
Errata: “Uniformity, Universality, and Computability Theory”.
The proof of Theorem 3.6 contains an error where a case in the argument
was omitted. In this errata, we explain this error, and give a correct proof
of Theorem 3.6.

In addition, there are two other minor errors in the paper which can be
remedied as follows:

• In the paragraph preceding Theorem 4.5, the paper says that the
isomorphism relation on the set contractible simplicial complexes of
dimension ≤ n is Borel bireducible to the universal countable Borel
equivalence relation structurable by contractible simplicial complexes
of dimension ≤ n. This is not the case (for examples, the isomor-
phism relation on locally finite trees is Borel bireducible to E∞).
The paper should instead say that the universal structurable Borel
equivalence relation for the class of locally finite contractible sim-
plicial complexes of dimension ≤ n is Borel bireducible with the
isomorphism relation for rigid locally finite contractible simplicial
complexes of dimension ≤ n.
• In the proof of Theorem 3.3, the function gi is never defined. It

should be defined by gi(x) = γi · x, where γi is the ith generator
of Fω. In addition, the definition given of f is not correct. The
definition should be that f(x)(i) = ci(x) if ci(x) ∈ {0, 1}. Otherwise
if ci(x) = 2, then

f(x)(i) =

{
1− ci(gi(x)) if ci(g

−1
i (x)) = ci(gi(x))

ci(gi(x)) otherwise.

To finish the proof of Theorem 3.3 after this definition, applying
Theorem 3.2 yields an x so that f(x)(i) = f(gi(x))(i) for all i. From
this, it follows that ci(x) = 2 for all i.
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pointing out the error in Theorem 3.6 described below and for giving feed-
back on this errata. The author is also grateful to Alekos Kechris and Yann
Pequignot for pointing out the two other errors described above.

Fixing the error in Theorem 3.6

In the remainder of this note, we give a correct proof of Theorem 3.6.
We begin the argument by noting that while the argument works fine with
Lemma 3.5 as is, it is perhaps more logical to alter it as follows:

Lemma 3.5. Suppose that X is a standard Borel space, g0, g1 : X → X are
partial Borel injections, and µ is a Borel probability measure on X. Then
there is a µ-conull Borel set A and two Borel functions c0, c1 : A → 2 such
that for all x ∈ X, if x ∈ dom(gi) for all i ∈ {0, 1}, and gi(x) 6= x for all
i ∈ {0, 1}, then there exists some j ∈ {0, 1} so that cj(x) 6= cj(gj(x)).

Proof. By the proof of Lemma 3.5 in the paper. �
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Now we prove Theorem 3.6. Note that the set Z in Theorem 3.6 is used
only for the proof of Theorem 3.9, and is not required to prove Corollary
3.1. If the reader is interested only in Corollary 3.1, they may safely set
Z = ∅.
Theorem 3.6. Suppose Z is a countable set (which is possibly empty)
which is disjoint from F2×ω, and G is a countable group of permutations of
the set (F2 × ω) t Z. Suppose also that for every δ ∈ F2, there exists some
ρδ ∈ G so that ρδ((γ, n)) = (δγ, n) for every (γ, n) ∈ F2 × ω. Then

(1) The permutation action of G on 2F2×ωtZ generates a measure uni-
versal countable Borel equivalence relation.

(2) The permutation action of G on 3F2×ωtZ generates a uniformly uni-
versal countable Borel equivalence relation.

Proof. Throughout we will let Y ∈ {2, 3}. Our construction for parts (1)
and (2) will coincide until the very end when we split into cases.

Let E∞ be a universal countable Borel equivalence relation generated by
an action of F2 on a standard Borel space X. If f : X → Y ω is a function,
then define f̂ : X → Y F2×ωtZ by

f̂(x)((γ, n)) = f(γ−1 · x)(n)

for (γ, n) ∈ F2 × ω, and f̂(x)(z) = 0 for all z ∈ Z.

Note that if x, y ∈ X and δ · x = y, then ρδ · f̂(x) = f̂(y), since

ρδ · f̂(x)((γ, n)) = f̂(x)(ρ−1δ ((γ, n))) = f̂(x)((δ−1γ, n))

= f(γ−1 · δ · x)(n) = f̂(δ · x)((γ, n)) = f̂(y)((γ, n))

So given any Borel f , the associated f̂ is a Borel homomorphism from E∞
to the orbit equivalence relation of the permutation action of G on Y F2×ωtZ .

