

(i) Kon =, G (or equivalently that is a Cantor set C C X which is a G-clique,
ie, (C)? CG).

Remark 4.27. For G as in Theorem 4.26 it follows that x5(G) < ¥, iff
X(G) < N,. Answering a question in an earlier version of this paper,
B. Miller, D. Lecomte and S. Todorcevic (private communication) have
pointed out that if G is open in A?, then x(G) = x5(G). This is because
in an open graph, the closure of an independent set is independent and
so given any classical coloring with countably many colors, one can find
a Aj-measurable (and hence Borel) coloring with the same number of col-
ors.

In the papers Frick-Geschke [FG], Geschke [G13], the authors study
clopen (in (X)?) graphs and hypergraphs.

4.8 Some dichotomy theorems of Louveau

In Louveau [Lo] the author studies classes C of directed analytic graphs
on Polish spaces omitting certain cycles. He proves, among other results,
dichotomy theorems concerning the question of whether a given directed
graph D in C is <p a countable (i.e., having countable vertex set) mem-
ber of C and discusses how this is related to the countability of the Borel
chromatic number of certain directed graphs associated to D.

For example, note that for an arbitrary analytic directed graph D on a
Polish space the following are equivalent: (a) xz(D) < ¥, and (b) there is
countable directed graph C such that D < C. So, by (the directed ver-
sion of) the G\-dichotomy, we have that for any analytic directed graph D
on a Polish space X exactly one of the following holds: (i) There is count-
able directed graph C with D <z C or (ii) Dy <. D. In particular, if D
is an analytic directed graph and D <z E, where E is a locally countable
analytic directed graph, then for each connected component C' of D, we
have that y5(D|C) < R,. Day and Marks [DM] have answered a question
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posed in an earlier version of this paper by showing that the converse of
this is false. In fact, there is a undirected Borel graph G such that for each
connected component C of G, x5(G|C) < Ry, however, there is no Borel
homomorphism from G to a locally countable Borel graph. It would be
also interesting to characterize those analytic directed graphs D for which
D =g E, for a locally finite analytic directed graph E.

For each n > 2, Louveau [Lo] defines a directed graph D, , (actually
denoted by G ,, in [Lo, §3]), related to D, (in some sense D, is the “nth
root” of D), such that Dy, Ap C, for any countable directed graph C.
For a binary relation R C X?, let forn > 2, R™ be the binary relation
defined by

tRM™y «— 3u,... JTp(ro =2 & v, =y & Vi < n(z;Rrii1)).

Note that if D = (X, D) is a directed graph with no directed n-cycles, then
D™ = (X, D™) is a directed graph. We now have:

Theorem 4.28 ([Lo, 3.2]). Let n > 2 and let D be a directed analytic graph on a
standard Borel space X. Then exactly one of the following holds:

(i) x5(D™ N (X)?) <R,
(ii) Dy, <. D.

Theorem 4.29 ([Lo, 4.6]). Let n > 2 and let D be a directed analytic graph on a
standard Borel space having no directed cycles of length < n. Then the following
are equivalent:

(a) D =g C, for C a countable directed graph with no cycles of length < n,
(b) Yk < n(xz(D™) < Ry).
Moreover, exactly one of the following holds:
(i) Vk < n(xz(D™) < V),
(i) 3k < n(Doy < D).

An analogous result is proved in [Lo, 4.9] for analytic graphs having
no odd cycles of length < n, with n > 3, replacing the graphs D, by
their symmetrizations G p, ,, and restricting the k in Theorem 4.29 to odd
numbers.
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Next consider the class of all directed analytic graphs with no directed
cycles. For a binary relation R, let R* = |J, R, so thatif G = (X,G) is a
graph, then Eg = G*. For a directed graph D = (X, D), let D* = (X, D*).
If D has no directed cycles, then D* is a (strict) poset. Thus a directed
graph D with no directed cycles is <z a countable directed graph with no
directed cycles iff D <5 (Q, <). Louveau [Lo] defines a continuum-size
family of directed Borel graphs Dy (again denoted by G ¢ in [Lo, §4]), for
6: N — N\ {0}, generalizing the graphs D, ,, (which correspond to 6 = n)
such that Dy A5 (Q, <) and proves the following dichotomy theorem:

Theorem 4.30 ([Lo, 4.7, 4.12]). Let D be a directed analytic graph with no
directed cycles. Then the following are equivalent:

(a) D =5 (Q,<),
(b) xp(D*) <.
Moreover exactly one of the following holds:
(i) xp(D") <N,
(it) 30(Dyy) =p D).

Finally consider bipartite graphs G = (X, G). Recall that G is bipartite
iff x(G) < 2 iff G has no odd cycles. In this case the equivalence relation
E¢ contains the subequivalence relation E&°", where zEZ "y iff the G-
distance between x, y is even, so every Eg-class contains at most two Eg/*"-
classes. Note that for bipartite analytic G we have that x5(G) < 2 iff there
is a Borel set that meets each non-singleton Eg-class in exactly one Eg"-
class. For 0: N — N, let Hg 2 1 = Gp,,,_,, a bipartite graph. Then it turns
out that x5(H20—1) > 3 and Louveau shows the following result, where
for a bipartite graph G = (X, G), we define the graph G** = (X, G°%), by

zGy iff there is a G-path of odd length from x to y.

Theorem 4.31 ([Lo, 4.10, 4.13]). Let G = (X, G) be a bipartite analytic graph.
Then the following are equivalent:

(a) xB(G) <2,
(b) x5(G*) <2,
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(c) XB(GOdd) < No.

Moreover, exactly one of the following holds:
() xB(G) <2,
(it) 30(Hopo-1 =B G).

A strengthening of this result can be found in Miller [Mu3, §4].

In [CMT-D, Proposition A.1] the authors prove the following, which
they point out can be derived from results in [Lo] but they also prove di-
rectly using Theorem 4.33 below.

Theorem 4.32 ([CMT-D]). Let G be a locally countable Borel graph on a stan-
dard Borel space X. Then the following are equivalent:

(i) x5(G) <2,
(i) xu(G) <2,

(iii) xsm(G) < 2, for every Polish topology generating the Borel structure of
X.

4.9 Embedding G

The following is a strengthening of the G-dichotomy for certain analytic
graphs.

Theorem 4.33 ([KST, 6.6]). Let X be a Polish space and G = (X, G) an ana-
lytic graph which is either acyclic or locally countable. Then exactly one of the
following holds:

(l) XB(G) S NO/
(i) Gy <™ G

In fact in [KST, 6.6], this is proved under the weaker hypothesis that
G is “almost acyclic". Also a similar result holds for directed graphs D
replacing G, by D

Lecomte-Miller [LM, Theorem 15] strengthened a special case of Theo-
rem 4.33 as follows:



38 4. Countable vs. uncountable Borel chromatic numbers

Theorem 4.34 ([LM, Theorem 15]). Let X be a Polish space and G = (X, G)
an analytic graph which is acyclic and locally countable. Then exactly one of the
following holds:

(i) xB(G) <Ry,
(ii) Gy C. G.

In particular, for any dense sequences (sy), (t,), G(()S") is homeomorphic
to an induced subgraph of Gét"). However Miller [M08, paragraph preced-
ing Theorem 3.3], showed that G((f"), G(()t") might not be Borel isomorphic.
Another continuous embedding dichotomy theorem for having countable
Borel chromatic number for certain kinds of directed graphs is given in
Miller [Mul]. A different extension of Theorem 4.34 is contained in [L16,
Theorem 1.8]

Concerning the hypotheses about G in Theorem 4.34, it follows from
Theorem 4.40 below that the conclusion fails if we only assume that G is
locally countable. However the following is open:

Problem 4.35. Does Theorem 4.34 go through if we only assume that the analytic
graph G is acyclic?

Remark 4.36. In the Borel case of Theorem 4.34 the graph is potentially F,.
Lecomte (private communication) mentioned that he recently generalized
this to other classes of graphs, which include graphs of arbitrarily high
potential Borel complexity.

In [KST, §6 (A)], it was conjectured that Theorem 4.33 would generalize
to all analytic graphs. However Lecomte showed that this conjecture fails.
In fact he shows the following:

Theorem 4.37 ([LO7, Theorem 10]). There is no analytic graph H, = (X, Hy)
on a standard Borel space X such that for any Borel graph G = (X,G) on a
standard Borel space X exactly one of the following holds:

(1) xB(G) <Ny,
(i) Hy < G.
In particular, there is a Borel graph G on a Polish space X such that
x5(G) = 2% but it is not the case that Gy <33, G.

In fact Theorem 4.37 is proved in [L07] by showing the following, in-
teresting in its own right, stronger result:
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Theorem 4.38 ([LO7, §3]). There is a Borel graph G (in fact of the form G =
G r,), for a countable sequence of Borel functions (F,)) which has uncountable
Borel chromatic number but such that every locally countable Borel subgraph of
G has countable Borel chromatic number.

On the other hand, notice that Theorem 4.33 shows that for every ana-
lytic acyclic graph G, G has uncountable Borel chromatic number iff some
locally countable Borel subgraph of G' has uncountable Borel chromatic
number.

4,10 Basis and antibasis theorems

A quasi-order is a structure Q = (X, Q), where Q C X2 and () is transi-
tive and reflexive. A minimal element of () is an element x € X such that
yQr — zQy. A basis for Q is a subset B C X such that Vx3dy € B(yQx).
A Q-antichain is a subset A C X such that if x # y are in A, then it is not
the case that zQy.

The G(-dichotomy tells us that {G,} is a one-element basis for any
quasi-order @ such that <.C @ on the class of analytic graphs with un-
countable Borel chromatic number (and similarly for D;). On the other
hand, Theorem 4.37 shows that there is no one-element basis for jg‘j in
the class of analytic graphs of uncountable Borel chromatic number. The
following is open:

Problem 4.39. Is there a basis of cardinality < 2% for <7 among analytic
graphs of uncountable Borel chromatic number? If this is not the case, is there
such a basis consisting of a continuum size family of “reasonably simple” graphs.

In the paper [LZ4] the authors study analytic directed graphs of un-
countable Borel chromatic number and, among other results, show that
any basis for <3’ among such directed graphs must be infinite.

In the series of papers Lecomte [L05], Lecomte [L07], Lecomte-Miller
[LM], the authors study the basis problem on analytic or Borel graphs of
uncountable Borel chromatic number for quasi-orders Q such that C.C
Q) C<¢p, i.e., for various reducibility (as opposed to homomorphism) no-
tions. We state below some of their results that show, in particular, that ev-
ery Q-basis (for Q as above) for the analytic graphs of uncountable Borel
chromatic number has maximum cardinality.
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Theorem 4.40 ([L05, Theorem 8], [L07, Theorem 6]; see also [LM, Theorem
11]). There are 2% locally countable Borel graphs of uncountable Borel chromatic
number which are minimal and pairwise incomparable for any quasi-order Q with
C.C Q C<¢p among Borel graphs of uncountable Borel chromatic number. In
particular, every Q-basis for the Borel (or analytic) graphs of uncountable Borel
chromatic number has size 2%°.

Theorem 4.41 ([LM, Theorem 20]). Let Q be any quasi-order among Borel (or
analytic) graphs of uncountable Borel chromatic number such that C.C ) C<gp.
Then no Q-antichain forms a Q-basis.

On the other hand, Lecomte and B. Miller show that there is a con-
tinuum size family of reasonably simple Borel directed graphs, somewhat
reminiscent of D, which form a C-basis for the analytic locally countable
directed graphs of uncountable Borel chromatic number, see [LM, Theo-
rem 14].

Consider pairs of the form S = (S°, S'), where S* C |, (2" x 2"), for
k = 0,1. For any such S, define the directed graph D° = (2N, D%) as
follows, where for k = 0,1, welet k = 1 — k:

DS = {(sKa,tka): k€ {0,1} & (s,1) € S* & a € 2V},
Call S dense if Vr € 2<N3(s,t) € S(r C s,t). Then we have:

Theorem 4.42 ([LM, Theorem 14]). Let X be a Polish space and D = (X, D)
an analytic directed graph which is locally countable. Then exactly one of the
following holds:

(i) xp(D) <N,
(ii) There is dense S such that D° C, D.

Theorem 4.31 shows that there is a basis for <z among bipartite an-
alytic graphs with xp > 3, which consists of continuum many explicitly
given such graphs. It is unknown however whether this is optimal, in
the sense that any such basis must have the cardinality of the continuum.
On the other hand, Miller [Mu3, Theorem 23] shows that every basis for
=<p on the bipartite analytic directed graphs with yp > 3 must have con-
tinuum size. By similar methods, the same conclusion can be derived for
<"/ among bipartite analytic graphs with x5 > 3.
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For an analytic graph G on a standard Borel space X, consider the
supremum of x g (G) over all the Polish topologies that generate its Borel
structure. Then from the G-dichotomy it follows that {G)} is a basis for
=<p among all analytic graphs G for which this supremum is uncountable.
On the other hand, we do not know if there is a reasonable basis under
=< p among all analytic graphs G for which x,,(G) is uncountable. In fact
we do not know if there is even a one-element basis, i.e., the following is
open:

Problem 4.43. Is there an analytic graph G such that for any analytic graph
G exactly one of the following holds:

(i) xm(D) <N,
(ii) Gy < G.

411 Refinements

Lecomte and Zeleny [LZ1], [LZ2], [LZ3] consider the Borel complexity of
countable colorings. In [LZ2] they show that for each { > 1, there is a Borel
(in fact a difference of two closed sets) graph with Borel chromatic number
2 but which has no Ag-measurable countable coloring. In [LZ3] they show
that for each ¢ > 1, there is a closed graph with Borel chromatic number 2
and Ag—measurable chromatic number .

In [LZ1] they propose a dichotomy conjecture (analogous to the G-
dichotomy) to characterize when an analytic directed graph admits a A¢-
measurable countable coloring and prove this conjecture for £ < 3. A dif-
ferent approach and a more canonical version, as well as a generalization,
of such a dichotomy for { = 2 is contained in [CMS, Theorem 4.4]

Finally some connections with the G-dichotomy are discussed in the
recent memoir by Lecomte [L13], which proves a general Hurewicz-like
dichotomy for characterizing when Borel relations are in a given poten-
tially Wadge class (and in fact a related separation result). Dichotomy
results concerning potential Wadge classes of oriented (i.e., antisymmet-
ric, directed) graphs are also proved in [Lo]. Lecomte (private commu-
nication) pointed out that these concern the classes Af, A}, while recently
Zamora, using results in [L13], generalized them to all Borel Wadge classes
and also all Ag. Further basis and antibasis results concerning certain
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classes of graphs and other relations related to potential Wadge classes
are included in [L16, Theorem 1.9, Corollary 1.10 and Theorem 1.11]. See
also [LZ].

4.12 B. Miller’s graph theoretic approach to di-
chotomy theorems

An important role in descriptive set theory is played by dichotomy the-
orems that sharply delineate the boundary between simple and compli-
cated structure. A classical example is Souslin’s Perfect Set Theorem for
analytic sets: If A is an analytic set in a Polish space, then exactly one
of the following holds: (i) A is countable or (ii) A contains a Cantor set.
More recently dichotomy theorems have been prominent in the theory of
definable equivalence relations. Silver’s Theorem [Si] states that for any
coanalytic equivalence relation E on a Polish space X exactly one of the
following holds: (i) £ has countably many classes or (ii) there is a Can-
tor set of E-inequivalent elements. The General Glimm-Effros Dichotomy,
see [HKL], states that for every Borel equivalence relation £ on a Polish
space X exactly one of the following holds: (i) E is smooth, i.e., E is Borel
reducible to equality on some Polish space Y or (ii) £y C. E. An exten-
sive survey of such dichotomy results for definable equivalence relations
is contained in [HK97], [HKO1]. An interesting feature of the “modern”
dichotomy theorems, including the Silver, General Glimm-Effros, G, etc.,
dichotomies, has been that their proofs used “non-classical” techniques,
especially forcing and effective descriptive set theory. It had been an open
problem whether such results could be proved by classical techniques.

In an important development over the last few years, B. Miller has
found a new unified approach to many dichotomy theorems in descrip-
tive set theory, based on graph theoretic dichotomies extending the G-
dichotomy. This theory achieves the following goals: (i) Provides proofs
based on classical methods, like Cantor-Bendixson type derivatives, Baire
category arguments, etc., for many dichotomy theorems, whose only ear-
lier known proofs used “non-classical” methods; (ii) Gives a unified pic-
ture encompassing many old and new descriptive dichotomy theorem:s,
which are now derived from appropriate graph (or hypergraph) dichotomies;
(iii) Naturally adapts to the context of more general (than Polish) spaces
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or to more extensive notions of definability like, e.g., k-Souslin, for which
some of the earlier proofs did not work.

As a simple illustration, let us see, for example, how one can derive the
Silver Dichotomy from the G(-dichotomy. Let E be a coanalytic equiva-
lence relation on a Polish space X and consider the analytic graph G =
(X,G), where G = X?\ E. If G has countable Borel chromatic number,
then clearly I/ has countably many classes, since any G-independent set
is contained in a single E-class. Otherwise, by the G-dichotomy, there is
a continuous function f: 2 — X such that Gy = —f(z)Ef(y). Let F
be the analytic equivalence relation on 2" which is the preimage of E by
fiaFy <= f(x)Ef(y). Then every F-class C is meager, since if it is not,
then by Example 4.16 it cannot be G-independent. So there are z,y € C
with 2Gyy and also f(x)E f(y), a contradiction. Thus, by the Kuratowski-
Ulam Theorem, F' itself is meager and so by the Kuratowski-Mycielski
Theorem (see [K95, 19.1]) there is a Cantor set of F-inequivalent elements.
Its image under f is then a Cantor set of E-inequivalent elements.

An introduction to Miller’s theory is contained in [M12] and a more
detailed development can be found in the series of lecture notes [Mu2]
and in [M11].
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5. Finite vs. countably infinite
Borel chromatic numbers

5.1 Examples of graphs with countably infinite
Borel chromatic number

We discuss here a couple of interesting examples of such graphs, whose
calculation of the Borel chromatic number is based on quite different tech-
niques.

Example 5.1. The odd distance graph on R? is the graph O = (R?, O), where
xQy iff the distance between z,y is an odd integer. By Proposition 4.5 it
is clear that x3(0O) < Ry. On the other hand, it is known that x,(O) >
Ny, where p is a Lebesgue measure on R?, therefore x5(0) = x,(0) =
Ny. One way to prove that y,(O) is infinite is through the following re-
sult: If A C R? is Lebesgue measurable and its upper density d(A4) =
limsupp_,o %@RF) is positive, then for some D the set A contains pairs
of points of every distance > D. See [Bo], [Bu], [FKW], [FM], [Q], [Mo] for
proofs of this result, using various techniques from ergodic theory, har-
monic analysis, geometric measure theory, or probability theory. The pa-
per [Ste] presents another proof that x,(O) is infinite using spectral tech-
niques. We do not know if also x5y(O) = Ry. It is also unknown whether
X(0) < V. It is shown in [AMRSS] that x(O) > 5.

