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Algorithmic randormness

Glossary

- Martin-Lof tests are a versatile framework to define individual random
elements in a set.

. Premeasure p : 2% — [0,00)
Fxamples : A(o) = 271° %5(6) = 275l

. ML test: c.e. set W such that for all i,

D, plo) <2

(o,n)eW

- X € 2%is p-random if there does not exist a test W such that

xic() U N

n (on)ew



Algorithmic randormness

Glossary

- ML-random = A-random
. dimy(X) = inf{s € Q": X not #*-random}
- The framework can be adapted in order to work relative to oracles.

. n-randomness: random relative to Q(”_l).



Heldelberg

2002-2003

. Extracting randomness: Can every real of effective dimension > O
compute a ML-random real?

. Levin [1970]: If X is random for a computable measure and not
computable, it is Turing equivalent to a ML-random sequence.

- Which sequences are random with respect to some (computable)
measure?
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Berkeley
2004

. Turn this around: If X is Turing equivalent to a ML-random, then one
can use it to push forward Lebesgue measure and make X random
without making X an atom of the push-forward measure.

. Kucera-Gacs: Every real >4 @"is Turing equivalent to a ML-random.

. Posner-Robinson: If A is not recursive, then there exists a G such that

ADG>, G

. The push-forward needed an interesting lowness result for H(l)
-classes (of measures).
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Berkeley - Argentina
2004

- THM: For any real X € 2%, the following are equivalent:

(i) There exists a probability measure u such that X is not a u-atom
and X is y-random

(i) X is not computable.



Argentina
2A010%

- In general, u will still have atoms away from X.

- Can this be avoided?

. Using the settling function of the halting problem, one can construct

areal =, @' that is not random with respect to any non-atomic
measure.

- This lead to the definition of
NCR = {X € 2“: X not random for any continuous measure }
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[n the meantime. .

. NCRisa H% set without a perfect subset.
. This putsitin L.
. |s it countable?

. Kjos-Hanssen and Montalban: Every member of a countable H(l)
classis in NCR.

. This vields examples all the way through HYP.



SlNgapore
2009

- Characterization of randomness with respect to some continuous
measure: being truth-table equivalent to a ML-random real.

- Woodin: If X is not hyperarithmetic, then there is a Z such that
X=27Z

- Hence NCR C HYP and NCR is co-final in the hyperarithmetic
Turing degrees.



Singapore-Berkeley-Heldelberg

2005-20006

.+ Climbing the randomness ladder: What about n-randomness?

- Continuous randomness can be “pushed” via Turing reductions but
reduces the level of randomness.

- We can use Borel determinacy to get a cone of continuous
randomness:

\X:dZ,R X =, Z@® R, Ris (n + 3)-random relative to Z}
Is Turing invariant and co-final in the Turing degrees.

» |t follows that the complement of NCR, contains a Turing cone.



Singapore-Berkeley-Heldelberg

- A “higher” analogue of Posner-Robinson: Kumabe-Slaman forcing.
. Py least ordinal such that Ly F ZFC,,

. LEMMA: Suppose thatn > 0 and X € 2% is not in Lﬂn' Then there
exists a real @ such that Lﬂn[CD] is a model of ZFC,, and every real in

Lﬂn[(I)] is Turing reducible to X ¢ O.

. In particular, X is in the cone above the winning strategy for the
randomness pushing game (relative to @), and hence random for a
continuous measure.



Singapore-Berkeley-Heldelberg

+ THM: For alln > 0, NCR,, is countable.



. Friedman used the models Lﬂ to show that the existence of iterates

of the power set of w is necessary to prove Borel determinacy.

- Could we do something similar to show iterated power sets of w are

necessary to prove the countability of NCR_?
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Benng

20006

. StairMaster technique:
Suppose u is a continuous measure and Y'is yu-n-random, n > 2. If
X<, u" VandX <, YD u, thenX <, p.

. One can use this to show that for any k > 0, if X =, @®, then X is

not 2-random with respect to any continuous measure.

- Using Enderton & Putnam’s bound on uniform limits, one can extend
this to @@

fX =, @), then X is not 3-random with respect to a continuous
measure.