Precisely, to prove (2) we will define a Borel injection f : X → 3F2×ωtZ

so that the corresponding f̂ becomes our desired Borel reduction. To prove
(1) we will show that for every Borel probability measure µ on X, there is a

µ-conull Borel set A ⊆ X and a Borel injection f : A→ 2F2×ωtZ so that f̂ is
a Borel reduction of E∞ � A to orbit equivalence relation of the permutation
action of G on 2F2×ωtZ .

Say that ρ ∈ G is:

• Type I if there are infinitely many n such that ρ−1((1, n)) ∈ Z.
• Type II if ρ is not type I and for every k, there exists n,m > k with
n 6= m such that ρ−1((1, n)) ∈ F2 × {m}
• Type III if it is not type I or II, and there is some m so that there

are infinitely many n such that ρ−1((1, n)) ∈ F2 × {m}.
• Type IV if it is not type I, II, or III. Hence, for all but finitely many
n, ρ−1((1, n)) ∈ F2 × {n}.

For each ρ ∈ G that is type III, fix some mρ such that there are infinitely
many n such that ρ−1((1, n)) ∈ F2 × {mρ}. Then say that n witnesses ρ
is type III if ρ−1((1, n)) ∈ F2 × {mρ}.
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The rough idea of our proof is as follows. We will construct f in countably
many steps. At each step, we will have some set S ⊆ ω and we will define
f(x)(n) for all x ∈ X and n ∈ S. Our task is to ensure that for all ρ,

either ρ · f̂(x) /∈ ran(f̂), or ρ · f̂(x) = f̂(y) for some y such that y E∞ x.
It will be very easy to diagonalize against ρ that are type I or II so that
ρ · f̂(x) /∈ ran(f). For ρ that are type III or IV, the argument is more
complicated. For these ρ we first encode enough information into f so that
for every x ∈ X, there is a unique y = gρ(x) such that either ρ·f̂(x) /∈ ran(f̂)

or ρ · f̂(x) = f̂(y). If it is not the case that y E∞ x, we then diagonalize to

ensure that ρ · f̂(x) 6= f̂(y). The most complicated case is when ρ is type
IV. In this case the diagonalization requires some ideas from the theory of
Borel graph colorings.

The error in the published version of the proof of this theorem essentially
amounts to forgetting about type III permutations.

Let {S0, S1, S2, S3} be a partition of ω so that S2 and S3 are infinite and
for every ρ ∈ G,

• If ρ is type I, there is some n ∈ S1 such that ρ−1((1, n)) ∈ Z.
• If ρ is type II, there is some n ∈ S1 such that ρ−1((1, n)) ∈ F2×{m}

for some m ∈ S0.
• if ρ is type III, then there are infinitely many n ∈ S2 witnessing ρ is

type III and infinitely many n ∈ S3 witnessing that ρ is type III.

Such a partition can clearly be constructed inductively.
Our first part of the definition of f will be that for every x ∈ X,

(1) f(x)(n) = 0 ∧ f(x)(m) = 1 for every n ∈ S0, and m ∈ S1.

Claim 1. If f is any function satisfying Equation 1 and ρ is type I or II,
then for all x ∈ X, ρ · f̂(x) /∈ ran(f̂)

Proof of Claim. If ρ is type I, there is some n ∈ S1 such that ρ−1((1, n)) = z

for some z ∈ Z. Hence, ρ · f̂(x)((1, n)) = f̂(x)(ρ−1((1, n))) = f̂(x)(z) = 0.

But for all y ∈ X, f̂(y)((1, n)) = 1 since n ∈ S1. So ρ · f̂(x) /∈ ran(f).
Similarly, if ρ is type II, there is some n ∈ S1 such that ρ−1((1, n)) =

(γ,m) for somem ∈ S0 and γ ∈ F2. Hence, ρ·f̂(x)((1, n)) = f̂(x)(ρ−1((1, n))) =

f̂(x)(γ,m) = 0, since m ∈ S0. But f̂(y)((1, n)) = 1 for all y ∈ X since

n ∈ S1. So ρ · f̂(x) /∈ ran(f). �

As a consequence of Claim 1, if ρ · f̂(x) = f̂(y) for some y, then it must
be that both ρ and ρ−1 are type III or type IV.