If instead of the odd distance graph one considers the graph on R?
where two points are connected by an edge iff their distance belongs to
some prescribed unbounded (Borel) subset of the positive reals, then the
above argument shows that it also has Borel and p-measurable chromatic
at least Ny. By contrast the unit distance graph on R?, defined by U =
(R?,U), where zUy iff the distance between z,y is equal to 1, is known

45
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to have 5 < x(U) < x,(U) < x5(U) < 7, see [DG] and [So], but the ex-
act values of x(U), x,(U), xg(U) are unknown. We refer to [So] for the
long history of this problem for the unit distance graph and its higher-
dimensional analogs and [BPT], [EI], and references contained therein, for
more recent developments.

Example 5.2. Let [N]" be the set of strictly increasing sequences from N. Let
Sy be the shift map on N¥, Sy(p)(n) = p(n + 1) and let S be the restric-
tion of Sy to [N]". Then x5(Gsx) = No. That x5(Gsx) < Ry follows from
Corollary 4.6, while xp(Gsx=) > ¥, follows from the Galvin-Prikry Theo-
rem [GP] which asserts that for every Borel partition [N = A; LI --- L A,
there is 1 < i < n and infinite H C N with [H]Y(= HY n [N]Y) C A,.
(On the other hand, by [M08], xpun(Gsx) = 3 and xu(Gsx) = 3 - see
also Theorem 5.13 and Theorem 6.18 below.) For other related results, see
[DPT2].

There is also a trivial way to construct such examples. Given a se-
quence G,, = (X,,, G,,) of graphs with pairwise disjoint X,,, their direct sum
is the graph

| 6. =X JGw.

Example 5.3. Take a sequence of Borel graphs G,, with x5(G,) < oo but
xB(G,) > occandlet G =| |, G,. Then x5(G) = R,.

5.2 Bounded and locally finite degree graphs

Note that the graph in Example 5.2 is locally finite but of unbounded de-
gree. For bounded degree graphs we have the following result.

Proposition 5.4 ([KST, 4.6]). Let G = (X, G) be an analytic graph on a stan-
dard Borel space X. If A(G) < d, then x5(G) < d+ 1. Moreover, ifd > 1, then
X5(G) < 2d — 1, since A(L(G)) < 2d — 2.

Remark 5.5. Proposition 5.4 is proved in [KST, 4.6] for Borel graphs but
easily extends to analytic graphs, since every analytic graph G with A(G) <
dis a subgraph of a Borel graph H with A(H) < d and the same set of ver-
tices. This follows from the First Reflection Theorem (see [K95, 35.10]).
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By results of Marks in Section 5 below, see Theorems 6.3 and 6.12, these
upper bounds are optimal, for d-regular, acyclic Borel G.

On the other hand, we have the following result for analytic, locally
finite graphs:

Theorem 5.6 ([CM2]). Let G = (X, G) be a locally finite analytic graph on a
Polish space X with x(G) < oo. Then xpm(G) < 2x(G) — 1. Therefore, if G is
bipartite (in particular acyclic), then xpn(G) < 3.

The hypothesis of local finiteness in Theorem 5.6 cannot be dropped,
as shown in Example 4.14. Also x s in general cannot be replaced by x/,
even in the acyclic case, see Theorem 6.59. It holds though for x,; in the
hyperfinite case, see Theorem 6.18.

It is not clear that the upper bound in Theorem 5.6 is optimal. The
acyclic graph G generated by the free part of the shift action of Z on 27
satisfies x(G) = 2 but xpu(G) = 3, so xpu(G) > x(G). However the
following is open:

Problem 5.7. Is there a bounded degree Borel graph G on a Polish space X for

5.3 Graphs generated by functions

As we have seen in Section 3, (A), any locally countable Borel graph G is of
the form G = G x,) for some countable family of Borel functions (F},) and
can have any Borel chromatic number. We will consider here the case of
graphs G = G, r, generated by finitely many Borel functions. By Corol-
lary 4.6, x5(Gr,....r,) < Ro. What are the possible values of x5(Gr,,.. r,)?
In Example 5.2, we have a function F' for which x5(Gr) = ¥,. The fol-
lowing problem was raised (in a somewhat more restricted form) in [KST,
4.9].

1111

Problem 5.8. Let F1, ..., F, be Borel functions on a standard Borel space X. Is
it true that xg(Gpy,..p,) €{1,...,2n 4+ 1,Xy}?

-----

This is motivated by the standard result in graph theory which asserts
that given a directed graph D = (X, D) with out-degree < n, we have
X(D) < 2n + 1 (see, e.g., [KST, p. 14]). Note that by a standard result
in descriptive set theory (see [K95, 18.15]) the directed graphs of the form
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,,,,, F,, With Fy, ... F), Borel, are exactly the Borel directed graphs with
out-degree < n. Note also that if F}, ..., F, are functions on a set X and
Fi(z) # x,Vi < n,z € X, then x(GF,.. r) < 2n + 1iff there is a partition
X = A1U---UAy,4+ such that Fj(A4;)NA; =0,Vi <n,j <2n+1. Similarly
for its Borel version.

Finally note that the list {1,2,...,2n 4+ 1,8y} in Problem 5.8 is irre-
ducible, since for each m < 2n+1 thereisafiniteset X and F;: X — X,1 <
i <n,with x(Gp_. ) =m. Form=2n+1,let X ={0,...,2n} and put
Fi(z) = (r+1i) mod (2n+1),for 1 <i <n. Then G, ., is the complete
graphon X. Forany 1 <m < 2n+1,let X be finite, F;: X — X,1 <i <n,
,,,,, F,) =2n+landlet X = A U--- U Ay, be a partition in
2n + 1 non-empty independent sets. Let Y = A; U --- U A, and define
H:Y - Y 1<i<mnbyHl((y =y if Fi(ly) € Y, else H;(y) = Fi(y).
Clearly X(GHl 77777 Hn) < m. If X(GHl 77777 Hn) <m, withY = Bl L---u Bg,g <
m, B; independent, 1 <i </, then X =B, U---UB/UA, 1 U--- Ay
shows that x(Gr, . r,) < 2n + 1, a contradiction.

Using the result of Marks [Mal] that there is an acyclic graph of the
form Gp,, . p,, F; Borel, 1 < i < n, with x5(Gr,,.. r,) = 2n + 1, one can
similarly find for each 1 < m < 2n + 1, an acyclic graph of the form
77777 m,, H; Borel, 1 < i <n,with xp(Gn,  m,) =m.

The following partial answers to Problem 5.8 have been obtained so
far.

-----

Theorem 5.9 ([KST, 5.1]). For any Borel function F on a standard Borel space
X, we have xg(GFr) € {1,2,3,R0}.

Remark 5.10. Although first explicitly stated and proved in that paper, as
it is pointed out in [KST, p. 18], this result can be also derived (in a dif-
ferent way) from [KS, 2.2], by using the idea of changing topologies in a
Polish space to make Borel functions continuous and Borel sets clopen.
There have been also several other results in the literature along these
lines concerning finite colorings of the graphs of a single continuous func-
tion, see, e.g., [KS], [vM] and references therein. Also note that Theorem
5.9 gives trivially that for any Borel functions Fi,..., F,, x5(Gr. . F,) €
{1,2,...,3" X}

We next have:

Theorem 5.11 ([Pa]). For any commuting and fixed point free Borel functions
Fy, ..., F, ona standard Borel space, xg(Gr,. r,) € {1,2,...,2n+ 1,R}.
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It is shown in [MP, Theorem 3.15, | that, for commuting Borel func-
tions [, ..., F, on a standard Borel space X with x5(Gr,,. . r,) < No, if
for each z € X, there is a path from z to a fixed point of some F;, then
there is an increasing sequence of Borel sets X, such that | J,, X,, = X and
X5(Gr,.. r,)|Xm < 2n, Ym. Moreover, in this case, for n = 2, one actually
has x5(GF, r,) < 4, see [MP, Theorem 4.3], and, for any n, x{/(Gr....Fr,) <
2n + 1, see [MP, Corollary 3.22].

Theorem 5.12 ([Pa]). (i) For Borel functions Fi, F5,
xB(Gr.r) €{1,2,3,4,5,R0}.
(i) For Borel functions Fi, F, F5,
XB(Gr.mor) €{1,2,3,4,5,6,7,8, Ny}
(iii) For Borel functions Fy, Fs, ..., F,,

XB(GFl 77777 Fn) 6{1,2,,%(714—1)(’0—{—2)7?‘20}

It is shown in [MP, Corollary 2.4] that 5(n + 1)(n + 2) can be improved
to 1(n +1)(n + 2) — 2 in Theorem 5.12 (iii), when n > 4.

So Problem 5.8 has a positive answer for n < 2 and an almost positive
answer for n = 3 (with 8 instead of the optimal 7). Note also that by
Proposition 5.4, if F}, ..., F,, are all <k-to-1, then x5(GF,. . r,) < (k+1)n+
1.

-----

Concerning measure and Baire measurable chromatic numbers (on Pol-
ish spaces), we have the following results:

Theorem 5.13. (i) ([MO08]) For any Borel function F', x g (Gr) < 3, xm(Gr) <
3.
(ii) ((MO8], [Pa]) For Borel functions Fy, F,

XBM(GF1,F2) < 57 XM(GF1,F2) <.
(iii) ((MO8], [Pa]) For Borel functions Fy, Fs, F3,

xBM(GF ) < 8, XM(GF Ry 1) < 8.
(iv) (IMO08], [Pa]) For Borel functions Fy, Fs, ..., F,,

.....

) < %(n +1)(n+2).
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In view of Theorem 5.13 we have the following problem:

Problem 5.14. Let F1,. .., F,, be Borel functions on a Polish space X. Is it true
that XBM(GF1 Fn) < 2n + 1 and XM(GF1

----------

Also, by Theorem 5.6, we have the following partial answer to Problem
5.14 with a somewhat weaker, but still linear, upper bound.

