Definability and Randomness - a Travelogue Tedfest 2024

Jan Reimann

Algorithmic randomness Glossary

- Martin-Löf tests are a versatile framework to define individual random elements in a set.
- Premeasure $\rho: 2^{<\omega} \to [0,\infty)$ Examples : $\lambda(\sigma) = 2^{-|\sigma|}$, $\mathscr{H}^{s}(\sigma) = 2^{-s|\sigma|}$
- ML test: c.e. set W such that for all n, $\sum_{\langle \sigma,n\rangle\in W}\rho(\sigma)\leq 2^{-n}$
- $X \in 2^{\omega}$ is ρ -random if there does not exist a test W such that $\{X\} \subseteq \bigcap_{n} \bigcup_{\langle \sigma, n \rangle \in W} N_{\sigma}$

Algorithmic randomness Glossary

- ML-random = λ -random
- $\dim_H(X) = \inf\{s \in \mathbb{Q}^+ : X \text{ not } \mathscr{H}^s \text{-random}\}$
- The framework can be adapted in order to work relative to oracles.
- *n*-randomness: random relative to $\mathcal{Q}^{(n-1)}$.

Heidelberg 2002-2003

- Extracting randomness: Can every real of effective dimension > 0 compute a ML-random real?
- Levin [1970]: If X is random for a computable measure and not computable, it is Turing equivalent to a ML-random sequence.
- Which sequences are random with respect to some (computable) measure?

Heidelberg -> Berkeley, 5780 miles

Berkeley 2004

- Turn this around: If X is Turing equivalent to a ML-random, then one can use it to *push forward* Lebesgue measure and make X random without making X an atom of the push-forward measure.
- Kucera-Gacs: Every real $\geq_T \emptyset'$ is Turing equivalent to a ML-random.
- Posner-Robinson: If A is not recursive, then there exists a G such that $A \oplus G \ge_T G'$.
- The push-forward needed an interesting lowness result for Π^0_1 -classes (of measures).

Berkeley -> Cordoba, 6064 miles

Berkeley - Argentina 2004

• THM: For any real $X \in 2^{\omega}$, the following are equivalent:

(i) There exists a probability measure μ such that X is not a μ -atom and X is μ -random

(ii) X is not computable.

Argentina 2004

- In general, μ will still have atoms away from X.
- Can this be avoided?
- Using the settling function of the halting problem, one can construct a real $\equiv_T \emptyset'$ that is not random with respect to any non-atomic measure.
- This lead to the definition of $NCR = \{X \in 2^{\omega} : X \text{ not random for any continuous measure}\}$

Cordoba - Singapore, 10322 miles

In the meantime...

• NCR is a Π_1^1 set without a perfect subset.

- This puts it in *L*.
- Is it countable?
- Kjos-Hanssen and Montalban: Every member of a countable Π^0_1 class is in NCR.
- This yields examples all the way through $\mathrm{HYP}.$

Singapore 2005

- Characterization of randomness with respect to some continuous measure: being truth-table equivalent to a ML-random real.
- Woodin: If X is not hyperarithmetic, then there is a Z such that $X \equiv_{tt(Z)} Z'$.
- Hence $NCR \subseteq HYP$ and NCR is co-final in the hyperarithmetic Turing degrees.

Singapore-Berkeley-Heidelberg 2005-2006

- Climbing the randomness ladder: What about *n*-randomness?
- Continuous randomness can be "pushed" via Turing reductions but reduces the level of randomness.
- We can use Borel determinacy to get a cone of continuous randomness:

{*X*: $\exists Z, R X \equiv_T Z \bigoplus R, R$ is (n + 3)-random relative to *Z*} is Turing invariant and co-final in the Turing degrees.

• It follows that the complement of NCR_n contains a Turing cone.

Singapore-Berkeley-Heidelberg

- A "higher" analogue of Posner-Robinson: Kumabe-Slaman forcing.
- β_n least ordinal such that $L_{\beta_n} \models \mathsf{ZFC}_n^-$
- LEMMA: Suppose that n > 0 and $X \in 2^{\omega}$ is not in L_{β_n} . Then there exists a real Φ such that $L_{\beta_n}[\Phi]$ is a model of ZFC_n^- and every real in $L_{\beta_n}[\Phi]$ is Turing reducible to $X \oplus \Phi$.
- In particular, X is in the cone above the winning strategy for the randomness pushing game (relative to Φ), and hence random for a continuous measure.

Singapore-Berkeley-Heidelberg

• THM: For all n > 0, NCR_n is countable.

- Friedman used the models L_{β_n} to show that the existence of iterates of the power set of ω is necessary to prove Borel determinacy.
- Could we do something similar to show iterated power sets of ω are necessary to prove the countability of NCR_n ?

Theory and Applications of Models of Computation, Third International Conference, TAMC 2006, Beijing, China, May 15-20, 2006

Улаанбаатар

0 0

Singapore-Beijing, 2772 miles

Beijing 2006

• StairMaster technique:

Suppose μ is a continuous measure and Y is μ -n-random, $n \ge 2$. If $X \le_T \mu^{(n-1)}$ and $X \le_T Y \bigoplus \mu$, then $X \le_T \mu$.