Let ρ0, ρ1, . . . enumerate the group elements that are type III or IV and
whose inverses are type III or IV. Let S2,0, S2,1, . . . be disjoint infinite subsets
of S2 so that

• if ρi is type III, then every n ∈ S2,i witnesses that ρi is type III

• if ρi is type IV, then for every n ∈ S2,i, we have ρ−1i ((1, n)) ∈
F2 × {n}.
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Say that a set S ⊆ ω is good if for every ρ that is type III, there are
infinitely many n ∈ S such that ρ−1((1, n)) ∈ F2×{mρ}. So by the definition
of the partition {S0, S1, S2, S3}, S2 and S3 must be good. We can construct
such sets S2,0, S2,1, . . . since S2 is good, and any good set can be partitioned
into two good subsets.

For each i, let hi be a Borel injection from X → 2S2,i , and define

(2) f(x)(n) = hi(x)(n) for every n ∈ S2,i
Next, let S′3,0, S3,0, S

′
3,1, S3,1, . . . be disjoint subsets of S3 so that

• If ρi or ρ−1i respectively are type III, then S′3,i contains mρi or mρ−1
i

respectively if they are not contained in S0∪S1∪S2∪
⋃
j<i S3,i∪S′3,i.

• If ρi is type III, then S3,i contains some n such that n witnesses ρi
is type III.
• If ρi is type IV, then S3,i contains two elements, and for every n ∈ S3,i

we have ρ−1i ((1, n)) ∈ F2 × {n}.
Such sets S′3,0, S3,0, S

′
3,1, S3,1, . . . can be constructed since S3 is good, and

any good set can be partitioned into two good subsets.
So that f is total, define

f(x)(n) = 0 for n ∈ S2 \
⋃
i

S2,i and n ∈ S3 \
⋃
i

S3,i ∪ S′3,i.

We will finish the remainder of the construction in countably many steps.
At step i, for all x ∈ X we will define f(x)(n) for n ∈ S3,i and n ∈ S′3,i.

To begin, for all x ∈ X, let

(3) f(x)(n) = 0 for n ∈ S′3,i.

Claim 2. Suppose ρ ∈ {ρi, ρ−1i }. Then there is a fixed partial Borel function
gρ : X → X so that for any Borel function f satisfying Equation 3 and the

constraints on f imposed prior to step i of the construction, if ρ·f̂(x) = f̂(y),
then y = gρ(x).

Proof of Claim. Suppose first that ρ is type III. Let ρ = ρj . By Equation 3
and the definition of S′3,i, f(x)(mρ) has already been defined for every x ∈ X.

Thus, for every n ∈ S2,j , we have ρ · f̂(x)((1, n)) = f̂(x)(ρ−1((1, n))) =

f̂(x)((γ,mρ)) = f(γ−1 ·x)(mρ) has already been defined. Thus, if ρ · f̂(x) =

f̂(y) for some y, since f̂(y)((1, n)) = f(y)(n) = hj(y)(n) for n ∈ S2,j and hj
is an injection, there is at most one y such that it could be the case that
ρ · f̂(x) = f̂(y). Let gρ : X → X send x to this unique y if it exists. Precisely,

gρ(x) = h−1j (n 7→ ρ · f̂(x)((1, n))).
Second, suppose ρ is type IV. Let ρ = ρj . By Equation 2, for n ∈ S2,j , we

have (ρ·f̂)(x)((1, n)) = f(γ−1 ·x)(n) for some γ ∈ F2. Thus, (ρ·f̂)(x)((1, n))
has already been defined in the construction. Hence, there can be at most
one y such that (ρ · f̂)(x)((1, n)) = f̂(y)((1, n)) for all n ∈ S2,j , since hj is
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an injection. Let gρ(x) be this unique y if it exists. Precisely, let gρ(x) =

h−1j (n 7→ (ρ · f̂)(x)((1, n))). �

Fix such functions gρi and gρ−1
i

. Let gi : X → X be the partial Borel

function where gi(x) = y if gρi(x) = y and gρ−1
i

(y) = x. Then gi is an

injection. To finish the proof, it will suffice to finish the construction of f
to show that either gi(x) E∞ x or ρi · f̂(x) 6= f̂(gi(x))