Theorem 5.15 ([CM2]). Let Fy, ..., F,, be Borel functions on a Polish space X
such that the graph G, .. r, is locally finite. Then x gy (Gr,...5,) < 4n+ 1.

~~~~~~~~~~

See also Theorem 6.18 for a similar upper bound for x, in the hyperfi-
nite case.

Finally concerning directed graphs of the form Dy, Miller [M08, §4, 5]
showed that any basis under <p for the class of the directed graphs Dy,
F Borel, with x5(Dr) > 3 must be quite complicated, in particular must
have cardinality 2.

5.4 Some universality results

We note here a universality result concerning locally countable directed
graphs originating in [KST, 7.1, 7.2]. It can be easily generalized to a uni-
versality result for structurable equivalence relations, see [ChK, Theorem
41].

Let K be a class of countable directed graphs closed under isomor-
phism. We say that /C is Borel if the set of all directed graphs with vertex set
contained in N that belong to K is a Borel set in the standard Borel space
of all such directed graphs.

Examples of Borel classes K include the classes of countable (directed)
graphs, acyclic countable (directed) graphs, locally finite (directed) graphs,
bounded degree (directed) graphs, graphs of < Ry-to-1, finite-to-1, <k-to-1
functions, k-chromatic graphs, etc.

A locally countable Borel directed graph D = (X, D) on a standard
Borel space X is locally in K if the restriction of D to every connected com-
ponent of Gp is in K.

We now have the following universality result.

Proposition 5.16 ([KST, 7.1, 7.2]). Let K be a Borel class of countable directed
graphs closed under isomorphism. Then there is a locally countable Borel directed
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graph DX on a standard Borel space X .., such that DY is locally in K and for
every locally countable Borel directed graph D which is locally in K, there is a
Epr -invariant Borel subset Y C X such that D =p D% |y,

For example, applying Proposition 5.16 to K = class of countable bi-
partite (acyclic) graphs, we obtain a universal bipartite (acyclic) locally
countable Borel graph, which, by Example 4.16, has uncountable Borel
chromatic number. On the other hand, if we fix a countable connected di-
rected graph E and let g be the class of all directed graphs isomorphic
to E, then we have the following problem:

Problem 5.17. Calculate the Borel chromatic number of DX=.

In the particular case of graphs generated by functions, Proposition
5.16 takes the following form. For a given class F of Borel functions F': X —
X on standard Borel spaces, we say that a function FZ: X, = X in F
is universal in F if for every F': X — X in F there is a Borel injection
7: X = Xo with7o F = FZ om and moreover 7(Y) is invariant under the
equivalence relation generated by the graph of FZ.

Corollary 5.18. There is a universal Borel <X,-to-1 (resp., finite-to-1, <k-to-1)
function F., (resp., FL F¥).

In particular, x5(GF,.) = X5(Gps ) = Ro and xp(Gre ) = 3.

With a slightly weaker notion of universality, there is a concrete uni-
versal <V;-to-1 and <k-to-1 Borel function. Below forn € {2,3,... N} we
let S,,: n¥ — nM be the shift map S,,(p)(i) = p(i + 1).

Theorem 5.19 ([KST, 7.10]). Let F': X — X be a <k-to-1 Borel function, where
X is a standard Borel space, and k = 2,3, .. .. Then there is a Borel map m: X —
kN which is 1-1 on each Eg,-class and wo F' = Sy om. Similarly for any <R,-to-1
Borel function F': X — X and Sy.

Consider now the free semigroup S, with n generators vy,...,7,. Let
Spi:t N8n — NS» 1 < 4 < n, be defined by S,.;(p)(g) = p(gvi). Thus if
n = 1,511 = Sy. We now have the following universality result.

Theorem 5.20 ([KST, 7.7]). Let F;: X — X,1 < i < n, be <Ny-to-1 Borel
functions on a standard Borel space such that there are only countably many
finite subsets of X closed under all F;,1 < i < n. Then there is a Borel injection
m: X > N withroFy=S,,0m1<i<n.
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In the case n = 1 this specializes to the following result, where for a
function F': X — X a point x € X is periodic if the forward orbit, given by
{F™(z): n > 0}, is finite.

Corollary 5.21 ([KST, 7.8]). Let F': X — X be a <¥,-to-1 Borel function on a
standard Borel space X with only countably many periodic points. Then there is
a Borel injection m: X — NN withmo F' = Syo .

There is no such analog for <k-to-1 functions, since there are aperiodic
Borel automorphisms F': X — X on standard Borel spaces for which there
is no Borel injection 7: F — n and 7 o F' = S, o, for any finite n (see
[W84]).

5.5 On the shift graph on [NV

Consider the graph Gy = (X, Gr) associated to a Borel <¥,-to-1 function
F: X — X on a standard Borel space X. Let

P*(F) ={z € X: xis periodic}.

Then P*(F) C X is a Borel Eg,-invariant set which is smooth, i.e., there
is a Borel set meeting each Eg,-class in P*(F) in a single point. From
this it follows easily that G | P*(F) has Borel chromatic number at most 3.
By Corollary 5.21 there is a Borel injection 7: X \ P*(F) — NN such that
moF =Syomand thusif Y = n(X \ P*(F)), the chromatic number of G
is infinite iff the Borel chromatic number of Gy, |Y is infinite. Next notice
that G, |(NY \ [N]Y) is finite (see [KST, pp. 37-38]). Thus x5(Gr) = RNy
iff xp(Gs,|Y N [NJY) = x5(Gsx|Y N [N]¥) = Ry. Thus, in some sense,
the problem of infinity for the Borel chromatic number of a <X(-to-1 Borel
function reduces to understanding when the Borel chromatic number of
an induced subgraph Gs|A, A C [N]" Borel, is infinite. We thus have the
following question, raised in an earlier version of this survey:

Problem 5.22. For Borel A C [N|N characterize when the induced subgraph
G sz | A has infinite Borel chromatic number.

In [KST, 8.3] the question was raised whether x p(Gs=|A) is infinite iff
JH € [NJY¥([H]Y C A). This however turns out to be false (see [DPT1]);
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letting (-,-) : N*> — N be a bijection, the function given by f((ng,n1,...)) =
((no, 1), {n1,7n2), ...) is a Borel homomorphism from G s to itself, so

xB(Gsg|ran(f)) = No.

However, ran( f) does not contain any set of the form [H]", since removing

any number other than (ng,n;) from the sequence ((ng,n1), (n1,n2),...)

yields a sequence not in ran( f). Further results concerning Borel chromatic

numbers of graphs G's=|A as in Problem 5.22 can be found in [DPT3].
Finally in [TV] the following definitive result was proved:

Theorem 5.23 ([TV, Theorem 1.3]). The set
{C C[NJ": Cis closed and x5(Gs=|C) = No}

is T1,-complete (in the space of closed subsets of [N|N with the Effros Borel struc-
ture).

N

This seems to rule out any reasonably explicit positive answer to Prob-
lem 5.22.

5.6 Basis problems for graphs with infinite Borel
chromatic numbers

Motivated by the G,-dichotomy, the question was raised in [KST, §8] of
whether an analogous dichotomy might be true for Borel (or analytic)
graphs with infinite Borel chromatic number. To formulate a precise ques-
tion, let us call (motivated by Conley-Miller [CM1]) a graph G = (X, G)
on a standard Borel space finite color decomposable if there is a Borel decom-
position X = | |, X,, into Eg-invariant sets with x5(G|X,) < oco,Vn € N.
Note that if G is finite color decomposable and H <5 G, sois H. Thus,
since, by Example 5.3, there are clearly Borel graphs with infinite Borel
chromatic number which are finite color decomposable (e.g., | |, K, with
K, the clique on n vertices), if G is a Borel graph with xz(G) infinite
such that G <p H for any Borel graph H with x(H) infinite, then we
must have that G = | |, G, with G,, Borel, x5(G,) < oo and x5(G,) un-
bounded. Also for such G we have G <p H iff Vn(G, <p H). So the
question of whether there is a minimum under <z Borel graph of infinite
Borel chromatic number translates to the following problem, raised in an
earlier version of this survey:
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Problem 5.24. Is there a sequence (G),) of Borel graphs with xp(G,) < oo
and xp(G,) unbounded such that for every Borel graph H with infinite Borel
chromatic number and any n, we have that G,, <p H?

In [KST, 8.1]the question was raised whether the graph Gs~ of the
shift Sg°: [NJ¥ — [N]N (see Example 5.2) might be the minimum Borel
graph of infinite Borel chromatic number. Conley-Miller [CM1] pointed
out that this fails, since G's is not finite color decomposable. In fact more
generally, for any Borel functions F;: X — X,1 < i < n, where X is a
standard Borel space, if G = Gp, . p, is finite color decomposable, then
xB(G) < oo. Because if X = || X,, is a Borel decomposition into E¢-
invariant sets with x 5(G|X,,) < oo, then, by Remark 5.10, x5(G|X,,) < 3",
so xp(G) < 3™

This leads to the question of whether G5 is minimum among Borel
graphs with infinite Borel chromatic number which are finite color inde-
composable. However in [CM1] it is shown that there is an acyclic, locally
finite Borel graph G with x5(Gr) = x,.(Gr) = N (for an appropriate ),
which is finite color indecomposable but Gs Zp Gr. Another question
is whether there is a minimum, under <3, among the graphs of the form
Gr, F a Borel function, that have infinite Borel chromatic number. Could
G 5> be such a minimum?

It turned out that Problem 5.24 and the questions in the preceding para-
graph have negative answers. First it is shown in [Pe] that there is a closed
set C' C [N]" such that yp(Gsx|C) = R but Gs~ A Ggx|C. Finally
[TV, Theorem 1.3] shows that there is no sequence (A,) of analytically
parametrizable families of graphs such that for closed C' C [N]" the fol-
lowing holds: xp(Gs=|C) = Ny iff for some sequence (n;) and G, € A,,
we have G,,, <p Gy |C. In particular there is no countable basis for <p
among graphs of the form G, F' a Borel function, that have infinite Borel
chromatic number and also Problem 5.24 has a negative answer.



6. Finite Borel chromatic
numbers

6.1 The dichotomy theorem for Borel chromatic
number at most 2

In Section 4, (H) we have seen certain results concerning the property
x5(G) < 2,including the dichotomy in Theorem 4.31.

The following analog of the G-dichotomy is proved in [CMSV]. Below
for each sequence b € NV, we denote by L, = (2" U | |, .y X», Ls), where
X, ={(m,n,c): c € 2,1 < m < b,}, the directed graph whose edges are:
OcLyle,0"10cLy(1,n, ¢), (m,n,c)Ly(m + 1,n,c), (by,n,c)Ly0"11e,1 < m <
by,c€2¥ neN.

Theorem 6.1 ([CMSV]). For any analytic graph G = (X, G) on a Polish space
X, and b € (2N)N with b, — oo, exactly one of the following holds:

(i) x(G) <2,

(ii) Ly <. G.

On the other hand in [CMSV] it is also shown that the directed version
of the G\-dichotomy, see Section 4, (G), fails in this context. More precisely
they prove the following:

Theorem 6.2 ([CMSV]). Let D be an analytic graph on a Polish space with
xB(D) > 2. Then there is a family (M ).con of Borel directed graphs on Polish
spaces with xp(M.) > 2, M. <. D such that if Dy, is a directed Borel graph on
a Polish space such that Dy <p M, , M ,, for some ¢i # ¢, then xg(Dy) < 2.

We also note here that there cannot be any reasonable dichotomy result
concerning the property x5(G) < n, for any n > 2, or for the property
xB(G) < Ny, in view of Theorem 5.23.

55
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6.2 Bounded degree graphs - Brooks” Theorem

Recall from Proposition 5.4 that if G is an analytic graph with A(G) < d,
then x5(G) < d + 1. It is of course trivial that for every n € {1,...,d +
1} there is a finite graph G with A(G) < d, whose chromatic number
is equal to n. However the problem of finding acyclic Borel graphs of
bounded degree < d, whose Borel chromatic number is any given num-
bern € {1,...,d+ 1} is more difficult. Answering a question in [KST, 3.3],
Laczkovich (see [KST, Appendix]) found the first examples of acyclic Borel
graphs G with x5(G) = n for any prescribed finite value n € {1,2,...}.
His proof used arguments from dynamics. However these graphs were
not even locally finite. The next step was taken in Conley-Kechris [CK,
2.5] who, answering a question of Miller [M08], showed that there are
bounded degree acyclic Borel graphs G with x5(G) = n, for any pre-
scribed finite value n € {1,2,...}. These graphs had A(G) of the order
of n?. The proof in [CK] used ergodic theoretic arguments. Finally Marks
[Mal] found a complete answer to this problem, using game theoretic ar-
guments and Borel determinacy.

Theorem 6.3 ([Mal, 3.2]). Let d > 1andn € {1,...,d + 1}. There is a d-
reqular acyclic Borel graph G with x5(G) = n.

A classical theorem of Brooks (see, e.g., [Di, 5.2.4]) shows that for a
finite graph G with A(G) < d one actually has x(G) < d, except for two
trivial exceptions.

Theorem 6.4 (Brooks). Let G be a finite graph with A(G) < d. Then x(G) < d
unless G contains a (d + 1)-clique, i.e., the complete graph K 4.1, or d = 2 and
G contains an odd cycle (i.e., is not bipartite).

Theorem 6.3 shows that Brooks” Theorem does not hold in general in
the Borel context. However it does hold under additional assumptions on
the graph G.

Very recently Conley, Marks and Tucker-Drob [CMT-D] found a crite-
rion that guarantees the validity of the Brooks bound. A subset S of a
graph G is said to be biconnected if G|S remains connected after removing
any single vertex from S (we do not regard a single vertex as biconnected).
A Gallai tree is a connected graph whose maximal biconnected sets are all
complete graphs or odd cycles. This notion was introduced in the context
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of studying list colorings, which we discuss in Section 7. Finite Gallai trees
are precisely the graphs that are not degree-colorable; see [CR, Section 8].

Theorem 6.5 ((CMT-D, Theorem 4.1]). Let G be a Borel graph on a standard
Borel space with A(G) < d, such that every connected component of G is not a
Gallai tree. Then xp(G) < d.

Recall that a connected locally finite graph G = (X, G) has at most n
ends if for any finite F* C X, the graph G|(X \ F) has at most n infinite
connected components. Also G has (exactly) n ends if n is the least such
that G has at most n ends. The graph G has infinitely many ends if for any
n it does not have at most n ends.

Theorem 6.5 also implies the following result, proved earlier in [CK].

Theorem 6.6 ([CK, 5.11]). Let G be a Borel graph on a standard Borel space with
A(G) < d, which is vertex transitive and whose connected components have one
end. Then x5(G) < d.

Also using Theorem 6.5 the authors prove the following full analog of
Brooks’ Theorem in the measurable and Baire category case.

Theorem 6.7 ([(CMT-D, Theorem 1.2]). Let G be a Borel graph on a Polish
space with A(G) < d, where d > 3. Then, unless G contains a (d + 1)-clique,
we have that x(G) < d, and also xpp (G) < d.

Moreover in [CMT-D, Theorem 6.1] a complete characterization is also
given for when a Borel graph G with bounded degree < 2, that does not
contain an odd cycle, has xs or xpu < 2, thereby extending Brooks” The-
orem in this case as well.

Remark 6.8. Earlier the weaker version of Theorem 6.7 with x{?(G) < d
instead of x,(G) < d has been established in [CK, 2.19]. It was also shown
in [CK, 2.20] that the full version of Brooks” Theorem holds for x/? in the
d = 2 case: If G is a Borel graph on a standard Borel space with A(G) < 2
and G is bipartite, then x/(G) < 2.

The Lovéasz local lemma is an important tool in probabilistic combina-
torics and has many applications to coloring problems. Bernshteyn has
proven a measurable version of the Lovdasz local lemma, and applied it to
a number of problems in measurable graph coloring. If G is a graph, we
denote by ¢(G) the girth of G, i.e. the minimum size of a cycle in G. If
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G is acyclic, then we define ¢(G) = oo. For graphs of sufficiently large
girth, we have the following upper bound on the approximate measure
chromatic number.

Theorem 6.9 ([Ber, Theorem 1.4]). Let G be a Borel graph with A(G) = d. If

9(G) > 4, then
d
ap —

and if g(G) > 5, then

XH(G) = (L4 o)

6.3 Bounded degree graphs - Vizing’s Theorem

We next discuss edge chromatic numbers. In Proposition 5.4 we have seen
that if G is an analytic graph with A(G) < d, where d > 1, then \3(G) <
2d — 1. On the other hand, we have the following classical theorem of
Vizing (see, e.g., [Di, 5.3.2]).

Theorem 6.10 (Vizing). If G is a graph with A(G) < d, then ' (G) < d + 1.

Remark 6.11. A theorem of Konig also shows that for any bipartite graph
G, we have \'(G) = A(G) (see [Di, 5.3.1)).

In [KST, p. 15] the question was raised of whether the Vizing bound
works for Borel chromatic numbers. This was finally resolved in Marks
[Mal], using again game theoretic methods.

Theorem 6.12 ([Mal]). For every d > land n € {d,...,2d — 1}, there is a
d-regular acyclic Borel graph on a standard Borel space which has xp(G) = 2
and X'z (G) = n.

It is open whether Vizing’s Theorem holds for measure or Baire mea-
surable chromatic numbers.

Problem 6.13. Let G = (X, G) be a Borel graph on a Polish space with A(G) <
d. Is it true that x',;(G) < d + 1? Is it true that x'5,,(G) < d + 1?
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The following partial results are known concerning this problem. For a
locally countable Borel graph G = (X, G) on a standard Borel space X and
a Borel probability measure i on X, we say that G is p-measure preserving
if for some (equivalently any) Borel involutions (7},) with G = G1,,), each
T, is p-measure preserving (see here Section 3,(A)). Csdéka, Lippner and
Pikhurko very recently proved:

Theorem 6.14 ([CLP]). Let G = (X, G) be a Borel graph on a standard Borel
space X with A(G) < d and let ;1 be a Borel probability measure on X. If G is
p-measure preserving, then:

(i) X,,(G) < d+ O(Vd),

(i) If G is bipartite, then x,,(G) < d + 1.

Moreover it is shown in [CLP] that if a certain conjecture on finite
graphs is true, then in (i) of 6.14 one obtains the optimal x/,(G) < d + 1.
Earlier Marks had proved the following:

Theorem 6.15 ([Mal, 1.8]). Let G be a Borel graph on a Polish space with
XB(G) < 2and A(G) < 3. Then x;(G) < 4and x'5,,(G) < 4.

Bernshteyn has shown that the following holds in the more general
case when G is not necessarily y-measure preserving, but for the approxi-
mate edge measure chromatic numbers (defined in [Ber, page 6]):

Theorem 6.16 ([Ber, Theorem 1.5]). Let G be a Borel graph with A(G) = d.
Then
Xir (G) = d + o(d).

Bernshteyn’s proof uses a measurable verison of the Lovasz local lemma.
This technique can also be used to give a new proof of [CLP] in the case
where G is the graph arising from the shift action of a group I' on the space
[0, 1]". Moreover, in this case Bernshteyn proves a list coloring version of
this theorem, in the case when the list of colors depends only on the group
element associated to the edge (see [Ber, Theorem 1.3]).

Addendum. It has been now shown in [GrP] that if G = (X,G) is
a Borel graph on a standard Borel space X with A(G) < d and p is a
Borel probability measure on X such that G is y-measure preserving, then
X,(G) < d+1,Itis also shown in that paper that x;;"(G) < d. Moreover
these results are extended to Borel multi-graphs (in which multiple edges
between adjacent vertices are allowed).
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In the Baire measurable setting, we have an analog of Koénig’s bound
(see Remark 6.11) for acyclic, regular graphs.

Theorem 6.17. Suppose G is an acyclic, d-regular Borel graph in a Polish space,
where d > 3. Then X'5,,(G) = d.

For a sketch of a proof, see the last paragraph of Section 15.
Concerning shift directed graphs sD as in Section 3,(A), a result in fi-
nite graph theory asserts that if D is a finite directed graph with x (D) = n,

then log, n < x(sD) < min{k: n < <Lk’]j24>} (see [HE], [N1]).

It is not hard to verify that the proofs in the finite case given in [HE, Sec-
tion 4] or [N1, 5.6] also show that for any locally countable directed Borel
graph D with x5(D) = n, we also have log,n < xg(sD) < min{k: n <

(i)

6.4 Hyperfinite graphs

We call a locally countable Borel graph on a standard Borel space hyperfi-
nite (resp., p-hyperfinite) if the equivalence relation E¢ is hyperfinite (resp.,
p-hyperfinite). For such graphs we have the following result:

Theorem 6.18 ([CM2]). Let G = (X, G) be a locally finite Borel graph on a