Benng

20006

. How can we extend this all the way through Lﬂn?

. Use Jensen's master codes: canonical countings M, of L, with each M,
definable in a simple way from the sequence of its predecessors (like the
Turing jump).

. Theset {M,,: a < f,} is not countable in Ly .

- We want to apply a Stairmaster argument and show that
{Ma: a < ﬂn} C NCRG(n)

for a computable G.



SelINg

20006

We needed a “non-acceleration” argument similar to the Turing jump
for sequences of master codes.

Since we cannot arithmetically define this sequence, we have to
work with “pseudo”-codes and take the longest well-founded initial
segment.

Fortunately, a non-acceleration property holds for recognition of
well-founded initial segments, too.

This was the final puzzle piecel!
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« THM (R. and Slaman):
There exists a computable function G(n) such that for everyn € w,

ZFC,, ¥ "NCR, is countable



Years go past...

- Writing the paper: Developing the pseudocode machinery; need to
work with m-copies of Jensen’s standard J-structures (J " Al).

+ Let G(N) = (N+2)(3¢ + 6)

» THM: Suppose N > 0, a < py, and forsomen > 0, p; = 1. Then
the canonical copy (X, M) of the standard J-structure (J ., Ay) is

not G(/V)-random with respect to any continuous measure.



Where to go from there..

« [WO variations:
« Other measures

- Vary the notion of randomness



Hausdorff measures

. THM: Suppose X is such that for all n, —log M(X[n) > sn, where M

is Levin's optimal continuous semimeasure. Then X is random with

respect to a probability measure y such that, for some v,

(Vo) [u(o) < y275l] *)

« Frostman’s Lemma:
f A'is a compact subset of 2% with Z°(A) > 0, then there exists o
probability measure u such that supp(u) C A, and such that there
exists a constant ¥ such that (*) holds.



Point to Set

. In the proof of Frostman's Lemma, it is crucial that the y-random real

IS a0 measure-theoretic “representative” of the support of .

- For Hausdorff dimension, this representation takes an even stronger
form.

« THM (Cai & Hartmanis):
Foreach a € [0,1], dimy{ X: dimy(X) =a} = a.

- This is an early version of the “point-to-set” principle (Lutz & Lutz).



Point to Set

- The Cai-Hartmanis phenomenon shows up in other contexts, too.

« THM (Jarnik; Besicovitch):

dimg{x € [0,1]: x has irrationality exponent a} = —
o

. The irrationality exponent of x is the supremum of all é such that
there exist infinitely many rational numbers p/qg with

| x—plgl <q°

- With a suitable rephrasing (introducing Diophantine complexity), this
can be rewritten as an exact analogue of the Cai-Hartmanis result.



Point to Set

- Working hypothesis:

ML-randomness (via Kolmogorov complexity) and Diophantine
randomness are just two of a whole family of randomness notions

exhibiting point-to-set behavior in the sense of Cai-Hartmanis, with
ML-randomness being an extremal point.

- | have been able to confirm this for two kinds of complexity notions:
- normal compressors (introduced by Cilibrasi & Vitanyi)

. abstract complexity measures (introduced by Cotner & R.)



Fourier measures

- One of the most intriguing questions coming out of this line of
Investigation Is:
“Which reals are random with respect to a Fourier measure?”

. A Borel measure u on R is an a-Fourier measure if there exists a
constant ¢ such that for all x € R,

| Z(x)| < c|x|7**,

where [t is the Fourier-Stieltjes transform of .



Fourier measures

. The Fourier dimension of A C R is defined as
dim; A = sup{a: Ja-Fourier u, u(A) = 1}.

+ It always holds that dim; < dimy, but they can be drastically
different.

. For example, dimg(middle-third Cantor set) = O.

» Sets for which dimy = dimy; are called Salem sets.



Fourier measures

« Kaufman showed that the Jarnik-Besicovitch fractal is a Salem set.
« THM (Slaman): The Cai-Hartmanis fractal is a Salem set.

- Conjecture:
Every Cai-Hartmanis set for a reasonably strong complexity measure
IS a Salem set.