Continuing our construction at step i, suppose first that ρi is type III. Fix
ni ∈ S3,i, so by the definition of S3,i, we have that ni witnesses that ρi is type

III. Let ρ−1i ((1, ni)) = (γi,mρi). Recall that ρi ·f̂(x)((1, n)) = f(γ−1i ·x)(mρi)
which has already been defined by Equation 3. We want to ensure that
ρi · f̂(x)((1, ni)) 6= f̂(gi(x))((1, ni)) = f(gi(x))(ni). So for all x ∈ X define

(4) f(x)(ni) = 1− f(γ−1i · g
−1
i (x))(mρi) if g−1i (x) is defined

and f(x)(ni) = 0 otherwise. Then the following is clear:

Claim 3. If ρi is type III, and f is any Borel function satisfying the con-
straints on f imposed so far in the construction, then for all x, ρi · f̂(x) /∈
ran(f̂). �

Continuing the construction at step i, suppose that ρi is type IV. For each
n ∈ S3,i, let gi,n : X → X be the partial Borel injection gi,n(y) = γ−1n ·g−1i (y)
where γn ∈ F2 is the group element such that ρ−1((1, n)) = (γn, n). Hence,

if gi(x) = y, then ρ · f̂(x) = f̂(y) would imply

(5) f(y)(n) = f̂(y)((1, n)) = (ρ · f̂(x))((1, n)) = f̂(x)(ρ−1i (1, n))

= f̂(x)((γn, n)) = f(γ−1n · x)(n) = f(gi,n(y))(n)

for every n ∈ S3,i.
We now split into two cases and indicate how to finish the construction

to prove parts (1) and (2) of Theorem 3.5.
We begin with part (1), continuing our construction at step i when ρi is

type IV. Fix a Borel probability measure µ on X. Recall that S3,i has exactly
two elements. By Lemma 3.5, there is a µ-conull Borel set Ai ⊆ X and two
Borel functions ci,n : Ai → 2 for n ∈ S3,i such that that for every y ∈ Ai,
there is some n ∈ S3,i such that either gi,n(y) = y, gi,n(y) is undefined, or
ci,n(y) 6= ci,n(gi,n(y)) We finish our definition of f by letting

(6) f(y)(n) = ci,n(y) for n ∈ S3,i
Then

Claim 4. For x, y ∈ Ai, if ρi is type IV, and ρi · ˆf(x) = ˆf(y), then x E∞ y.

Proof of Claim. By our definition of gi, we must have y = gi(x), and so
g−1i (y) is defined and hence gi,n(y) is also defined for all n ∈ S3,i. If there
is some n such that gi,n(y) = y, then x E∞ y by the definition of gi,n.
Otherwise, gi,n(y) 6= y for n ∈ S3,i. Hence, there is some n ∈ S3,i such



6

that ci,n(y) 6= ci,n(gi,n(y)) and hence f(y)(n) 6= f(gi,n(y))(n) which implies

ρi · f̂(x) 6= f̂(y) by Equation 5. �

To finish the proof of part (1) of Theorem 3.5, let A =
⋂
Ai. Since each

Ai is conull, A is conull, and combining Claims 1, 3, and 4 proves that f̂ is
a Borel reduction of E∞ � A to the permutation action of G on 2F2×ωtZ .

Now we show how to prove (2) in Theorem 3.5. For each n ∈ S3,i,
the function gi,n generates a Borel graph on X of degree at most 2. Let
ci,n : X → 3 be a Borel 3-coloring of this graph by [Proposition 4.6, KST],
and define

(7) f(y)(n) = ci,n(y) for all n ∈ S3,i.
The following claim has an identical proof to that of Claim 4.

Claim 5. For all x, y ∈ X, if ρi is type IV and ρi · ˆf(x) = ˆf(y), then
x E∞ y. �

�


