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In [2] we show that for every n, there exists an acyclic n-regular Borel graph with Borel chromatic number
equal to n + 1. Our proof in that paper follows from a very general lemma which we use to prove a number
of other results. In this short note, we give an easier proof of the aforementioned theorem by streamlining our
argument down to only what is needed for this single application.

Theorem. For every n, there is an acyclic n-regular Borel graph with no Borel n-coloring.

Proof. Fix an n. Now consider the group Z∗n
2 = 〈γ0, γ1, . . . , γn−1|γ2i = e〉. The Caley graph of Z∗n

2 (with respect

to the generators γ1, γ2, . . . , γn) is an n-regular graph. Let Z∗n
2 act by left shift on the space ωZ∗n

2 . Let X be
the set of x ∈ ωZ∗n

2 such that for all α ∈ Z∗n
2 and all i < n, we have x(α) 6= x(αγi). Note that γi · x 6= x for all

x ∈ X. Now consider the graph G on X where there is an edge between x, y ∈ X if γi · x = y for some i < n.
Note that G is not acyclic.

We will begin by showing that G does not have a Borel n-coloring. To finish, we will show this is true even
of the restriction of this graph to the free part of the action of Z∗n

2 on X. Let c : X → n be a Borel function.
We will find an x and an i < n such that c(x) = i = c(γi · x).

For each i ∈ n and each j ∈ ω, consider the following game Gi,j for building an x ∈ X where x(e) = j. On
player I’s nth turn, they must define x on the set of reduced words of length n beginning with γi. On player’s
II’s nth turn, they must define x on the set of reduced words of length n that do not begin with γi. Both players
must ensure that x(g) 6= x(gγi) for all g ∈ Z∗n

2 and i < n. Finally, player I wins the game if and only c(x) 6= i.
Now it is clear that given any j ∈ ω, player I can not win the games Gi,j for all i ∈ n; we could use winning

strategies for player I in all of these games to produce an x that is simultaneously an outcome of all these
strategies, and hence c(x) 6= i for all i ∈ n. Thus, for each j, there must be an i ∈ n such that player II wins
Gi,j . By the pigeonhole principle, there must therefore be an i ∈ n and distinct j0, j1 ∈ ω such that player II
wins Gi,j0 and Gi,j1 . In the obvious way, we can use these two winning strategies for player II to produce an x
such that x(e) = j0, x(γi) = j1, x is an outcome of player II’s winning strategy in Gi,j0 and γi ·x is an outcome
of player II’s winning strategy in Gi,j1 . We have therefore found an x such that c(x) = i = c(γi · x).

Let Y ⊆ X be the free part of the shift action of Z∗n
2 on X. Clearly G � Y is n-regular and acyclic. We

will now show that there is a Borel function c∗ : X \ Y → n such that for all x and i ∈ n, either c∗(x) 6= i, or
c∗(γi · x) 6= i. This will complete our proof; given any Borel function d : Y → n, let c = c∗ ∪ d, and apply the
argument above to conclude d is not a Borel n-coloring of G � Y .

Our construction of c∗ will be a special case of [2, Lemma 2.3]. Consider the sequences 〈x0, x1, . . . , xn+1〉
of elements of X \ Y such that x0 = xn+1 and xi 6= xj for i < j ≤ n, and there exists an associated sequence
〈γk0

, γk1
, . . . , γkn

〉 such that γki
· xi = xi+1 and γki

6= γki+1
. Such sequences witness that the action of Z∗n

2 is
not free on X \ Y . By [1, Lemma 7.3], let A be a Borel set of such sequences 〈x0, x1, . . . , xn+1〉 with associated
〈γk0 , γk1 , γkn〉 that are pairwise disjoint, and so that A contains at least one element from each equivalence class
of the shift action of Z∗n

2 on X \ Y . For the elements of each such sequence, we define c∗(xi) = ki. Now note
that if c∗(x) is defined and c∗(x) = i, then c∗(γi · x) is also defined and c∗(γi · x 6= i).

We will finish the construction of c∗ in ω many steps while keeping this previous sentence true at every step
of the remainder of our construction. Let i0, i1, . . . be a sequence of elements of n containing each number in n
infinitely many times. At step m, for all x ∈ X \ Y , if c∗(x) is defined and c∗(γim · x) is not defined, then set
c∗(γim · x) = im. �
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