- One can use this to show that for any $k \ge 0$, if $X \equiv_T \emptyset^{(k)}$, then X is not 2-random with respect to any continuous measure.
- Using Enderton & Putnam's bound on uniform limits, one can extend this to $\mathcal{O}^{(\omega)}$: If $X \equiv_T \mathcal{O}^{(\omega)}$, then X is not 3-random with respect to a continuous measure.

Beijing 2006

• How can we extend this all the way through L_{β_n} ?

- Use Jensen's master codes: canonical countings M_{α} of L_{α} with each M_{α} definable in a simple way from the sequence of its predecessors (like the Turing jump).
- The set $\{M_{\alpha}: \alpha < \beta_n\}$ is not countable in L_{β_n} .
- We want to apply a Stairmaster argument and show that $\{M_{\alpha}: \alpha < \beta_n\} \subseteq \mathrm{NCR}_{G(n)}$

for a computable G.

Beijing 2006

- We needed a "non-acceleration" argument similar to the Turing jump for sequences of master codes.
- Since we cannot arithmetically define this sequence, we have to work with "pseudo"-codes and take the longest well-founded initial segment.
- Fortunately, a non-acceleration property holds for recognition of well-founded initial segments, too.
- This was the final puzzle piece!

Beijing - Palo Alto, 5897 miles

Palo Alto 2006

• THM (R. and Slaman):

There exists a computable function G(n) such that for every $n \in \omega$,

 $\mathsf{ZFC}_n^- \nvDash \mathsf{"NCR}_{G(n)}$ is countable."

Years go past...

- Writing the paper: Developing the pseudocode machinery; need to work with ω -copies of Jensen's standard J-structures $\langle J_{\rho_{\alpha}^{n}}, A_{\alpha}^{n} \rangle$.
- Let G(N) = (N+2)(3c+6)
- THM: Suppose $N \ge 0$, $\alpha < \beta_N$, and for some n > 0, $\rho_{\alpha}^n = 1$. Then the canonical copy $\langle X, M \rangle$ of the standard J-structure $\langle J_{\rho_{\alpha}^n}, A_{\alpha}^n \rangle$ is not G(N)-random with respect to any continuous measure.

Where to go from there...

- Two variations:
 - Other measures
 - Vary the notion of randomness

Hausdorff measures

• THM: Suppose X is such that for all n, $-\log \tilde{M}(X[_n) \ge sn$, where \tilde{M} is Levin's optimal continuous semimeasure. Then X is random with respect to a probability measure μ such that, for some γ ,

$$(\forall \sigma) \left[\mu(\sigma) \le \gamma 2^{-s|\sigma|} \right] \tag{*}$$

• Frostman's Lemma:

If A is a compact subset of 2^{ω} with $\mathscr{H}^{s}(A) > 0$, then there exists a probability measure μ such that $\operatorname{supp}(\mu) \subseteq A$, and such that there exists a constant γ such that (*) holds.

Point to Set

- In the proof of Frostman's Lemma, it is crucial that the μ -random real is a measure-theoretic "representative" of the support of μ .
- For Hausdorff dimension, this representation takes an even stronger form.
- THM (Cai & Hartmanis): For each $\alpha \in [0,1]$, $\dim_H \{X: \dim_H (X) = \alpha\} = \alpha$.
- This is an early version of the "point-to-set" principle (Lutz & Lutz).

Point to Set

- The Cai-Hartmanis phenomenon shows up in other contexts, too.
- THM (Jarnik; Besicovitch): $\dim_{H} \{x \in [0,1]: x \text{ has irrationality exponent } \alpha\} = \frac{2}{\alpha}$
- The irrationality exponent of x is the supremum of all δ such that there exist infinitely many rational numbers p/q with $|x p/q| < q^{-\delta}$.
- With a suitable rephrasing (introducing *Diophantine complexity*), this can be rewritten as an exact analogue of the Cai-Hartmanis result.

Point to Set

• Working hypothesis:

ML-randomness (via Kolmogorov complexity) and Diophantine randomness are just two of a whole family of randomness notions exhibiting point-to-set behavior in the sense of Cai-Hartmanis, with ML-randomness being an extremal point.

- I have been able to confirm this for two kinds of complexity notions:
 - normal compressors (introduced by Cilibrasi & Vitanyi)
 - abstract complexity measures (introduced by Cotner & R.)

Fourier measures

- One of the most intriguing questions coming out of this line of investigation is: "Which reals are random with respect to a Fourier measure?"
- A Borel measure μ on \mathbb{R} is an α -Fourier measure if there exists a constant c such that for all $x \in \mathbb{R}$,

 $|\widehat{\mu}(x)| \le c |x|^{-\alpha/2},$

where $\widehat{\mu}$ is the Fourier-Stieltjes transform of μ .

Fourier measures

- The Fourier dimension of $A \subseteq \mathbb{R}$ is defined as

 $\dim_F A = \sup\{\alpha \colon \exists \alpha \text{-Fourier } \mu, \mu(A) = 1\}.$

- It always holds that $\dim_F \leq \dim_{H'}$ but they can be drastically different.
- For example, $\dim_F($ middle-third Cantor set) = 0.
- Sets for which $\dim_F = \dim_H$ are called Salem sets.

Fourier measures

- Kaufman showed that the Jarnik-Besicovitch fractal is a Salem set.
- THM (Slaman): The Cai-Hartmanis fractal is a Salem set.

• Conjecture:

Every Cai-Hartmanis set for a reasonably strong complexity measure is a Salem set.