standard Borel space X, with x(G) < oo, and . a probability measure on X, for
which G is p-hyperfinite. Then

xu(G) < 2x(G) — 1.

In particular, if G is bipartite (e.g., acyclic), then x,(G) < 3, and if Fy, ..., F,
are < No-to-1 Borel functions and G = G, .. p,, then x,(G) < 4n + 1.

77777

In view of Theorem 5.6 and Theorem 6.18, we have the following open
problem of Conley and Miller:

Problem 6.19. Let G = (X, G) be a bounded degree Borel graph on a standard
Borel space X, with x(G) < oo, which is hyperfinite. Is it true that xp(G) <
2x(G) — 17
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For the acyclic case, Theorem 6.18 holds even when G is locally count-
able, see [M08, 3.1]. We will see in Theorem 6.59 below that the hypothesis
of hyperfiniteness cannot be removed from this theorem, even when G is
acyclic of bounded degree.

On the other hand the following holds:

Theorem 6.20 ([CK, 3.1]). Let G be a locally countable, acyclic Borel graph on
a standard Borel space X and v a Borel probability measure on X for which G is
p-hyperfinite. Then x;P(G) < 2.

However this fails if G is only bipartite instead of acyclic. The graph
G} introduced in Section 3,(C) has i, (G}) = 0, thus x%(Gj) = 2™. It holds
though in the bipartite case if moreover G is locally finite. In fact, more
generally we have the following result:

Proposition 6.21 ([CK, 3.8]). Let G be a locally finite Borel graph on a stan-
dard Borel space X and i a Borel probability measure on X for which G is -
hyperfinite. Then x;7(G) < the minimum of all x(G|A), with A an Eg-invariant
Borel set of pi-measure 1, and if G is p-measure preserving we have equality.

Finally one can ask if Brooks” Theorem holds for bounded degree Borel
graphs which are hyperfinite. Clearly the acyclic graph G' generated by
the free part of the shift action of Z on 2% satisfies A(G) = 2 but x5(G) =
Xu(G) = xBm(G) = 3 (for p the usual product measure), so Brooks” Theo-
rem fails in this case. However the following problem is open:

Problem 6.22. Let d > 3. Is it true that if G is a d-regular, acyclic, hyperfinite
Borel graph, then x5(G) < d?

The following is also open:

Problem 6.23. Let d > 3. Is there a d-reqular, hyperfinite Borel graph G such
that xp(G) > x(G) + 17

6.5 Graphs generated by group actions

An important class of graphs of bounded degree consists of the graphs
induced by actions of finitely generated groups.

Let I' be a finitely generated group with a finite symmetric set of gener-
ators S, with 1 ¢ S. We will call (I, ) a marked group. Leta: I' x X — X be
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a free (i.e., a(v, x) # z, if 7 # 1) Borel action of I' on a standard Borel space
X. We usually write a(y,z) = 7 - z, when a is understood. Let G(S, a) be
the “Cayley graph” associated with this action: G(S,a) = (X,G(S,a)),
where ©G(S,a)y < 3y € S(y-x = y). Clearly this is a Borel graph
which is d-regular, where d = |S|. Each connected component of G(S, a)
is isomorphic to the (right) Cayley graph of (I', S) denoted by Cay(I', S) =
(I, Cay(T', S)), where 6Cay (L', S)e < 3y € S(67 = €). The isomorphism is
given by the map v — ~~! - 2, where z is in the connected component.

Of particular interest are the shift actions of countable groups. Let X be
a standard Borel space with | X| > 2. The shift action of a countable group
" on the space X', denoted by sr x, is given by v - p(6) = p(v~*4), for
7,0 € I',p € X', This action is not free, so we let F(X') = {p € XV: Vy #
1(v - p # p)} be the free part of the action, which is a I'-invariant Borel set.
We denote by G(S, X") = G(S, sr x) the corresponding graph on the free
part.

We note that for any free Borel action a: I' x X — X, there is a I'-
equivariant Borel embedding of X into F ([0, 1]") (in fact even to F(N") —see
UKL, 4.2, 5.4]), i.e., a Borel injection 7: X — F([0,1]") such that 7(y - z) =
v - m(x). In particular the graph G(S, a) is Borel isomorphic to the induced
subgraph of G(S, [0,1]") on a Eg g o 1jr)-invariant Borel set. We thus put

G (T,S) = G(S,[0,1]").
Therefore
xB(G(S,a)) < xB(Go(I',9)), Xp(G(S,a)) < Xp(Gu(T, 9)),

for any free action a.

It is not possible in general to Borel embed a free Borel action, e.g., of
[' = Z, into F(k") for finite k. Very recently Seward and Tucker-Drob [ST]
proved that for any infinite I' and any free Borel action a: I' x X — X,
there is a '-equivariant Borel map 7: X — F(2"), which is therefore a
Borel homomorphism from G(S,a) to G(S,2"), for any S. Thus we have
the following result, which answers a question of Marks [Mal]:

Theorem 6.24 ([ST]). For any infinite marked group (I, S) and any standard
Borel space X, with | X| > 2, we have

XB(G(57 XF)) - XB(GOO(Fa S)) and XEB(G<S7 XF)) - X,B<GOO(F> S))
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Theorem 6.5 implies the following version of Brooks” Theorem for graphs
generated by group actions:

Theorem 6.25 ([CMT-D]). For any infinite marked group (I, S), with |S| = d,
such that Cay(I', S) is not a Gallai tree and any free Borel action a of I" on a
standard Borel space X, we have

xs(G(S,a)) < d.

It is an interesting open question whether the converse of Theorem 6.25
is true. If correct this would give a complete characterization for the va-
lidity of the Brooks” bound for graphs generated by group actions.

Problem 6.26 ([CMT-D]). For any infinite marked group (', S), with |S| = d,
is it the case that Cay(I, S) is not a Gallai tree iff for any free Borel action a of I
on a standard Borel space X we have

xs(G(S,a)) < d.

Some special cases of this problem are settled by Theorem 6.31. In par-
ticular, the problem has a positive answer for groups that are finite free
products of Z and Z/nZ, where Z is generated as usual and each Z/nZ
is generated by all its nontrivial group elements. Of course, the Cayley
graphs of such groups are Gallai trees.

Recall that in an infinite, finitely generated group I', we define the num-
ber of ends of I to be equal to the number of ends of Cay(I', S), for any finite
symmetric generating set S (this is independent of S; see [Me, Theorem
11.23]). The number of ends is 1, 2 or oo (see [D, IV.25, (vi)]). The follow-
ing result, proved originally in [CK] by using Theorem 6.6, also follows
from Theorem 6.25:

Theorem 6.27 ([CK, 5.12]). Let (I", S) be an infinite marked group with I with
finitely many ends, which is not isomorphic to Z or (Z/2Z) x (Z/2Z). If | S| = d,
then xg(G(S, a)) < d for any free Borel action a of I".

For ' = Z, with S = {1}, or T = (Z/27) % (Z/27Z) = {(a,bla®* = V* = 1),
with S = {a, b}, the graph G (I', S) has Borel chromatic number equal
to 3. Thus, apart from these two exceptions, the Brooks bound applies in
this case. Sometimes this upper bound can be improved. Answering a
question in [KST, 4.8], it was proved by Gao and Jackson [G], 4.2] (and
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Miller for n = 2) that for Z" and S the usual set of generators for Z",
XB(Gx(Z™,S)) < 4. Very recently the exact Borel chromatic number of
G (Z",S) was computed:

Theorem 6.28 (Gao-Jackson-Krohne-Seward). For any n > 1, and S the
usual set of generators for ", xp(Goo(Z", S)) = 3 and thus for any free Borel
action a of Z™ we have that x5(G(S, a)) < 3.

Gao-Jackson-Krohne-Seward also showed that the continuous chromatic
number of the graph G(S,2%") is equal to 4. Finally they proved that for
any countable graph H, G(S,2%") <5 H iff H is not bipartite.

Remark 6.29. Note that it also follows from Theorem 6.18 that for any
free Borel action a of Z" on a standard Borel space and S the usual set of
generators for Z", we have that y,/(G(S,a)) < 3, a result proved earlier
by Gao-Jackson-Miller and independently Timér [Ti].

Remark 6.30. It should also be pointed out that when a free Borel action a
of I' admits an invariant Borel probability measure y with respect to which
it is weakly mixing, then x5(G(S,a)) > x.(G(S,a)) > 3 (see [CK, page
148] or the argument in Example 4.15).

Not much else seems to be known concerning x 5 (G (I, 5)), for I with
finitely many ends.

We note here that by Stallings” Theorem (see [St]) a torsion-free finitely
generated group has infinitely many ends iff I' is a non-trivial free prod-
uct. In particular, the question was raised in [CK, 5.17] of whether the
Brooks bound holds for free Borel actions of the free group F,, (with a
symmetrized free set of generators). This was answered in the negative by
Marks [Mal], using the following result:

Theorem 6.31 ([Mal, 1.2]). Let (I', 5), (A, T') be infinite marked groups. Then
XB(Goo(Tx A, SUT)) > xB(Guoo(T,5)) + xB(Goo (A, T)) — 1.

Corollary 6.32 ([Mal]). Let F,, be the free group with n generators and S =
(i, .. Y, where {1, . . ., yn} is a set of free generators. Then (G oo (F,, S)) =
2n + 1.

This also partially confirms Conjecture 6.26. Moreover the following is
derived in [Mal]:
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Theorem 6.33 ([Mal]). Let IF,, be the free group with n generators and S =
(vt o yEYY, where {1, ..., v} is a set of free generators. Then for each 2 <
m < 2n + 1, there is a free Borel action a of IF,, with x 5(G(S, a)) = m.

The proof of Theorem 6.31 as well as Theorems 6.3 and 6.12 is based on
the following Main Lemma in [Mal], which is proved by game theoretic
methods and Borel determinacy.

Theorem 6.34 ([Mal, Main Lemma 2.1]). Let I', A be countable groups. If
A C F([0,1)"*2) is a Borel set, then one of the following holds:
(i) There is a I'-equivariant continuous injection

7 F([0,1]") — F([0, 1]™4)

such that =(F([0,1]7)) C A4,
(ii) There is a A-equivariant continuous injection

p: F([0,1]%) — F([0,1]"4)
such that p(F([0,1]%)) C F([0,1]"™2) \ A.

Note here that I acts on F([0, 1]'*2) by restricting the shift action to the
subgroup I' of I' * A and similarly for A.

Itis also shown in [Mal, 3.4] that x 5(G o (I'*A, SUT)) < xp(G (T, 9))-
XB(Goo(A,T)). The following are open problems:

Problem 6.35 ([Mal, 3.3, 3.5]). (i) Are there marked groups (I, S), (A, T) for
which

XB(Goo(T'* A, SUT)) > xp(G(T',5)) + x5(Goo (A, T)) — 17
(ii) Are there non-trivial marked groups (I', S), (A, T') for which
XB(Goo(I'x A, SUT)) = xB(Goo(I', 5)) - x8(Goo(A, T))?

Concerning measure or Baire measurable chromatic numbers, we have
the following corollary of Theorem 6.7:

Theorem 6.36 ([CMT-D]). Let (I, .S) be an infinite marked group with |S| =
d > 3. Then for any free Borel action a of I" on a Polish space, we have x ,; (G(S, a)) <
d and XBM(G(S7 CL)) < d.
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Remark 6.37. This clearly fails for |S| = 2, since, for example, for (I, S) =
(Z,{£1}), and a the free part of the shift action of Z on 2%, we have

XM(G(S, a)) =3,
where 1 is the usual product measure. Moreover we also have
XBM(G(S; CL)) = 3.

However, since the only infinite marked groups (I', S) with |S| = 2 are Z,
with S = {+1}, and (Z/27Z) x (Z/2Z) = (a,bla* = b* = 1), with S = {a, b},
it is clear from Remark 6.8 that for every infinite marked group (I, S) with
|S| = d, any free Borel action a of I' on a standard Borel space X and any
Borel probability measure ;. on X, we have x{?(G(S,a)) < d.

We next mention the following interesting question:

Problem 6.38. Let (I', S), (A, T') be two infinite marked groups with isomorphic
Cayley graphs. Is it true that the Borel chromatic numbers of G (L', S) and
G (A, T) are equal?

We point out that this fails if instead of the Borel chromatic number one
considers the Borel edge chromatic number. As in Remark 6.37, if we take
(T',S) = (Z,{£1}) and (A, T) with A = (Z/27) * (Z/27) = (a,bla® = V? =
1) and 7' = {a, b}, then the Cayley graphs of these two marked groups
are isomorphic but X3(Gw(Z, S)) = 3 and X3(G(A,T)) = 2; see [KST,
pp. 19-20]. One can also raise the same question as in Problem 6.38 for
measurable or approximately measurable chromatic numbers.

Addendum. Problem 6.38 has now been solved by Weilacher [Wei],
who constructed pairs (I', S), (A, T) of infinite marked groups with iso-
morphic Cayley graphs but for which the Borel chromatic numbers of
G (I',9) and G (A, T) are different. Similarly for measurable chromatic
numbers.

Finally, in general, not much seems to be known concerning Borel edge
chromatic numbers of the graphs G(S, a), except the obvious lower bound
d, where |S| = d. For example, we have the following open problem.

Problem 6.39. Let F,, be the free group with n > 2 generators and let S =
(v Y, with {1, ...,y } a set of free generators. What is the Borel edge
chromatic number x'5(G o (F,, S))? Similarly for Z".
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For (I', S) = (Z,{%1}), xX5(G(S, a)) < 3 for any free Borel action a, from
which it easily follows that x3(G(F,, S)) < 3n, thus

2n < X'p(Guoo(F,, S)) < 3n.

Notice also that there are free Borel actions a of F,, for which we have
X5(G(S,a)) = 2n. To see this, take any free action b on X and define the
action a on X x Z/2Z by a(v, (x,i)) = (b(v,x),¢(y) + i), where ¢ is the
homomorphism from F,, to Z/2Z that sends S to 1. Then color each edge
{(2,0), (y,1)} of G(S, a) by the unique s € S such that b(s,z) = y.

Also note that, if instead of the free groups I,,, we use the free products
ANy = (Z)22)¢ = {ay,...,aq| @} = - =a2 =1 and T = {a,...,aq},
then x3(G(T,a)) = d, for any free Borel action a of A,,. In particular, for
d = 2n, X5(Gos(A2y, T)) = 2n, while the Cayley graphs of (F,,,.S), (Ag,, T)
are isomorphic.

On the other hand, for measurable edge chromatic numbers, Theorem
6.14 implies the following result:

Theorem 6.40 ([CLP]). Let (I',S) be an infinite marked group with |S| = d,
let a be a free Borel action of I' on a standard Borel space X and let ;. be a Borel
probability measure on X which is a-invariant. Then x;,(G(S,a)) < d + O(d)
and if Cay (I, S) is bipartite, then x,,(G(S,a)) < d + 1.

Addendum. It now follows from the results of [GP] that in Theorem
6.40 one always has x,(G(S,a)) < d + 1.

Also Theorem 6.15 implies that if (I',.S) is an infinite marked group
with |S| = 3 and a is a free Borel action of I' on a Polish space X, with
x8(G(S,a)) <2, then x}/(G(S,a)) < 4and x5, (G(5,a)) < 4.

Taking in Theorem 6.40 the group I' = F, with S = {~i',..., v},
with{v1,...,7,} a set of free generators, and any free Borel action a of F,,
on a standard space X and a Borel probability measure 1 on X, which is
a-invariant, we have that 2n < x},(G(S, a)) < 2n+1 (and by the comments
in the paragraph following Problem 6.39 the lower bound is achieved by
some measure preserving action). The following is an open problem:

Problem 6.41. Let F,, be the free group with n > 2 generators and let S =
{yi ..y EtY, where {y1,. .., 7.} is a set of free generators. What is the yi-
measurable edge chromatic number X',(G o (F,, S)), where ju is the usual product
measure on [0, 1]F?
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We saw in Theorem 6.17 that x5,,(G o (F,, S)) = 2n.

In the recent paper [Ber1], the author considers, for a given countable
group I' and continuous action a of I' on a Polish space X, Baire mea-
surable maps f: X — N, viewed as abstract Baire measurable “color-
ings”. Any such map gives rise to the function F: X — N' given by
F(z)(y) = f(y~!' - z). This is Baire measurable and I'-equivariant, where
I" acts on N' by shift. Given a subshift S C N, i.e., a non-empty, closed,
shift-invariant subset of N', we say that f is an S-map if F' maps a comea-
ger subset of X into S.

For example, assume that (I, S) is an infinite marked group, £ > 1, and
let Col(T", S, k) be the subshift consisting of all k-colorings of Cay (I, 5).
Then a Col(T', S, k)-map for a free action a as above is a Baire measurable
coloring of G(S,a) on a comeager set.

For each action a as above, we denote by Shp;,(a, N) the set of all sub-
shifts S for which there is an S-map. The following is proved in [Ber1].

Theorem 6.42 ([Berl, Theorem 2.3]). Let a be a free continuous action of a
countable group I" on a Polish space X. Then we have:

(i) If the equivalence relation E, induced by a is generically smooth (i.e., it is
smooth on a comeager set), then Shgy(a, N) contains all the subshifts.

(ii) If E, is not generically smooth, then Shp(a, N) is a complete analytic set
(in the space of closed subsets of N with the Effros Borel structure).

Moreover for the shift action s = sp g the author proves a combi-
natorial characterization of Shpj,(s,N). This allows the application of re-
sults from finite combinatorics to calculation of bounds of Baire measur-
able chromatic numbers. For example the following is proved in [Berl]:

Theorem 6.43 ([Berl, Corollary 2.11]). Let (I', S) be an infinite marked group
with Cay(T', S) planar. Then xpn (G (I, S)) < 3, if Cay(I', S) has no cycles
of length 3 and 4; xpm(Goo(I',5)) < 4, if Cay(I', S) has cycles of length 4 but
not of length 3; and xpr (G (T, S)) < 5, otherwise.

6.6 Measure preserving group actions

Throughout (F) we let (I, S) be an infinite marked group, i.e., I is an infi-
nite group and S a finite symmetric set of generators with 1 ¢ S. Let (X, i)
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be a standard measure space, i.e., X is a standard Borel space and p a non-
atomic Borel probability measure on X. All such spaces are isomorphic,
so we can freely move among them. We will consider measure preserving
Borel actions a of I" on (X, u). We identify two such actions «, ¢/, if for all
v, we have a(vy,z) = d'(v,z), u-a.e.. We will write a for the equivalence
class of a under this identification but still refer to a as a measure preserv-
ing action and write a(v, z) if there is no danger of confusion, where we
implicitly ignore null sets.

Let A(T', X, i) be the space of such actions. Equipped with the weak
topology this is a Polish space (see, e.g., [K10]). We denote by FR(I'", X, i)
the subspace of free actions, where a is free iff for all v # 1, we have
a(vy, ) # z, p-a.e. This is a G5 subset of A(I", X, i), so also a Polish space.
For every a € FR(I', X, 1), we define the “Cayley graph" G(S,a) as in
Section 5, (D), noting that it is defined only p-a.e., that is for any two rep-
resentatives a,a’ of a, the graphs G(S,a), G(S,d’) are defined and equal
on a set of measure 1, which is invariant under both @ and «'. In particular
this means that the parameters i,(G(S; a)), x,.(G(S,a)) and X7 (G(S,a))
are well-defined and can be viewed as functions on the space FR(T', X, 1)),
taking values in [0, 1], N and N, resp.

In the space FR(I', X, 1)), we have a hierarchy of complexity of ac-
tions induced by the quasi-order of weak containment, in symbols <, de-
fined as follows: Let Aut(X,p) be the Polish group of Borel automor-
phisms of X that preserve 1 (in which we identify two such Borel automor-
phisms if they agree ji-a.e.). With the weak topology this is a Polish group
acting continuously on FR(I', X, i) as follows. For a € FR(I', X, p), let
v* € Aut(X, i) be defined by v*(z) = a(v,z). Then for T' € Aut(X, i), a €
FR(I, X, pu),letT-a=b < T*T~ ' =+" Vv eI Then we put

a<b < ac{T -b:T¢cAut(X,u)},

where closure is in the weak topology. We finally say that a, b are weakly
equivalent, in symbols @ ~ b, if a < b,b < a. In case a € FR(I', X, p),
b € FR(I',Y,v), we also define a < b (resp., a ~ b) if for some (equivalently
any) b’ € FR(T", X, 1) which is isomorphic (measure theoretically) to b, we
have a < b’ (resp., a ~ b').

It turns out that (FR(I', X, i), <) has a least element, ar o, which is the
(weak equivalence class of the) shift action of " on 2! (Abért-Weiss [AW]).
There is also a largest element, ar ., (Glasner-Thouvenot-Weiss [GTW],
Hjorth (unpublished)).
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We now have:

Theorem 6.44 ([CK, 4.1, 4.2, 4.3]). The map
a € FR(T, X, 1)) = i,(G(S, a))

is lower semicontinuous. In particular, for actions a € FR(I', X, ) and b €
FR(T, Y, v), we have

a<b = i,(G(S,a)) <i,(G(S,b)).

Moreover
a<b = x(G(S,a))>x,"(G(S,b)).

Thus both i, and x;F are invariants of weak equivalence.

On the other hand y, is not an invariant of weak equivalence. For
example, all free actions of Z are weakly equivalent but there are a,b €
FR(Z, X, ) with x,(G(S,a)) = 2,x,(G(S,b)) = 3 (Where as usual S =
{£1}).

In Abért-Elek [AE] the authors define a compact metrizable topology
on the quotient space FR(I', X, 1)/ <, which is larger than the quotient
topology. Peter Burton has shown that the function [a]. — i,(G(S,a)) is
continuous in the Abért-Elek topology.

Given actions a € FR(I', X, ) and b € FR(I',Y,v), we say that a is
a factor of b, in symbols a T b, if there is a Borel map 7: ¥ — X such
that m,v = p and 7(b(v,y)) = a(y,7(y)), p-a.e.(y),Vy € I'. We have that
a T b = a < b. We also say that a, b are weakly isomorphic, in symbols
a>="bifaCband b C a. If a C band 7 is as above, then 7 is a Borel
homomorphism from G(S, b) to G(S, a) almost everywhere, so we have:

Proposition 6.45. Let a € FR(I', X, u) and b € FR(T', Y, v). Then
alb = xu(G(S;a)) > x,(G(S,b)).
Thus x,(G(S, a)) is an invariant of weak isomorphism.

Now consider a standard Borel space X and let ;s be a Borel probability
measure on X not supported by a single point. Let ' be the product mea-
sure on X' which is supported on F(XT). The action of T on (F(X"), u")
is called a Bernoulli shift. By [AW] all Bernoulli shifts of an infinite group I
are weakly equivalent, thus we have the following result:
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Theorem 6.46. Let (I, .S) be an infinite marked group. Then for any standard
Borel space X, any Borel probability measure p on X, not supported by a single
point, and for A the Lebesgue measure on [0, 1], we have

i, (G(S, X)) =iy (G (T, 9)).

and
VR(G(S, XT)) = X2 (GuolT, ).

Bowen [B] shows that if I' > [, all Bernoulli shifts are actually weakly
isomorphic. Therefore the following holds:

Theorem 6.47. Let (I', S) be marked group with I' > Fy. Then for any standard
Borel space X, any Borel probability measure p on X, not supported by a single
point, and for X the Lebesgue measure on [0, 1], we have

Xur (G(8,X1)) = xar (G (T, 5)).

Ball [Ba] showed that if (I', S) is a non-amenable marked group and for
each finite n > 2 we let u,, be the uniform measure on n, then there is some
n = n(I') such that any Bernoulli shift of I is a factor of the Bernoulli shift
on (n", ul). Also if I' has infinitely may ends, then n(I") can be taken to be
2. Such results clearly fail for amenable groups by entropy considerations.

We will next discuss results concerning the independence number i,
in connection with properties of the group I'. Below for any graph G,
we denote by g,q4.(G) the odd girth of G, i.e., the minimum size of an odd
length cycle in G, if G is not bipartite, and we let g,44(G) = 0o otherwise.

Proposition 6.48. For any infinite marked group (I',S), with |S| = d,g =
9oad(Cay (I, 5)), and any a € FR(T', X, i), we have

1 . 1 1
- <i,(G(S,a)) < 3 2

These bounds follow from Remark 6.37 and [CK, 4.5]. In particular, if
Cay (I, S) is bipartite, then g = 0o, so we have

Y

w(G(5,a)) <

N| —

for any a € FR(I', X, ). (Note that Cay(I', ) is bipartite iff there is a
homomorphism ¢ from I' to Z/2Z = {0,1} sending S to 1.) In fact we
have the following characterization:

—~
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Theorem 6.49 ([CK, 4.6]). Let (I',.S) be an infinite marked group. Then the
following are equivalent:

(i) Cay(I', S) is bipartite,

(ii) There is a € FR(T', X, ) with i,(G(S,

a))
(iii) There is an ergodic a € FR(I', X, ) with i

QI\'JIH

L(C(S.a)) =

Consider now free ergodic actions, whose set we will denote by the
symbol FRERG(I', X, ). This is again a G5 set and thus a Polish space.
There is a <-maximum element at’}  in the space FRERG(T', X, ;1) and
ar  is the <-minimum element of FRERG(F X, ), and itis shown in [CK,
page 155] that we have:

N[

{in(G(S,a)): @ € FR(T', X, p)} = [iu(G(S, arp)), in(G(S, ar L))]-

However the structure of the set {i,(G(I', S,a)): a € FRERG(I', X, n1))}
is not well understood and may very well depend on the structure of the
group I'. In [CKT-D, 9.1] it is shown, using ultraproduct techniques, that
if I has Kazhdan’s property (T), then this set is closed.

For the shift action of the free group F,, we have the following upper
bound:

Theorem 6.50. Let [F,, be the free group with n > 1 generators and let S =
(v .Y, with {1, ..., 7.} a free set of generators. Let y be the usual
product measure on [0, 1], Then

iu(GoolF, 5)) < min(Z5Ls, 1),

The proof of the upper bound +V\2/L in Theorem 6.50, which is due

to [CK, 4.17], is based on first showing an analog of the so-called Hoffman
bound in finite graphs, which establishes a connection between the inde-
pendence number and the norm of the averaging operator associated to
the Koopman unitary representation of the shift action. This analog was
also independently proved in [LN]. One then applies a result of Kesten
which gives a bound for the norm of this operator.

The upper bound log%, which is better if n > 5, is proved by totally
different methods, using results on random regular graphs and the ultra-
product method. We sketch the proof below.
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Using the theory of random regular graphs, it follows that there is a
sequence G,, = (X,,, G,,) of 2n-regular finite graphs such that:

(i) | X, is even and | X,,,| — oo as m — oo,

(ii) There is an action a,, of IF,,, on X,, which generates the graph G,,
(i.e., two points are connected by an edge if a generator in S sends one of
the points to the other),

(iii) «(Gn) < log%, where i(G,,) is the independence ratio of G,,, i.e.,
the independence number of G, with respect to the normalized counting
measure [, on X,,,

(iv) For each r > 1 and x € X,,, denote by BE(z) the ball of radius r
around z, i.e., the set of points in X,, whose G,,-distance from z is at most
r. Denote also by B¢ () the induced subgraph G,,|B%(x). Similarly
denote by B; the induced subgraph of Cay(F,, ) on the ball of radius r
around the identity 1 € F,,. Then we have

{2 € Xt (B7"(2),2) = (B}, 1)}
| Xom|

— 1

as m — oco. Here (B®"(z),z) = (B",1) means that there is an isomor-
phism of B (z) with B” that sends x to 1.

See [RW, page 4] for (ii), [Bol, Corollary 3] for (iii) and [W, 2.7] for (iv).

Below we use the notation and terminology in [CKT-D] concerning
ultraproducts. Let ¢/ be a non-principal ultrafilter on N and denote by
Xu, Gu, pu, ay the ultraproducts, resp., of X,,,, G, fim, ar. Thus ay acts
freely 1u-a.e., and generates Gy. Moreover i, (Gy) = lim, ., i(G) <
log%. Now, as in [CKT-D, Section 5], let a € FR(F,, X, i) be a factor of ay,.
Then i, (G(S, a)) < i,,(Gy) < €2, But by [AW], the shift action of F,, on
[0, 1] is weakly contained in @, 50 i,,(G o (F,, 5)) < 1822,

On the other hand, from results of Lauer-Wormald [LW] (see also [RV,
Section 2]) it follows that for n > 2,

in(Goo(Fy, S)) > =(1— (2n — 1)771),

N | —

which is asymptotically equal to 105%. Thus asymptotically i, (G« (F,, 5))
is within a factor of 1 of the upper bound 22,

Finally it is shown in [CK, 4.18] that i,(G(F,,, S)) > i(Goo(Frt1, S))
from which it is derived that for infinitely many n, there are at least three
distinct values of i,(G(S, a)), for a € FRERG(F,, X, i). In [CKT-D, 9.2]
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examples of (I', §) are found for which {i,(G(S,a)): a € FRERG(I', X, uu))}
is infinite.

On the other extreme, for amenable groups we have the following re-
sult, where we define the independence number, in symbols (I, 5), of the
Cayley graph Cay(I', S) for an amenable group I', by

i(T, ) = lim i(F,, 9),

where (F,) is a Folner sequence for I' and i(F),,5) is the independence
ratio of the finite induced subgraph Cay (I, S)| ..

Theorem 6.51 ([CK, 4.10]). If I is an infinite amenable group, then we have that
i,(G(S,a)) =i, 95), forany a € FR(I', X, p).

In particular, if Cay(I', S) is bipartite, then i,(G(S,a)) = 3, for any
a € FR(T', X, p). In fact when Cay (I, S) is bipartite, one can characterize
various properties of the group I in terms of the behavior of the parameter
i,(G(S,a)), fora € FR(I', X, p).

Theorem 6.52 ([CK, 4.14, 4.15]). Let (I', S) be an infinite marked group with
Cay(I', S) bipartite. Then we have:

(i) T is amenable iff i,(G(S, a)) is constant (and equal to ) for every a €
FR(T, X, p).

(ii) T has property (T) iff i,,(G(S, a)) < 3 for every a € FR(I', X, 1), which
is weak mixing.

(i) I' does not have the Haagerup Approximation Property (HAP) iff

W(G(S,a) < 5,
forevery a € FR(T', X, p), which is mixing.
Finally, let us note that in the definition of the parameter
i,(G(S,a)) =sup{u(A): Aisa Borel independent setin G(S,a)},
the supremum may not be attained (see e.g., [CK, page 148]). However,

we have the following result, which is proved again using ultraproduct
methods.
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Theorem 6.53 ([CKT-D, Theorem 2]). Let (I',.S) be an infinite marked group.
Then for any a € FR(I', X, u), there is b € FR(I', X, u) with a ~ b, so that
i,(G(S,a)) = i,(G(S,b)), and moreover the supremum in i,(G(S, b)) is at-
tained.

We next discuss approximate and measurable chromatic numbers for
graphs associated to measure preserving group actions. Given (I', S) with
|S| = d, we have

2 <X,/ (G(S,arp)) < X (G(S,a)) < X/ (G(S, ar)) < d,
for any @ € FR(I', X, 1), by Remark 6.8. On the other hand
2 < xu(G(S,a)) < max{3,d},

for any a € FR(I', X, 1), by Theorem 6.36. If I' = Z,S = {£1} and a is
the shift action of Z on 27, then x,,(G(S, a)) = 3 and x?’(G(S, a)) = 2. The
following problem was raised in [CK, page 160]:

Problem 6.54. Are there I', S, a with x{?(G(S,a)) + 1 < x,.(G(S,a))?

Concerning the range of the functions x{?(G(S, a)), x.(G(S, a)) fora €
FR(T', X, 1), we have the following result, proved again by ultraproduct
methods.

Theorem 6.55 ([CKT-D, Theorem 2]). Let (I', S) be an infinite marked group.
Then for any a € FR(I', X, u), there is b € FR(I', X, u) with a ~ b and
Xi! (G(S;a)) = X7 (G(S, ) = xu(G(S, b))

Thus the range of x;? is contained in that of y,. On the other hand,
we do not know in general if x;?, x, can take every value in the interval
of integers determined by the above lower and upper bounds (for a fixed
(I',9)).

Concerning bipartite graphs, we have an analog of the characterization
in Theorem 6.49.

Theorem 6.56 ([CK, 4.6]). Let (I',S) be an infinite marked group. Then the
following are equivalent:

(i) Cay(I', S) is bipartite,

(it) There is a € FR(T, X, u) with x,(G(S,a)) = 2.

(iii) There is an ergodic a € FR(I', X, ) with x,(G(S, a)) = 2.
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As in the case of independence numbers, very little is known in general
about the range of the functions x;?, x,, for ergodic actions.

In the case of amenable groups the following result is a consequence of
Proposition 6.21.

Theorem 6.57 ([CK, 4.7]). Let (', S) be an infinite marked group with I amenable.
Then for any a € FR(I', X, p),

X,/ (G(5,a)) = x(Cay(T, 5))

Thus if Cay(T',9)) is also bipartite, x;7(G(S,a)) = 2, for any a €
FR(T, X, p).

Analogously to Theorem 6.52, we can characterize properties of the
group I" in terms of the function x;?.

Theorem 6.58 ([CK, 4.14, 4.15]). Let (I', S) be an infinite marked group with
Cay(I', S) bipartite. Then we have:

(i) I is amenable iff x;7(G(S, a)) is constant (and equal to 2) for every a €
FR(T, X, p).

(i) T has property (T) iff x;? (G (S, a)) > 3 for every a € FR(I', X, j1), which
is weak mixing.

(ii) I" does not have the Haagerup Approximation Property (HAP) iff

X, (G(5,a)) =3,
forevery a € FR(I', X, p1), which is mixing.

Finally, we have the following bound for the shift action of F,,, which
is an immediate consequence of Theorem 6.50.

Theorem 6.59. Let F,, be the free group with n > 1 generators and letS =
(v .Y, with {1, ..., 7.} a free set of generators. Let yu be the usual
product measure on [0,1]". Then

Xu(Goo(Fn, 5)) 2 X (Goo(Fy, S)) > max(3

H ’log?ZQn)'

Strengthening Theorem 6.9 in the case of the graphs arising from the
shift action of a group, Bernshteyn has proved the following upper bound
on x,(G«(I', S)), which significantly improves the previously known best
upper bound coming from Theorem 6.7:
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Theorem 6.60 ([Ber, Theorem 1.1]). Suppose (I',S) is a marked group with
|S| = d, and p is the usual product measure on [0, 1]*. If (G (I, S)) > 4, then

(G5 =0 (1)

and if (G (I, S)) > 5, then

Xu(Goo(T, 5)) = (1 + 0(1))logd~

In the case where I' = IF,, with its usual set of generators, we therefore
have asymptotically matching upper and lower bounds which differ only
by a factor of two:

2n
log 2n

<X (Goo(Fn; 5)) < Xu(Goo(Fr, 5)) < (14 0(1
o < (G (F,. ) € (Gl ) < (14 0(1)
It remains an open problem to determine the exact growth rate of these
chromatic numbers:

Problem 6.61. Compute x,,(Goo(Fy, S)) and ;P (G (Fy, S)).

Finally we note an application of Theorem 6.50 to finite graphs. Using
probabilistic methods, Erd6s showed that there are finite graphs that have
simultaneously arbitrarily large girth and arbitrarily small independence
ratio (and thus arbitrarily large chromatic number). These requirements
are in apparent conflict since large girth or even large odd girth signifies
approximation to being bipartite thus having chromatic number 2. (Recall
that the independence ratio of a finite graph is the ratio of the maximum
size of an independent set divided by the number of vertices.)

It is highly non-trivial to produce explicit families of finite graphs with
arbitrarily large girth and arbitrarily small independence ratio. Lubotzky-
Phillips-Sarnak [LPS] produced explicit examples (that are actually Ra-
manujan graphs) using deep results from number theory.

It is a bit easier to produce explicit families that have arbitrarily large
odd girth and arbitrarily small independence ratio. One example (pointed
out to us by Sudakov) of such a family consists of the so-called Borsuk
graphs: Consider the set {0,1}" and the graph B(e,n) on this set, where
two points x, y are connected iff the Hamming distance between = and the
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flip of y is < e. By making ¢ — 0 and n — oo, these graphs have arbi-
trarily large odd girth and arbitrarily small independence ratio. One can
prove this using concentration of measure in {0, 1}", with the (normalized)
counting measure and Hamming distance.

Theorem 6.50 about the shift action of F,, can be also used to produce
another such family. Let I' = [F,, and S be as in that theorem and fix an
increasing sequence of finite subsets K, of I' covering it. Consider the
shift action of I on 2" and for each p € 2%, consider the basic open set
N, = {f € 2" : f|K,, = p}. Then define a graph on 2% by connecting p, ¢
by an edge if an element of S moves by the action N, so that it intersects
N,. Let G, ., be the induced subgraph restricted to vertices that do not
belong to odd cycles of size < k. Then we have:

Theorem 6.62 ([CK, 4.22]). Given n, k, for all large enough m, depending on
n, k, we have that the odd girth of G, ., is bigger than k and the independence
number is at most i,,(Goo(F,,, S)), so converges to 0 as n — oo.

6.7 Invariant, random colorings of Cayley graphs

We discuss here some connections of the results of Section 5,(F) with prob-
lems in probability theory concerning random colorings of Cayley graphs.

Let (I, S) be an infinite marked group and £ > 1. We denote by
Col(T', S, k) the set of k-colorings of Cay(I', S). This is a closed subspace
of the compact space k. The group I' acts by shift on k" and clearly
Col(T', S, k) is invariant under this action. A Borel probability measure
on Col(I', S, k) which is invariant under this action is called a I'-invariant,
random k-coloring of Cay (', S).

The question of the existence of invariant, random colorings is dis-
cussed in Aldous-Lyons [AL, 10.5], where it is mentioned that Schramm
(unpublished, 1997) had shown that if |S| = d, then there is a ['-invariant,
random (d+1)-coloring, a fact that is also a consequence of Proposition 5.4.
Also [AL, 10.5] note that if I is sofic, then there is a I'-invariant, random
d-coloring. It was finally shown in [CKT-D, 7.4] that for any (I", S) with
|S| = d, there is a ['-invariant, random d-coloring of Cay(I', S), i.e., a “ran-
dom" version of Brooks” Theorem holds. This result was recently extended
in various ways, that will be explained below, in the paper [CMT-D]. But
first we will discuss the basic relationship between colorings of graphs in-
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duced by measure preserving actions and invariant, random colorings of
Cayley graphs.

Let a € FR(I', X, i) and let ¢: X — k be a p-measurable coloring of
G(S,a). Then we define the p-measurable map F': X — Col(I', S, k) by
F(z)(y) = ¢(y7' - z). (As usual we will neglect here and below null sets;
strictly speaking both c, F' are only defined pi-a.e.) Then it is easy to check
that F is equivariant with respect to a and the action of I" on Col(T', S, k).
Thus if v = F,p, then v is a I'-invariant, random k-coloring of Cay (I, S),
which is a factor of a, with factor map F'.

Conversely, if a I'-invariant, random k-coloring v of Cay(I', S) is a fac-
tor of an action a € FR(I', X, i) via a factor map F (i.e., F' is equivariant
and sends p to v), then we can define a yi-measurable coloring c¢: X — k
by c¢(x) = f(z)(1). Clearly these two processes are inverses of each other.

Moreover, given a I'-invariant, random k-coloring v of Cay([', S), we
can construct a € FR(I', X, p), ¢: X — k a p-measurable coloring of
G (S, a), and a factor map F' which gives v as above. Indeed, using a trick
of Lyons, let b € FR(I',Y,p) and put X = Col(I', S,k) x Y,u = v x p
and let @ € FR(I', X, i) be the product of the action of I on Col(T", S, k)
with the action b (the only point in taking this product is to make sure
that a is free). Finally, define ¢: X — k by ¢(p,y) = p(0). This is pu-
measurable and a coloring since if (¢,2) = a(s, (p,y)), for s € S, then
c(q,2) = q(0) = p(s™!) # p(0) = c(p. y).

The combination of Theorem 6.55 and Remark 6.37, shows that for any
(I, S), with | S| = d, there is a '-invariant, random d-coloring of Cay (I, S),
see [CKT-D, 7.4]. This has been now substantially strengthened to the
following, which is a corollary of Theorem 6.36, when d > 3:

Theorem 6.63 ([CMT-D]). Let (I',S) be an infinite marked group with |S| =
d > 3. Then for any a € FR(L', X, p), there is a I'-invariant, random d-coloring
of Cay(I', S), which is a factor of a.

Remark 6.64. This stronger statement fails for d = 2. By Remark 6.30,
for any infinite marked group (I', S), there is no weak mixing I'-invariant,
random 2-coloring of Cay(I',S), thus no such random coloring can be a
factor of any weak mixing action. On the other hand, for every (I', S) with
bipartite Cay(I', S), there are exactly two elements of Col(I', S,2), so the
uniform measure is ergodic I'-invariant.

In particular, Theorem 6.63 shows that for any (I', S) with |S| =d > 3,
there is a I'-invariant, random d-coloring of Cay(I', S), which is a factor
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of the shift action of I' on [0,1]" with the usual product measure. Such
random colorings are called factors of IID in probability theory.

We note here that, by Theorem 6.59, we have that any F,-invariant,
random k-coloring of Cay (I, S), with the usual set of generators S, which
is a factor of IID, must have k£ > max(3, log%) Finally in [LN, Section 5] it is
pointed out that there is a F,,-invariant, random 3-coloring of Cay(F,, S),
which is mixing.

There is a stronger notion of invariance for random colorings of Cay-
ley graphs. Let Autr g = Aut(Cay(I', S)) be the automorphism group of
Cay(I', S) with the pointwise convergence topology, in which it is a Pol-
ish locally compact group. Identifying v € I' with the left-translation map
0 — 9, we view I as a closed subgroup of Autpg. Clearly Autr g also
acts on any X' by ¢ - p(7) = p(¢~'(y)) and again Col(T', S, k) is invari-
ant under this action (when viewed as a closed subspace of k'). We call
a Borel probability measure on Col(I', S, k) which is invariant under this
action an Autr g-invariant, random k-coloring of Cay(I', S). If such random
coloring is a factor of the shift action of Autr s on [0, 1], we again call it a
Autr s-factor of IID.

It is a general fact that there is an Autr s-invariant, random k-coloring
of Cay(I', 9) iff there exists a I-invariant, random k-coloring of Cay (I, 5);
see [CKT-D, 7.6]. From this it follows that a “random" version of Prob-
lem 6.38 has a positive answer: If (I',5), (A, T') are two infinite marked
groups with isomorphic Cayley graphs, then for every k, there is a I'-
invariant, random k-coloring of Cay (I, S) iff there is a A-invariant, ran-
dom k-coloring of Cay(A,T).

It also follows that for any (I', S) with |S| = d, there exists an Autr s-
invariant, random d-coloring of Cay(I', S). In [CKT-D, 7.7] it was shown
that if in addition I" has finitely many ends but is not isomorphic to either
Z or (Z/2Z) * (Z/2Z), then such random colorings can be found that are
Autp g-factors of IID. This was recently extended to all (I, S) modulo these
two exceptions.

Theorem 6.65 ((CMT-D, Corollary 5.4]). Let (I', S) be an infinite marked group
with | S| = d such that T is not isomorphic to either Z or (Z/2Z) * (Z/2Z). Then
there is a Autr g-invariant, random d-coloring of Cay (I, S) which is a Auty g-
factor of 1ID.

The following question was raised by Lyons and Schramm (unpub-
lished, 1997 — see also [LN, Section 5]):
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Problem 6.66. Let (I, .S) be an infinite marked group. If x = x(Cay(I',S)), is
there a I'-invariant, random x-coloring of Cay(I', S)?

Since the space Col(I', S, x) is nonempty, compact and I' acts continu-
ously on it, clearly such a random coloring exists if I" is amenable.

Remark 6.67. If G = (X, G) is a countable graph, one can also define as
before the compact space Col(G, k) of k-colorings of G and similarly de-
fine Aut(G)-invariant, random k-colorings of G. In the recent work of
Agol [Ag] (see also [Bes, Proposition 8.2]) the following coloring lemma
was proved: If A(G) < d, then there exists an Aut(G)-invariant, random
(d+1)-coloring of G (compare this with Proposition 5.4 and the paragraph
preceding Theorem 6.65).

We conclude with some remarks and questions concerning invariant,
random edge colorings. For an infinite marked group (I',.S), we define
Ecol(I', S, k) to be the space of edge k-colorings of Cay(I',S). This is a
closed subspace of the compact space kFI"*), where E(T, S) is the set of
edges of Cay(I', S) (where an edge is viewed here as an unordered pair).
Again T' and Autr g act by shift on k¥ and Ecol(T, S, k) is invariant
under this action. A Borel probability measure on Ecol(I, S, k) invariant
under the I'-action (resp., the Autr g-action) is called a I'-invariant (resp.,
Autr g-invariant) random edge k-coloring of Cay(I', S). We similarly define
what it means for such random edge colorings to be factors of IID.

The basic connections between measurable colorings of graphs G(S, a)
and I'-invariant, random colorings of Cay(I', S) carry over to the present
context of edge colorings, mutatis mutandis. In particular, by the para-
graph following Problem 6.39, there is an IF,,-invariant, random edge (2n)-
coloring of Cay(F,,, S), where S is the usual set of generators. However
it is not known if there is a [F,-invariant, random edge (2n)-coloring of
Cay([F,, S) which is a factor of IID. Similarly there is a Auta, r-invariant,
random edge d-coloring of Cay (A, T'), where A4, T' are defined as in the
second paragraph following Problem 6.39. In fact Lyons [L, §2] shows
that there is a unique such random edge coloring. Moreover for each ac-
tion a € FR(Ag4, X, 1), there is a Ag-invariant, random edge d-coloring
of Cay(Ay, T') which is a factor of a but Lyons [L, 2.5] raises the ques-
tion of whether the unique Auta, r-invariant, random edge d-coloring of
Cay (A4, T) is a Auta, r-factor of IID, when d > 3 (this clearly fails for
d = 2 by the paragraph following Problem 6.38).
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7. Possible chromatic numbers

In this section, we discuss what relationships exist in general between the
various chromatic numbers we have considered above. Graphs with no
odd cycles (and especially acyclic graphs) play an important role here
since such graphs are those for which xy < 2. To begin, we note that, in-
dividually, the chromatic numbers we have been discussing can take any
value even when restricted to the class of acyclic Borel graphs. Hence,
there is no relationship between x and these other chromatic numbers, ex-
cept the obvious relation that x is less than or equal to them, since we can
take disjoint unions of these graphs with complete graphs.

Theorem 7.1 (M08, Theorem 3.9], [KST, Appendix], [CK]). For each of the
chromatic numbers x g, XM, Xu a0d X v and any value in

{1,2,3,...,8,2%},
there is an acyclic Borel graph whose given chromatic number achieves this value.

In fact, the results we refer to for xpy and y, are slightly stronger:
these graphs have the property that they achieve the given value for x g
or x, on any comeager or conull Borel set, respectively. Hence, the result
for xu follows from the result from y, by constructing a new graph that
is the restriction of a graph with a given value « for x, to a conull Borel
set on which it has a Borel x-coloring, so the resulting graph has x = x, <
XM < XB = K.

In Section 2, we noted that x < x, < xpand x < xpmw < xp. Using
the above result, we see that in general there are no other relationships
between these chromatic numbers for Borel graphs.

Corollary 7.2. For any possible way of assigning values from the set
{1,2,3,...,R,2%}

83
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to X, X, XBMm, and x g that is consistent with the inequalities x < x,, < xp and
X < xBm < XB, there is a Borel graph G on a Polish space X with a probability
measure yu realizing these four values.

Proof. Let G1, G2, G3be acyclic Borel graphs where x 51/ (G1), x.(G2), and
x5(Gs) achieve our desired values for xpar, X, and xp. We may assume
xem(G1) = xB(G1) and x,.(G2) = xB(G2) by restricting G; and G», to
a Borel comeager or conull set, respectively, where their Baire measurable
or y-measurable colorings, respectively, become Borel, as discussed above.
To obtain our desired graph we take the disjoint union of G, G5, and G
along with a complete graph G, having our desired value for xy. More
precisely, to preserve our value of xp) from G; = (X;,G;), take an un-
countable meager Borel subset A C X, partition A into two uncountable
Borel pieces A; and A,, and then using a Borel bijection between A and A4;,
form an isomorphic copy of G; on X, \ Ay, which therefore has the same
value for x gy and x . We can then arrange that in our disjoint union, G»,
G5 and G, are supported on the set A,. O

We may analogously ask what values x, x,., xzm, and xp can take on
more restricted classes of Borel graphs, such as locally finite Borel graphs,
d-regular Borel graphs, hyperfinite Borel graphs, etc. These are all open
questions, though taking disjoint unions as in the proof above essentially
reduces these problems to asking what pairs of values can be achieved
between x and each of the other chromatic numbers. For example, the
possible pairs of values for x and xpy among locally finite graphs are
unknown, see Theorem 5.6 and Problem 6.19, as are the possible pairs of
values for x and x, among d-regular Borel graphs (see Problem 6.61 for an
interesting special case) and hyperfinite Borel graphs.

It is also interesting to consider the possible values of x, x,, xzm, and
x s for more natural classes of graphs, as opposed to our ad-hoc disjoint
unions above. For example, we can consider graphs of the form G(S, X")
equipped with their natural product measures. Another natural class of
graphs are the locally countable y-measure preserving Borel graphs, which
are y-ergodic (i.e., all E¢ invariant Borel sets are null or conull). The ques-
tion was raised in [CK, Page 137] of what are the possible values of k, [, m €
{2,3,...,Rg, 2%} with k < < m for which there is such a G with x(G) =
k,x.(G) = 1, x5(G) = m. By taking direct sums, it is clear that any such
triple k£ < < m is possible, using the following two facts:
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(i) There are locally countable acyclic Borel graphs whose Borel chro-
matic number takes any value m in the set {2, 3, ..., R, 2%}; see Example
3.16 for m = 2%, Example 4.2 for m = X, and Section 5, (B), for finite m.

(ii) There are locally countable pi-measure preserving, ergodic Borel
graphs whose p-measurable chromatic number takes any value / in the
set {2,3,...,R,2%}; see Example 3.15 for [ = 2%, [CM1, Section 2] for
[ = Xy and [CK, Example 2.5], for finite [.

For edge chromatic numbers one may ask similar questions. Beyond
the obvious facts that x' < x], < xz and X' < Xz, < x5, we have that if
G is an analytic graph and \/(G) is infinite, then x'(G) = x5(G) = A(G)
by Proposition 4.1 and Vizing’s Theorem 6.10, and if x'(G) is finite, then
X5(G) < 2X'(G) — 1, by Proposition 5.4. Similarly to Corollary 7.2, one
may take disjoint unions to essentially reduce this problem to the question
of what relationships hold between the pairs x’ and xj, and x’ and X',
These remain open problems (see the discussion after Problem 6.13).

Of course, the lack of any real relationship between x gy and x,, is un-
surprising because of the orthogonality of measure and category. How-
ever, there are other pairs of chromatic numbers that do have much closer
relationships, and here there are many interesting open questions. We
mention a few.

Problem 7.3. What pairs of values are possible for x,, and x;? among acyclic
Borel graphs?

Indeed, we do not know of any acyclic Borel graphs G for which we
have x,,(G) > x;7(G)+1 (see also Problem 6.54). We ask specifically about
acyclic graphs here to sidestep the issue that ,, could be much larger than
X;¥ simply because x could be large on a nullset.

Next, we consider y,; and x 3.

Problem 7.4. What pairs of values are possible for x s and xp among Borel
graphs?

This is open when x g is finite but it is answered when xp is infinite.
Note that x,(Gy) = 3 (for the usual product measure on 2%), x 5(Gy) = 2%;
see the paragraph following Remark 4.17 and Example 4.16, resp. Also
Xm(Gsz) = 3 and xp(Gsx) = Ny; see Example 5.2. Since for any x €
{1,2,3...,R, 2%}, there are acyclic Borel graphs with y, = x5 = &, by
taking disjoint unions with Gy, Gs and complete graphs, for any & <
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[ < m, withm > X, > 3, we can find a Borel graph G with x(G) =
k,xmu(G) = I, x5(G) = m. The assumption that [ > 3 is required, since
Theorem 4.32 implies that if x5 > 2, then x5, > 2.

Problem 7.4 essentially asks whether there is a dichotomy theorem
showing that whenever xp is large and finite, there must be some mea-
sure u with respect to which x, is large. This problem is also related to
Problem 5.24, since by Theorem 6.18 and Example 5.2, a sequence (G,,) as
in Problem 5.24 must have x/(G,) = 3, while x3(G,,) must be finite and
unbounded.

Similarly, we can ask analogous questions about the supremum of x 5/
over all Polish topologies compatible with the standard Borel structure on
the space of a given graph. That is, supposing xp is large, must there be
some Polish topology with respect to which xp)s is large? Note that by
Theorem 4.32, xp > 3 = xBm > 3, for some Polish topology, while
the Gy-dichotomy, see Section 3,(D), shows that xp = 2% = gy =
2% for some Polish topology.



8. Other notions of coloring

Beyond vertex colorings and edge colorings, combinatorics studies a host
of other coloring notions, many of which make sense in the descriptive
setting. In this section we survey work that has been done on these other
coloring concepts.

8.1 List coloring

Suppose G = (X, G) is a graph and L is a function mapping each x € X
to a set L(x). Then a coloring of G from the lists L is a coloring c of G that
is a choice function for L; that is, for all z € X we have ¢(z) € L(z). Thus,
the usual notion of a k-coloring corresponds to a coloring from the lists L
where L(z) = {1,...,k} forallz. If f: X — Nisa function, then G is f-list-
colorable or f-choosable if for every function L on X with |L(z)| = f(z), G is
has a coloring from the lists L. An important special case is when f takes
the constant value %k, and here we say G is k-list-colorable or k-choosable.
The least k for which G is k-list-colorable is denoted ch(G).

In the descriptive setting, if G = (X, G) is a graph on a Polish space X,
f: X — Nisa function and I' is a class of functions between Polish spaces,
then we say G is I'' f-list-colorable if for every Polish space Y and Borel
function L: X — [Y]<*, with |L(z)| = f(x), for all z, G has a I'-coloring
from the lists L. The least k for which G is I' k-list-colorable is denoted
Chp(G)

An obvious greedy algorithm demonstrates that every graph G is f-
list-colorable for the function f(z) = deg,(r) + 1. Similarly, an obvi-
ous modification to Proposition 5.4 shows that every locally finite ana-
lytic graph is Borel f-list-colorable for f(z) = deg,(x) + 1. Graphs that
are f-list-colorable for the function f(r) = deg,(z) are said to be degree-
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list-colorable. Borodin [Bor] and Erd6s-Rubin-Taylor [ERT] independently
characterized the degree-list-colorable graphs. Recall the notion of a Gallai
tree from Section 5.

Theorem 8.1 ([Bor], [ERT], [CR, Section 8]). A connected graph is degree-list-
colorable iff it is not a finite Gallai tree.

This can be viewed as a generalization of Brooks’ theorem since a mini-
mal counterexample to Brooks” theorem would be a regular graph, and the
only regular Gallai trees are finite complete graphs and odd cycles. Con-
ley, Marks and Tucker-Drob [CMT-D] have recently proved the following
analogue of this result.

Theorem 8.2 ([CMT-D, Theorem 4.2]). Suppose that G = (G, X) is a locally
finite Borel graph on a Polish space X containing no connected components that
are finite Gallai trees, and no infinite connected components that are 2-ended Gal-
lai trees.

(i) Let ;v be any Borel probability measure on X. Then G is p-measurably
degree-list-colorable.

(ii) The graph G is Baire measurably degree-list-colorable.

The requirement that G does not contain 2-ended connected compo-
nents is necessary since an easy ergodic theoretic or Baire category argu-
ment shows that for G = G(S5,2%) (and p the usual product measure on
2%) we have x,(G) = xpu(G) = 3; see paragraph following Proposition
6.21.

Similarly to the above, we can also define list edge-coloring, and its de-
scriptive counterparts. If G is a graph, we let ch’'(G) be the least k£ such
that G is k-list-edge-colorable, and similarly for ch;.(G). In this setting,
the list edge-coloring conjecture is a well-known open problem.

Conjecture 8.3 ([JT, 12.20]). If G is a finite graph, then ch'(G) = x'(G).
In the descriptive setting, the conjecture has a negative answer.

Proposition 8.4. There is a 2-regular acyclic Borel graph G with x'5(G) = 2
and ch'’z(G) = 3.

Proof. Consider the group I' = Z/27Z * )27 = (a1, as|a? = a3 = 1) with
generators S = {a1, a2}, and let G = G(S,2"). It is easy to see that there
is no Borel function f C G(S,2") defined on the vertices of G such that
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Vz(f*(x) # z). Indeed, there is no such Borel function on any conull Borel
set (with respect to the natural product measure 1) as one can see by using
the fact that x — a, - x is measure-preserving and = — a;a; -  is ergodic,
and similarly, there is no such Borel function on any comeager set by using
the fact that x — a, - = is a homeomorphism and z + a;a, - z is generically
ergodic. (See [M08b, Remark 4.6]). This is related to the fact that there is
no measurable or Baire measurable choice of one end from each connected
component of the graph G.

Clearly x’3(G) = 2 by using the two generators in S as colors. Also
since the line graph of G is 2-regular, G is Borel 3-list-edge-colorable (see
the paragraph preceding Theorem 8.1). We show that G is not Borel 2-list-
edge-colorable. The graph G has a Borel vertex coloring ¢ with 3 colors
by Proposition 5.4. Let L be the function given by L({z,y}) = {c(x),c(y)},
which maps each edge to the color of its two incident vertices. Suppose ¢’
is a Borel edge coloring of G from the lists L. This yields a Borel function
f contradicting the above by setting f(z) = y if y neighbors x and ¢(x) =
d({z,y}). (Note that there is at most one z in each connected component
without a corresponding y with ¢(z) = ¢/({z, y}), and hence f(z) is defined
on a comeager/conull set.) Hence chl;(G) = 3. Indeed, this argument
shows that chz,, (G) = ch,(G) = 3. O

Further, if we let Ay = (Z/22)* = (a4, ...,a4| a3 = --- = a% = 1), and
S =A{a,...,aq}, then X5(G(Aq, S)) = dby coloring each edge according
to its corresponding generator. However we have:

Theorem 8.5 ((Mal]). ch’3(G(Ag, S)) = 2d — 1.

The values of ch),(G(Ag, S)) for the usual product measure on the
shift action and ch'y,;(G+(Ay, S)) are unknown for d > 3. Indeed, the
following is open, and it may be that the y-measurable and Baire measur-
able generalizations of the list-coloring conjecture are true aside from the
exceptional case of graphs with A(G) = 2 as in Proposition 8.4.

Problem 8.6. Suppose G = (X,G) is a bounded degree Borel graph where
A(G) > 3. Is it true that ch'yy,(G) = X5 (G)? If v is a Borel probability
measure on X, is it true that ch),(G) = x},(G)?

The special case of the list-coloring conjecture for the complete bipartite
graph on n vertices K,,,, was known as the Dinitz Conjecture, and was
proved by Galvin [Ga]. We do not know whether ch';(G) = x3(G) for
Borel bipartite graphs of degree > 3.
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8.2 Total coloring

A total coloring of a graph G is a function assigning colors to both the edges
and vertices of G so that pairs consisting of two adjacent vertices, two ad-
jacent edges, or an incident edge and vertex are all assigned distinct colors.
Hence, a total coloring of a graph of maximum degree d > 2 corresponds
to a vertex coloring of the obvious associated graph of maximum degree
2d. By applying Theorem 6.5 to this graph (which obviously cannot con-
tain connected components that are Gallai trees), we see that every Borel
graph of degree < d has a total Borel coloring with 2d colors. On the other
hand, an easy modification of the proof of Theorem 6.12 shows that for
every d > 2 there is a d-regular acyclic Borel graph with no total Borel
(2d — 1)-coloring. See the remarks after [Mal, Theorem 3.11].

Behzad [Be] has conjectured that every bounded degree graph G has
a total coloring with either A(G) + 1 or A(G) + 2 colors, and Molloy and
Reed [MR] have shown that there exists a constant C' such that every such
graph G has a total coloring with A(G) + C colors. It is open whether the
Baire measurable or ;i-measurable generalization of Behzad’s conjecture is
true or even whether there is such a generalization of Molloy and Reed’s
result.

8.3 Unfriendly and (£, a)-colorings

An unfriendly partition or unfriendly coloring of a graph G = (X, G) is a par-
tition of X into two sets A, B such that Vax € A(|G(x)NB| > |G(x)NA|) and
Vz € B(|G(z) N A| > |G(x) N B|). That is, each vertex has at least as many
neighbors in the opposite half of the partition as in its own half of the par-
tition. It is easy to see that every finite graph has an unfriendly partition.
Cowan and Emerson [CE] conjectured every graph has an unfriendly par-
tition, which was shown to be false by Milner and Shelah [MS]. However,
the problem remains open for countable graphs, and Weiss has asked the
following more general question:

Problem 8.7 (Weiss). Does every locally countable Borel graph have a Borel
unfriendly partition?

Indeed, this question is open also for bounded degree Borel graphs.
Recently the following was proved:
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Theorem 8.8 ([CT]). Any bounded degree Borel graph of subexponential growth
admits a Borel unfriendly coloring.

Moreover the following result in the measurable context was obtained:

Theorem 8.9 ([CT]). Let G = (X, G) be a locally finite Borel graph on a stan-
dard Borel space X and let ;1 be a Borel probability measure on X. Assume that
G is p-measure preserving of finite cost (i.e., [ |G(x)|dpu(z) < oc). Then there is
a Eg-invariant Borel set A C X with u(A) = 1 such that G|A admits a Borel
unfriendly coloring.

Finally we have the following result for acyclic graphs.

Theorem 8.10 ([(CMU]). Let G = (X, G) be a locally finite acyclic Borel graph
on a standard Borel space X. Then G has a Baire measurable unfriendly coloring
and a p-measurable unfriendly coloring, for any Borel probability measure 1 on
X such that G is p-hyperfinite.

Supposing now that G = (X, G) is a locally finite Borel graph, Conley
and Kechris have suggested studying the notion of a (k, a)-coloring of G,
where ¢: X — kisa (k, a)-coloring provided that for all z € X if ¢(x) = n,
then [{y € G(z) : ¢(y) = n}| < a|G(z)|. Thus, a (k,0)-coloring of a graph
is just the usual notion of a k-coloring, while a (2, 1/2)-coloring of a graph
is an unfriendly coloring. Conley has proved the following theorem.

Theorem 8.11 ([Co]). Suppose that (I, S) is an infinite marked group and n >
2. Then any free measure preserving Borel action a of I on a standard measure
space (X, u) is weakly equivalent to a free measure preserving Borel action b of T’
on (X, pu) such that the graph G(S, b) has a Borel (n, 1/n)-coloring on an invari-
ant under b Borel set of y-measure 1.

Conley also uses this theorem to show the existence of invariant, ran-
dom (n, 1/n)-colorings of Cay(T', S).

8.4 Graph homomorphisms and colorings
One way of regarding an n-coloring of a graph G is as a homomorphism

from G to K,, the complete graph on n vertices. Thus, another way then
of generalizing graph colorings is to study homomorphisms from G to
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other finite graphs. Indeed, several different generalized coloring notions
such as fractional colorings, circular colorings, etc., can be recast in this
framework (see [HN, Chapter 6]).

In recent unpublished work, Gao, Jackson, Krohne and Seward charac-
terize the finite (or even countable) graphs H such that G(S5,2%") <5 H;
see the paragraph following Theorem 6.28. They also study what finite
graphs H have that property that there exists a continuous homomor-
phism from the graph G(S, 2%") to H. Their investigation has yielded sev-
eral partial results, though a complete characterization is still unknown.

We end here with the following open problem which would generalize
Theorem 6.3:

Problem 8.12. For each d > 1, characterize the finite graphs H such that every
acyclic Borel graph of degree < d has a Borel homomorphism to H.

8.5 Coloring numbers

Let G = (X, G) be a graph. An orientation of G is an oriented graph D
such that Gp = G. The coloring number of G, in symbols 1 (G), is the
smallest cardinal  for which there is an orientation D of G such that for
each x € X, odp(z) < k. See [EH1] for this notion.

Below let X be the disjoint union of 2<" (viewed as discrete) with the
Cantor space 2. Let G be the graph on X in which we connect by an
edge every s € 2<N with every y € 2" suhc that s C y.

Theorem 8.13 ([AZ, Theorem 6.2]). (1) Let G be an analytic graph on a Polish
space. Then exactly one of the following holds:

(i) 4(G) < N,

(i) Gy 2V G.

(2) The set of closed graphs on 2N with u(G) < Vg is a complete coanalytic
set in K((2V)?).

Asin Section 7, (A), let us say that a graph G = (X, ) is Ry-list-colorable
if for any function L that assigns to each # € X a countably infinite set
L(x), there is a coloring ¢ of G such that for each z, ¢(z) € L(z). As a
consequence of Theorem 8.13, one has the following:

Corollary 8.14 ([AZ, Corollary 6.4]). For any analytic graph G, the coloring
number of G is countable iff G is Ry-list-colorable.
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8.6 Fractional chromatic numbers

Let G = (X, G) be a graph with x(G) < N,. For each positive integer b,
we define the b-fold chromatic number of G, in symbols y*(G), to be the
smallest cardinality of a set Y such that there is a map C: X — {4 C
Y: |A| = b} with 2Gy = C(x) N C(y) = 0. Clearly Y(G) = x(G) and
YY(G) < bx(G). The sequence (xV(G))y>1 is subbaditive, so we define
the fractional chromatic number of G, in symbols x/(G), by

Y (G) = lim K(G) = inf X(b)(G>.
b—oo b—o0 b
Thus x/(G) < x(G). See [SU] for the theory of fractional chromatic num-
bers. If now G is a graph on a Polish (or standard Borel space) and ¢ is a
class of functions on such spaces with x4(G) < X, we define xéf) (G) and
Xé(G) in the usual way, and, in particular, we define

XU(G). x5(G), X (G), XA(G)

as before.

The fractional chromatic numbers in the descriptive context have been
studied in [Mee], where the following results were proved. Note that the
above quantities satisfy the following conditions:

(@) x < xu XM < X5, and similarly for their x/ counterparts.

(b) x/ < X, X} < xa, forany @ € {B, BM, p}.

(©) X, XB> XBM> Xp € N.

Ax' =2 = x=2,x, =2 = xo =2, forany ® € {B, BM, ji}.

Theorem 8.15 ([Mee, Theorem 4.5.1]). For each of the values of the quantities

X XB> XBM> X @14 X, Xy Xoss X}, in [2, 00) satisfying (a)-(d) above, there is a
Borel graph G on a Polish space X and a Borel probability measure yn on X which
realize all these values. If x = 2, we can choose this graph G to be acyclic.

Note here that for any graph G, with at least one edge, x/ (G) =2 +—
X(G) =2 <= G hasno odd cycles. However we have:

Theorem 8.16 ([Mee, Theorem 4.6.1]). There is a Borel graph G such that
x5(G) = xpu(G) = 2 but x5(G) = xp1(G) = 3.

It is unknown if for each n > 4 there is a Borel graph G such that

Y5 (G) = 2but x5(G) = n. The following question is also raised in [Mee]:
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Problem 8.17 ([Mee, Question 4.6.3]). Calculate \%,(G o (F,, S)), where S is
the usual symmetric set of generators for I¥,,. Is it always equal ro 27



9. Connections with graph limits

The study of bounded degree measure preserving graphs, which were de-
fined in the paragraph following Problem 6.13, has important connections
with the theory of limits of bounded degree finite graphs, see Lovasz [Lov,
Part 4].

The basic link between graph limits of bounded degree finite graphs
and measure preserving graphs can be described as follows. Fix below
an integer d > 2 and consider graphs of bounded degree < d. For each
r > 1, denote by B%" the set of isomorphism classes of connected, finite
rooted graphs By = (B,z) = (X, B, ), where B = (X, B) is a finite
graph on X and z; € X is a distinguished vertex, called the root, such that
A(B) < dand dg(z,z) < r,Vz € X. An isomorphism between rooted
graphs (B, zy) and (C, 1) is an isomorphism between B, C' that sends x
to yo. For each graph G = (X,G) with A(G) < d and = € X, denote
by B (z) the induced subgraph of G on the ball of radius r around z (in
the distance dg). Then put for each B, € B%" and finite graph G with
AG) < d:

_ He e X: (B (2),2) = Bo}|
pBo(G) - |X‘ :

A sequence of finite connected graphs (G,,) with A(G) < d and | X,,| — oo
is said to be Benjamini-Schramm convergent or locally convergent if for each
By € B¢", the sequence pg,(G,,) converges.

If G = (X,G) is now a p-preserving Borel graph with A(G) < d, we
also let for each B, € B¢",

pB,(G) = u({z € X: (B (z),7) = By}).

We then say that a locally convergent sequence of finite graphs (G,,) locally
converges to G if for every B, € B4
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PB, (Gn) — PBo (G)

It can be shown that for each locally convergent sequence of finite graphs
(G,), there is a G as above to which (G,,) locally converges; see [Lov,
19.1.2]. Such a limit G is not uniquely determined up to measure preserv-
ing isomorphism but only up to a week notion of equivalence called local
equivalence; see [Lov, 18.5].

One way to construct such a local limit G is via the so-called Bernoulli
graphing, see [Lov, 18.3.4]. Another is via an ultraproduct construction
followed by a factoring process to obtain a measure preserving graph on a
standard measure space.

When the measure preserving graph G is the local limit of a sequence
(G,), especially in the case where G is the Bernoulli graphing, one can use
information on the combinatorial parameters of G, in the Borel or mea-
surable sense, e.g., independent sets, colorings, matchings, etc., to derive
related information for the sequence of finite graphs (G,). This is the basis
of the so-called Borel oracle method of Elek-Lippner [EL]. See also Lyons [L,
§4] for a related method referred as emulation. In the opposite direction,
information about the sequence (G,,) can be sometimes transferred to a
local limit G. For example, it is known that for a sequence of sufficiently
random 2n-regular graphs (G,,), the independence ratio of the G,, con-
verges to a number approximately equal to ‘22", when n is large enough
(see Bayati-Gamarnik-Tetali [BGT] and Frieze-Luczak [FL]). Using ultra-
products, as in the discussion following Theorem 6.50, one can see that
this implies that there is a € FR(F,,, X, 1) such that (for the usual set of
generators S of F,,) i,(G(S,a)) ~ log%, for all large enough n.

It would take us too far afield to discuss in detail the theory of bounded
degree graph limits (including other notions of convergence such the local-
global convergence of Hatami-Lovasz-Szegedy [HLS]) and its connections
with measure preserving graphs. We only provide a (partial) list of further
references for the reader who would like to pursue further this very inter-
esting and fast growing area: [ACFK], [AH], [ATV], [AL], [AR1], [AR2],
[AR3], [BGT], [BeS], [BLS], [C], [CS], [DSS], [E1] - [E7], [EL], [EL1], [FL],
[GS], [HLS], [Kai], [Lov], [L], [RV], [S], [Ti2].
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10. Preliminaries on matchings

A matching in a graph G = (X, G) is a subset M of the edges, which we
view here as unordered pairs, such that no two edges in M have a common
vertex. Equivalently a matching is an independent set in the line graph
L(G). We denote by X, the set of matched vertices, i.e., those that belong to
an edge in M. If X, = X, we call M a perfect matching. Note that if M is a
matching, then we can define a fixed-point free involution Ty, : Xy — X
by Ty (z) =y < {z,y} € M.

Given a Borel probability measure p on a standard Borel space X, we
can define the p-matching number of a graph G = (X, G), by

1
mu(G) = Esup{,u(XM): M is a Borel matching of G'}.

This concept is a measure-theoretic analog of the concept of matching num-
ber of a finite graph G, which is defined as the maximum number of edges
in a matching of the graph. A Borel matching M is said to be a perfect
matching u-almost everywhere, if Xy is Eg-invariant and u(X,,) = 1. Thus
if there is a Borel perfect matching p-a.e., then m,(G) = ; and the sup is
attained.
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11. Konig’s Theorem fails in the
Borel context

A classical theorem of Konig in graph theory asserts that if G is a bipar-
tite graph which is d-regular, for some d > 2, then G admits a perfect
matching. (This is a special case of Hall’s Theorem.) In A. Miller [M] the
question was raised of whether this admits a Borel version, i.e., whether
for each d > 2, every Borel d-regular graph with x5 = 2 admits a Borel
perfect matching. A counterexample was found in Laczkovich [La88] for
d = 2 using an ergodic theory argument. This was extended to all even
d in [CK, Section 6] but the problem remained open for odd d until the
recent work of Marks [Mal], who used game theoretic methods to prove
the following:

Theorem 11.1 ([Mal, 1.5]). For every d > 2, there is a d-regular, acyclic Borel
graph G = (X, G) with xp(G) = 2 (i.e., G is bipartite in the Borel sense) on a
standard Borel space X, which has no Borel perfect matching.

The proof is an application of Theorem 6.34. With the notation of that
theorem, notice that there is no Borel set A C F([0,1]"*2) such that A
meets every A-orbit and the complement of A meets every I'-orbit. Con-
sider now the following Borel graph G suggested in [CK, Section 6], which
for d = 2 was used to give a different proof of Laczkovich’s result: Take
' = A = Z/dZ. The vertices of G are the I'-orbits and the A-orbits in
F(]0,1]'*2). The edges of G consist of all {p, ¢} such that p is a T'-orbit, ¢ is
A-orbit and p N ¢ # 0. It is easily seen that if M is a Borel perfect matching
and A = {z € F([0,1]2): I{p,q} € M({z} = pNq)}, then A meets every
A-orbit and its complement meets every I'-orbit, a contradiction.

Concerning graphs of the form G(S,a) for an infinite marked group
(I, S) and a free Borel action a, the result in [ST] implies that if G(S5,2")
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has a Borel perfect matching, so does every G(S,a). It is easy to see that
forT'= 7,5 = {£1), G(S,2") does not admit a Borel perfect matching. It
is also immediate that if S has an element of even order, then G(.S,2") has
a Borel perfect matching. Recently the following was shown for the group
Z",n > 2, and the usual set of generators S, consisting of the n-tuples with
all coordinates 0 except one which takes the value +1.

Theorem 11.2 (Gao-Jackson-Krohne-Seward). For I' = Z",n > 2, and S as
above, the graph G (S, 2V) admits a Borel perfect matching.

On the other hand, Marks [Mal] shows the following;:

Theorem 11.3 ([Mal]). For every n < 1, the graph G (F,,S), with S =
(i, .. Et Y, where {1, . . ., v, } is a set of free generators, has no Borel perfect
matching.



12. Perfect matchings generically

Given a graph G = (X, G) on a Polish space X and a matching M of G, we
say that M is a perfect matching generically if X, is a comeager Eg-invariant
Borel set. In contrast with Theorem 11.1 we have the following:

Theorem 12.1 ([CM3]). Let G = (X, G) be a Borel graph on a Polish space X
which is acyclic, locally finite with degg(x) > 3,Vx € X. Then there is a Borel
perfect matching generically.

Some condition on the degree of the vertices is needed as the graph
G(S,2%), for S = {£1}, has no Borel perfect matching generically. On the
other hand, in [CM3] it is shown that Theorem 12.1 is still valid under the
weaker assumption that all vertices have degree at least 2 and there is no
infinite injective G-ray (i.e., an injective sequence (z,,) with z,Gx,1) such
that for all even n we have deg,(z,) = 2. Also Theorem 12.1 fails if local
finiteness is replaced by local countability, as shown in [CM3].

More recently, Marks and Unger have shown the following, which gen-
eralizes Theorem 12.1 to bipartite Borel graphs satisfying a strengthening
of Hall’s condition. Marks and Unger have applied this theorem to obtain
some results on Baire measurable paradoxical decompositions. We discuss
these results in Section 16.

Theorem 12.2 ([MU, Theorem 1.3]). Let G = (X, G) be a locally finite bi-
partite Borel graph with a (not necessarily Borel) bipartition {By, B1}. Sup-
pose there exists an € > 0 such that for every finite set F' C By or F' C By,
|INg(F)| > (14 ¢€)|F|. Then G has a Borel perfect matching generically.

The example G(S, 2%) shows that this theorem cannot be improved to
have € = 0.

Suppose G = (X, () is an acyclic Borel graph where every vertex has
degree at least 2, and there are no infinite injective rays in G of vertices of
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degree equal to 2. Now along any finite path where each vertex has degree
2, a perfect matching must alternate between edges which are in and out of
the matching. Thus, we can contract away such paths in an obvious way
to obtain an acyclic Borel graph G’ so that a generic perfect matching of G’
yields a generic perfect matching of G, and so no two vertices of degree 2
are adjacent in G'. An easy calculation shows that Theorem 12.2 applies
to G’ and so we can conclude that G’ has a perfect matching generically
and hence so does G. In particular, Theorem 12.2 implies the stronger
version of Theorem 12.1 we have discussed in the paragraph following
Theorem 12.1.



13. Perfect matchings almost
everywhere

Recall that if G = (X, G) is a locally countable Borel graph on a standard
Borel space X and p a Borel probability measure on X, then the graph G
is y-measure preserving if for some (equivalently any) sequence of Borel
involutions (7,) with G = Gr,,), each T, is y-measure preserving.

A p-measure preserving locally countable Borel graph G = (X, G) is
strictly expanding if there is ¢ > 1 such that for any Borel independent set
A C X, if welet Ng(A) = {z: Jy € A(zGy)}, then u(Ng(A)) > cu(A).
We now have the following result of Lyons-Nazarov [LN], which can be
viewed as a measure theoretic analog of Hall’s Theorem.

Theorem 13.1 ([LN, 2.6]). Let G = (X, G) be a locally finite, u-measure pre-
serving, bipartite, strictly expanding Borel graph on a standard measure space
(X, ). Then G admits a Borel perfect matching u-almost everywhere.

Note that the strictly increasing condition cannot be replaced by the
condition u(Ng(A)) > u(A) as the example of the graph G(S, 27), for S =
{1}, shows.

Among other things, the proof of Theorem 13.1 uses a result of Elek-
Lippner [EL] concerning Borel matchings with no small augmenting paths,
which is interesting in its own right.

Suppose G = (X, () is a graph and M a matching in G. An augmenting
pathin G (for M) is a path xy, . .., Xo,+1 such that (zg;, x9;41) ¢ M, fori <mn,
(T9i11, T2i12) € M, for i < n, and zg, xo, 11 ¢ Xy. A classical result in finite
graph theory, due to Berge, states that if G is a finite graph, then M is a
matching of G' of maximum size iff there are no augmenting paths for M.
We can now state the result of Elek-Lippner:
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106 13. Perfect matchings almost everywhere

Theorem 13.2 ([EL, 1.1]). Let G = (X, G) be a locally finite Borel graph on
a standard Borel space X and let T" > 1. Then for any Borel matching M of
G, there is a Borel matching M’ of G, which has no augmenting paths of length
<2T+1 ldeM - XM/.

Remark 13.3. In [EL, 1.1] this result is stated for bounded degree graphs
but the proof can be modified to also work for locally finite graphs.

On the other hand, using the example of Laczkovich [La88], mentioned
in Section 10, Elek and Lippner show in [EL, 1.2] that there exists a 2-
regular Borel graph G in which every Borel matching has an augmenting
path.

Remark 13.4. In [LN, p. 1116] it is pointed out that as a consequence of
Theorem 13.1, the graph discussed after Theorem 11.1 for n = 3, which
has no Borel perfect matching, has a Borel perfect matching almost every-
where, in the following sense. Consider the Lebesgue measure X on [0, 1]
and let p1 be the product measure on [0, 1]"*2, where I' = A = Z/3Z. Then
there is a Borel set A with (A) = 1 which is invariant under the shift ac-
tion of I' x A on [0, 1]7*2, such that the graph G restricted to the I', A-orbits
contained in A admits a Borel perfect matching.

Conley and B. Miller have shown the following result:

Theorem 13.5 ([CM3]). Let G = (X, G) be an acyclic, locally countable Borel
graph on a standard measure space (X, ). If G is p-hyperfinite and every point
in an Eg-invariant Borel sect of measure 1 has degree at least 3, then G admits a
Borel perfect matching pi-almost everywhere.

Finally, we mention the following open problem:

Problem 13.6. Let G = (X, G) be a Borel 3-reqular graph on a standard Borel
space X and let p be a Borel probability measure on X. Is there a Borel perfect
matching almost everywhere?



14. Matchings in measure
preserving group actions

We use here the concepts and notation of Section 5,(F). For a € FR(I", X, p)
we note again that the quantity m,(G(S, a)) is well-defined. We now have
the following analog of Theorem 6.44 and Theorem 6.53.

Theorem 14.1 ([CKT-D, 6.1, 6.2]). Let (I', S) be an infinite marked group. Then
forany a,b € FR(I', X, u) we have

a<b = m,(G(S,a)) < m.(G(S,b)).

Moreover, forany a € FR(T', X, u), thereis b € FR(T', X, u), such that a ~ b, so
that m,(G(S,a)) = m,(G(S,b)), and moreover the supremum in m,(G(S, b))
is attained.

Concerning the value of m,(G(S, a)) for a € FR(I', X, i), we have the
following fact:

Proposition 14.2 ([CKT-D, 8.5]). Let (I',S) be an amenable, infinite marked
group. Then m,(G(S,a)) = 3 , for every a € FR(T, X, p).

The example of the shift action of Z on 2% shows that the sup in this
result might not be attained.

Lyons and Nazarov [LN] showed that if the marked group (I, S) is
not amenable and Cay(I', S) is bipartite, then the graph G (I, S) admits
a perfect matching almost everywhere, with respect to the usual product
measure on [0, 1]'.

Finally Cs6ka-Lippner [CL] eliminated the bipartite assumption.

Theorem 14.3 ([CL]). Let (I, .S) be a non-amenable, marked group. Then the
graph G (I, S) admits a Borel perfect matching almost everywhere (with respect
to the usual product measure).
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The combination of Theorems 14.1, 14.2 and 14.3, now shows the fol-
lowing;:

Corollary 14.4. Let (I',S) be an infinite marked group. Then for any a €
FR(T, X, n), mu(G(S,a)) = 3 and there is b € FR(I', X, p) such that a ~ b
and G (S, b) admits a Borel perfect matching i-almost everywhere.

The next question is of course to find out for which infinite marked
groups (I', S) and @ € FR(I', X, i), the graph G(S, a) admits a Borel per-
fect matching pi-almost everywhere. The answer is trivially positive for
any a € FR(I', X, p1), if S has an element of even order. On the other hand
it is easy to see that for I' = Z, S = {£1} and any weakly mixing action
a € FR(I', X, ), there is no Borel perfect matching almost everywhere.
We have seen in Theorem 11.2 (and the paragraph preceding it) that for
I' = Z", n > 2, and the usual set of generators S, the graphs G(S, a) ac-
tually admit a Borel perfect matching. Timar [Til] had actually proved
earlier that the graph G..(Z", S), n > 2, admits a Borel perfect matching
p-almost everywhere, where p is the product measure. This leads to the
following open problem raised in [LN]:

Problem 14.5. For which infinite, amenable marked groups (I, S) does the graph
G (I', S) admit a Borel perfect matching almost everywhere (with respect to the
usual product measure)?

Finally, we mention that in [CKT-D, 8.6] it is shown thatif I' = (a, b|a® =
v = 1) = (Z/3Z) x (Z/3Z) and S = {a,b,a"',b7'}, then for any a €
FR(I', X, i), the graph G(S, a) admits a Borel perfect matching p-almost
everywhere.

Remark 14.6. For a graph G = (X, () a vertex cover is a subset V. C X
such that every edge is incident to some vertex in V. If (X, i) is a standard
measure space, we define the p-vertex covering number of G by

v,(G) = inf{p(V): V is a Borel vertex cover}.

Since V' is a vertex cover iff X \ V' is an independent set, it follows that
v, (G) =1—-1,(G).

When G is finite, bipartite and p is the counting measure on X, then
a result of Konig (which implies the matching theorem mentioned in the
beginning of Section 10), asserts that v,(G) = m,(G).
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Consider now the case where G = G(S,a). Call the action a a Konig
action if it satisfies v,(G) = m,(G). It is easy to see that: (i) i,(G) < m,(G)
(if A is a Borel independent set and s € S, then the set of all {a,s - a},
for s € S and a € A forms a matching); (i) m,(G) < v,(G) (since if M
is a Borel matching and V' is a Borel vertex cover, then there is a Borel
vertex cover V' C V such that V' meets every edge of M in exactly one
point). Thus since m,(G),i,(G) < i, clearly G is Konig iff i,(G) = 1.
Thus if Cay(I', S) is not bipartite, G is not Konig (see Proposition 6.48).
If Cay(I', S) is bipartite and I is amenable, then G is Konig (see Theorem
6.51 and paragraph following it). Finally if Cay(I',S) is bipartite and I'
is not amenable, then for a = arp, G is not Konig (by Theorem 6.52 and
Theorem 6.44), while if @ = ar , then G is Konig (by Theorem 6.49 and
Theorem 6.44).
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15. Invariant random perfect
matchings

As in Section 5,(G), the preceding results have applications to problems
in probability theory concerning invariant random perfect matchings in
Cayley graphs.

To start with, we state the following result of Abért, Csoka, Lippner
and Terpai, see [CL, 1.2]:

Theorem 15.1 ([CL, 1.2]). For every infinite marked group (I',.S), the graph
Cay (I, S) admits a perfect matching.

Actually, as it is shown in [CL], this holds for any infinite, bounded
degree, connected, vertex transitive graph.

Remark 15.2. It is not hard to show that for any infinite marked group
(T, S), if there is @ € FR(T, X, y1) with m,(G(S,a)) = 1, then Cay(T,5)
admits a perfect matching. To see this, note that by a simple compactness
argument it is enough to show that any finite subset I’ C I' is contained in
X, for some matching M of Cay(I', S). Now let M, be a Borel matching
of G(S,a) such that if X,, = X, then u(X,,) > 1 —27". Thenif Y,, =
N> Xn, wehave that Yy C Y, CY,... and p(Y,,) — 1. PutY =, Yy,
so that (YY) = 1, and thus there is an invariant under a Borel set Z C Y
with u(Z) = 1. If x € Z, then for some m and all v € F, we have that
a(y,x) € Y, so, using the freeness of a, we conclude that there is some
M as above. In particular, this shows that Corollary 14.4 implies Theorem
15.1.

We next consider the space 2P(T%), where E(T, S) is the set of all edges
of Cay(I', S) (considered as unordered pairs). We view this as the space
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of all subsets of £(I', S). We denote by M (I, S) the nonempty, closed sub-
space of 2P("5) consisting of all perfect matchings. As usual I acts by shift
on M (I, S) and so does Autr g. We can therefore define as before the con-
cept of a I (resp., Autr g)-invariant, random perfect matching Cay (L', S) as a
Borel probability measure on M (I', S) which is invariant under the shift
action. As in Section 5,(G), there is an Autp g-invariant, random perfect
matching iff there is a I'-invariant, random perfect matching. Finally, we
define as in Section 5,(G) the concept of invariant, random perfect match-
ing of Cay(I', S) which is a factor of IID.

The connection of perfect matchings almost everywhere for the graph
G (S, a) and I'-invariant, random perfect matchings of Cay(I', S) that are
factors of a carries over from the case of colorings to that of matchings,
mutatis mutandis. Thus we have the following corollary of Theorems 14.3
and 14.4:

Corollary 15.3. Let (', S) be an infinite marked group. Then Cay (I, S) admits
a I-invariant, random perfect matching.

Moreover, if I is not amenable, then Cay (I', S) admits a I'-invariant, random
perfect matching which is a factor of IID.

It is clear from the discussion following Corollary 14.4 that for I' = Z,
S = {+£1}, Cay(I', S) does not admit a ['-invariant, random perfect match-
ing which is a factor of IID, while the Cayley graph of Z" does, when n > 2.
It is unknown for which infinite amenable (I", S) there is a I-invariant, ran-
dom perfect matching of Cay(I', S) which is a factor of IID.



16. Paradoxical decompositions
and matchings

Suppose a: I' x X — X is an action of a group I' on a set X. Then two
sets A, B C X are said to be a-equidecomposable if there is a partition of A
into finitely many sets {4, ..., A,} and group elements o, ..., a, € I' so
that the sets o - A; are disjoint, and B = a; - A; U... U a, - A,. It is easy
to see that equidecomposability is an equivalence relation. The action a
is said to have a paradoxical decomposition if X can be partitioned into two
sets {A, B} so that A and B are each a-equidecomposable with X.

Leta: I'x X — X be a Borel action of a countable group I' on a standard
Borel space X. Given a finite symmetric set S C I' and two Borel sets
A, B C X, we can form the Borel graph

G(S,a,A,B) = ({0} x AU{1} x B,G(S,a,A, B))
where
(1,2)G(S,a, A, B)(j,y) < i#jANIy€S(y-z=y).

It is easy to see that A and B are a-equidecomposable using group ele-
ments from S if and only if G(5, a, A, B) has a perfect matching.

Similarly, if a is as above, to each finite set S C I" we can form a Borel
graph G,(S, a) which has a perfect matching if and only if @ has a para-
doxical decomposition using group elements from S. Let o’ be the action
of Z/37Z x I" on three copies {0, 1,2} x X of X via d'((n,v), ({,x)) = (n+1
(mod 3),a(vy,x)). Then a has a paradoxical decomposition if and only if
{0} x X is a’-equidecomposable with {1,2} x X. Hence, we define

G,(S,a) = G({1,2} x S,d’, {0} x X, {1,2} x X).
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The relationship we have described above between paradoxical de-
compositions and perfect matchings gives a standard way of proving Tarski’s
theorem that the left translation action of a nonamenable countable group
has a paradoxical decomposition. If I' has no Folner sequence, there is a
finite symmetric set S C I' such that for every finite set ' C I', |[SF| > 2|F|
(see [CC, Theorem 4.9.2]). Hence, the graph G, (S, a) satisfies the require-
ment of Hall’s matching theorem.

We can also use this connection between matchings and paradoxical
decompositions to give interesting examples of Borel graphs that have no
Borel perfect matchings. Suppose (X, ;1) is a standard measure space, I' is a
countable group, and S is a finite symmetric subset of I'. Leta: I'x X — X
be a Borel p-measure preserving action of I' on X. Then there can be no
paradoxical decomposition of X into y-measurable sets since this would
imply p(X) is both 1 and 2. Hence, for every S C I', there can be no Borel
perfect matching of the graph G, (.5, a) restricted to any p-conull set.

Indeed, by considering the graphs defined above associated to free
measure preserving actions of free groups F,, of increasing rank we have
the following strong refutation of Hall’s matching theorem in the measur-
able context, which is an interesting contrast to Theorem 13.1:

Proposition 16.1. For every n > 1, there is a ji-measure preserving bounded de-
gree Borel graph G = (X, G) on a standard measure space (X, u) with xp(G) =
2 such that for every finite set ' C Y, the set of neighbors Ng(F') of elements
of F satisfies |Ng(F')| > n|F|, but G has no Borel perfect matching ji-almost
everywhere.

In contrast to the fact that a measure preserving action has no measur-
able paradoxical decompositions, we have the following result of Grabowski,
Mathé and Pikhurko for equidecomposability of bounded sets of the same
measure in R" for n > 3. This theorem is proved by applying Lyons and
Nazarov’s Theorem 13.1 to appropriate graphs of the form G(S5, a, A, B):

Theorem 16.2 ([(GMP1], [GMP3]). Let n > 3 and suppose A, B C R" are
bounded Lebesgue measurable sets of the same measure with nonempty interiors.
Then A and B are equidecomposable by rigid motions using Lebesgue measurable
pieces.

More recently, in every dimension n > 1, Grabowski, Mathé and Pikhurko
have proved the following:
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Theorem 16.3 ([GMP2]). Suppose n > 1, A, B C R" are bounded, non-null,
Lebesgue measurable sets with the same measure, and the upper Minkowski di-
mension of the boundaries of A and B is less than n. Then A and B are equide-
composable by translations using Lebesgue measurable pieces.

This theorem builds on work of Laczkovich [La92] who proved its ana-
logue for equidecompositions constructed using the Axiom of Choice. As
an application, Theorem 16.3 can be used to show that the Tarski Circle
Squaring Problem can be solved using Lebesgue measurable pieces.

Addendum. Marks and Unger have now obtained in [MU1] a con-
structive solution of the Tarski Circle Squaring Problem (that avoids the
use of the Axiom of Choice) by showing that Theorem 16.3 holds with the
pieces of the equidecomposition being Borel.

In the context of Baire category, Dougherty and Foreman have shown
thatifn > 2and a: F,, x X — X is a free action of a free group of rank n on
a Polish space X by homeomorphisms, then a has a paradoxical decompo-
sition with pieces having the property of Baire [DF]. Dougherty-Foreman
originally used this result to show that the Banach-Tarski paradox can be
performed using pieces with the Baire property, solving a problem of Mar-
czewki from the 1930s. More recently, Marks and Unger have used Theo-
rem 12.2 to generalize Dougherty and Foreman'’s result to all Borel actions
with paradoxical decompositions, as follows:

Theorem 16.4 ([MU, Theorem 1.1]). Suppose a: I' x X — X is an action of
group I' on a Polish space X, and for each y € T, the function x — ~ - = is Borel.
Then if a has a paradoxical decomposition, then a has a paradoxical decomposition
using pieces with the Baire property.

Marks and Unger have also used this result to give a Baire category
solution to the dynamical von Neumann-Day problem [MU, Theorem 1.2].

Wehrung [Weh] has shown that there is no paradoxical decomposition
of the action of the group of rotations on the unit sphere in R* using 4
pieces which have the Baire property. However, using the axiom of choice
one can prove there are paradoxical decompositions of the sphere (without
the Baire property) using 4 pieces. Thus, Wehrung’s result can be applied
to show that there are Borel graphs of the form G, (S5, a) that have a per-
fect matching, but no perfect matching generically. This also shows that a
certain amplification of pieces needed in the proof of Marks and Unger’s
theorem is necessary.
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To conclude this section, we provide another proof of Dougherty and
Foreman'’s theorem on the existence of Baire measurable paradoxical de-
compositions of actions of IF,,. Our argument is inspired by the proof of
Theorem 12.1 of Conley and Miller that acyclic locally finite Borel graphs
of degree > 3 have Borel perfect matchings generically. The framework
we use to prove the theorem is quite general and we obtain a few other
corollaries.

We begin with an abstract lemma. If X and Y are Polish and G =
(X, G) is a Borel graph on X, then we let F¢(X,Y) be the standard Borel
space of finite partial functions from X to Y with G-connected domains.
For B C Fg(X,Y), let Pg(X,Y) be the set of partial functions f from X
to Y such for every connected component C' of G| dom(f), C is finite and
flC € B.

Lemma 16.5. Suppose X is Polish, G = (X, G) is a locally finite Borel graph, Y
is countable, and B C Fg(X,Y') is Borel. Suppose also that for all g € Pp(X,Y)
and x € X, there is a extension g’ € Pp(X,Y) of g with x € dom(g’). Then there
is an increasing sequence of partial Borel functions fo C f1 C ... € Pp(X,Y)
such that dom(J, f;) is an Eg-invariant Borel comeager set.

Proof. Let (T),)nen be a set of Borel involutions whose graphs union to Eg,
and fix a countable basis (U,,)men of open subsets of X. Let gy be the
empty function. Now, given g¢;, we construct g;;; as follows. Let Z; be the
set of C' € [Eg]<* such that 3p € B with dom(p) = C, g; Up € Pp(X,Y),
and C' is a connected component of G|dom(g; U p). Note that Z; is Borel
and every x € X is in some set in Z; by assumption. By Proposition 4.10,
there is a Borel N-coloring ¢ of the intersection graph on [E¢]<*. Hence
we can partition Z; into countably many Borel sets Z, ; = {C € Z; : c¢({x :
dg(z,C) < 1}) = j}, where if C,C" are distinct elements of Z; ;, then no
two elements of C' and C’ are adjacent. Let (n, m) be the ith pair of natural
numbers. Then there must be some % such that 7,,(|J{C: C € Z, }) is non-
meager in U,,. Now since {(C,p) € Z;, x Fa(X,Y) : dom(p) = C & Vz €
dom(p) Ndom(g;)(p(z) = ¢;(z))} is Borel, by applying Lusin-Novikov uni-
formization (see [K95, 18.10]), we can find a Borel g;.; € Pp(X,Y’) extend-
ing g; whose domain is dom(g;) U {C: C € Z;;}.

To finish, note that 7}, (dom(l J, ¢;)) is comeager, for every n, since it is
nonmeager in every basic open set U,,, by construction. Hence, dom(|J; ¢;)
contains a Borel G-invariant comeager Borel set, namely (), 7},(dom(lJ, ¢:))-
Our desired functions f; then are the restrictions of the g; to this set. [
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We now use this lemma to prove the following.

Lemma 16.6. Suppose G = (X, G) is a locally finite acyclic Borel graph, in
which every vertex has degree > 3. Then there exists a partial Borel function
f C G on X with no infinite forward orbits, such that ran(f) is an Eg-invariant
comeager set, and for all y € ran(f), we have |f~(y)| > | degg(y) — 2|.

Proof. Let (T,)nen be a countable set of Borel involutions such that G =
G (1,), and where Tj,(z) = z for all . Given a partial function p from X to
N, we can associate to it the function p where if p(z) = n, then p(z) = T, (z).
We will use Lemma 16.5 to obtain a set of partial functions f; from X to
N. Setting h = J, f;, our desired function f will be defined by setting
f(x) = h(x),if h(z) # z, and undefined otherwise.

We will apply Lemma 16.5 to the graph G’ = (X, G’) where zG'y if
0 < dg(z,y) < 2. We define the set B C Fg/(X,N) to be the set of p €
Fe' (X, Y) such that

(i) For every x € dom(p), there is an m such that p" ' (z) = p™(x). That
is, the forward orbit of each z € dom(p) under p eventually reaches
some y with p(y) = v.

(ii) Ifz € X has atleast 2 G-neighbors (note, not G'-neighbors) in dom(p),
then z € dom(p) and |[p~!(z)| > | degg(z) — 2|.

Of course, (i) ensures that the f we construct will have no infinite forward
orbits, and (ii) is to satisfy the requirement |f~*(y)| > |degg(y) — 2| for
y € ran(f).

To apply Lemma 16.5 it remains to show that for every g € Pp(X,N)
and z € X, there is an extension ¢’ € Pg(X,N) of g with z € dom(¢'). To
see this, set go = g and Ay = {z}. Now, inductively, given A;, let B, be the
set of points x neighboring an element of A4; that are not in dom(g;). Since
G is acyclic, inductively, each point # € B, must have a unique element
y € A; as a neighbor. Define g;11 O g; so that §;11(z) = y for all such «
and y. Now let A, be the set of x € B;;; such that x has 2 neighbors in
dom(g;). It is easy to see that all elements of B; used in this construction
come from the same finite connected component of G’ as = does. Hence,
there must be a stage i where A; = () and setting ¢’ = g¢; gives the desired
function. [

We can now conclude with the Dougherty-Foreman result.



118 16. Paradoxical decompositions and matchings

Corollary 16.7 ([DF]). Supposen > 2, a: F,, x X — X is a free Borel action of
IF,, on a Polish space X. Then a has a paradoxical decomposition using sets with
the property of Baire.

Proof. Let S = {~i',..., 7'}, where {71,...,7,} is a free set of generators
for F,,. The graph G(S,a) = (X, Q) is an acyclic Borel graph everywhere
of degree > 4. Let f be as in Lemma 16.6 for this graph and set A =
ran(f). It suffices to construct injective Borel functions g,h: A — A such
that g, h C G(S,a)|A and A is the disjoint union of ran(g) and ran(h), since
such functions are in 1-1 correspondence with pairs of injective functions
with paradoxical decompositions of a using group elements from S.

Let Ag = {x € A: 2 ¢ dom(f)}. Given A;, let A;,1 ={x € A: f(z) €
A;}. Since f has no infinite forward orbits, | J, A; = A. Fix a Borel linear
ordering of X. We construct g and h in countably many steps. At step i we
define g and h on A;. For each z € A4, if x € dom(f), y = f(x) is not yet in
ran(g) or ran(h), and z is the least element in f~!(y), then define g(z) = y.
Otherwise, f~!(x) contains at least two different elements in A;,;. Define
g(z) to be the least element of f~!(x) and h(z) to be the greatest element
of f~(x). O

Moreover Dougherty and Foreman discuss in [DF] some variants of the
Banach-Tarski paradox involving disjoint open subsets of the unit sphere
which can be rearranged with rigid motions so that their closures have
“paradoxical” properties. It is possible to also prove these results using
the above technique by paying careful attention to the Borel complexity of
the sets we have used above.

We now note that the technique we have used above to prove Corol-
lary 16.7 can also be used to prove several other results. For example,
a similar argument can be used to prove Theorem 12.1 as corollary of
Lemma 16.6; given f as in Lemma 16.6, and A; as in the above proof, in-
ductively define a Borel perfect matching of G|A in countably many steps
by matching = € A; to the least element of f~'(z) if z is not yet in an edge
in the matching. Similarly, from Lemma 16.6 one can also quickly prove
the theorem that every locally finite acyclic Borel graph has a Baire mea-
surable 3-coloring, since each element of A;,; has at most 2 neighbors in
Ui<; 4;. This corresponds to the acyclic case of Theorem 5.6.

Finally, we note that Lemma 16.6 also yields a proof of Theorem 6.17,
by once again coloring all edges adjacent to elements of A; at step ¢ as
above.
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