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Glossary

Algorithmic randomness

• Martin-Löf tests are a versatile framework to define individual random 
elements in a set. 

• Premeasure  
Examples :   ,    

• ML test:   c.e. set  such that for all , 
                    

•  is -random if there does not exist a test  such that 
                   

ρ : 2<ω → [0,∞)
λ(σ) = 2−|σ| ℋs(σ) = 2−s|σ|
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Glossary

Algorithmic randomness

• ML-random = -random 

•  

• The framework can be adapted in order to work relative to oracles. 

• -randomness: random relative to .

λ

dimH(X) = inf{s ∈ ℚ+ : X  not  ℋs-random}

n ∅(n−1)



2002-2003

• Extracting randomness: Can every real of effective dimension > 0 
compute a ML-random real? 

• Levin [1970]: If  is random for a computable measure and not 
computable, it is Turing equivalent to a ML-random sequence.  

• Which sequences are random with respect to some (computable) 
measure?

X

Heidelberg



Heidelberg -> Berkeley, 5780 miles



2004

Berkeley

• Turn this around: If  is Turing equivalent to a ML-random, then one 
can use it to push forward Lebesgue measure and make  random 
without making  an atom of the push-forward measure. 

• Kucera-Gacs: Every real  is Turing equivalent to a ML-random. 

• Posner-Robinson: If  is not recursive, then there exists a  such that 
. 

• The push-forward needed an interesting lowness result for 
-classes (of measures).

X
X

X

≥T ∅′ 

A G
A ⊕ G ≥T G′ 

Π0
1



Berkeley -> Cordoba, 6064 miles
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2004

Berkeley - Argentina

• THM: For any real , the following are equivalent: 

(i) There exists a probability measure  such that  is not a -atom 
and  is -random 

(ii)  is not computable.

X ∈ 2ω

μ X μ
X μ

X



2004

Argentina

• In general,  will still have atoms away from . 

• Can this be avoided? 

• Using the settling function of the halting problem, one can construct 
a real  that is not random with respect to any non-atomic 
measure. 

• This lead to the definition of  

μ X

≡T ∅′ 

NCR = {X ∈ 2ω : X not random for any continuous measure}
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In the meantime…

•  is a  set without a perfect subset. 

• This puts it in . 

• Is it countable? 

• Kjos-Hanssen and Montalban: Every member of a countable  

class is in . 

• This yields examples all the way through .
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2005

Singapore

• Characterization of randomness with respect to some continuous 
measure: being truth-table equivalent to a ML-random real.  

• Woodin: If  is not hyperarithmetic, then there is a  such that 
. 

• Hence  and  is co-final in the hyperarithmetic 
Turing degrees.

X Z
X ≡tt(Z) Z′ 

NCR ⊆ HYP NCR



2005-2006

Singapore-Berkeley-Heidelberg

• Climbing the randomness ladder: What about -randomness? 

• Continuous randomness can be “pushed” via Turing reductions but 
reduces the level of randomness. 

• We can use Borel determinacy to get a cone of continuous 
randomness: 
      
is Turing invariant and co-final in the Turing degrees. 

• It follows that the complement of   contains a Turing cone.

n

{X : ∃Z, R X ≡T Z ⊕ R, R is (n + 3)-random relative to Z}

NCRn



Singapore-Berkeley-Heidelberg

• A “higher” analogue of Posner-Robinson: Kumabe-Slaman forcing. 

•  least ordinal such that  

• LEMMA: Suppose that  and  is not in . Then there 

exists a real  such that  is a model of  and every real in 

 is Turing reducible to . 

• In particular,  is in the cone above the winning strategy for the 
randomness pushing game (relative to ), and hence random for a 
continuous measure.

βn Lβn
⊧ 𝖹𝖥𝖢−

n

n > 0 X ∈ 2ω Lβn

Φ Lβn
[Φ] 𝖹𝖥𝖢−

n

Lβn
[Φ] X ⊕ Φ

X
Φ



Singapore-Berkeley-Heidelberg

• THM: For all ,  is countable.n > 0 NCRn



• Friedman used the models  to show that the existence of iterates 

of the power set of  is necessary to prove Borel determinacy. 

• Could we do something similar to show iterated power sets of  are 
necessary to prove the countability of  ?

Lβn

ω

ω
NCRn
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2006

Beijing

• StairMaster technique: 
Suppose  is a continuous measure and  is - -random, . If 

 and , then . 

• One can use this to show that for any , if , then  is 
not -random with respect to any continuous measure. 

• Using Enderton & Putnam’s bound on uniform limits, one can extend 
this to :  
If , then  is not -random with respect to a continuous 
measure.

μ Y μ n n ≥ 2
X ≤T μ(n−1) X ≤T Y ⊕ μ X ≤T μ

k ≥ 0 X ≡T ∅(k) X
2

∅(ω)

X ≡T ∅(ω) X 3



2006

Beijing

• How can we extend this all the way through ? 

• Use Jensen’s master codes: canonical countings  of  with each  
definable in a simple way from the sequence of its predecessors (like the 
Turing jump). 

• The set  is not countable in . 

• We want to apply a Stairmaster argument and show that  
       

for a computable . 

Lβn

Mα Lα Mα

{Mα : α < βn} Lβn

{Mα : α < βn} ⊆ NCRG(n)

G



2006

Beijing

• We needed a “non-acceleration” argument similar to the Turing jump 
for sequences of master codes.  

• Since we cannot arithmetically define this sequence, we have to 
work with “pseudo”-codes and take the longest well-founded initial 
segment. 

• Fortunately, a non-acceleration property holds for recognition of 
well-founded initial segments, too. 

• This was the final puzzle piece!



Beijing - Palo Alto, 5897 miles



2006

Palo Alto



• THM (R. and Slaman):  
There exists a computable function  such that for every , 
 
            

G(n) n ∈ ω

𝖹𝖥𝖢−
n ⊬ '' NCRG(n)  is countable.'' 



Years go past…

• Writing the paper: Developing the pseudocode machinery; need to 
work with -copies of Jensen’s standard J-structures . 

• Let  

• THM:  Suppose , , and for some , . Then 
the canonical copy  of the standard J-structure  is 

not -random with respect to  any continuous measure.

ω ⟨Jρn
α
, An

α⟩

G(N) = (N + 2)(3c + 6)

N ≥ 0 α < βN n > 0 ρn
α = 1

⟨X, M⟩ ⟨Jρn
α
, An

α⟩
G(N)



Where to go from there…

• Two variations: 

• Other measures 

• Vary the notion of randomness



Hausdorff measures

• THM: Suppose  is such that for all , , where  

is Levin’s optimal continuous semimeasure. Then  is random with 
respect to a probability measure  such that, for some , 
 
                                                                            (*) 

• Frostman’s Lemma: 
If A is a compact subset of  with , then there exists a 
probability measure  such that , and such that there 
exists a constant  such that (*) holds.

X n −log M̃(X⌈n) ≥ sn M̃
X

μ γ

(∀σ) [μ(σ) ≤ γ2−s|σ|]

2ω ℋs(A) > 0
μ supp(μ) ⊆ A

γ



Point to Set

• In the proof of Frostman’s Lemma, it is crucial that the -random real 
is a measure-theoretic “representative” of the support of . 

• For Hausdorff dimension, this representation takes an even stronger 
form. 

• THM (Cai & Hartmanis):  
For each , . 

• This is an early version of the “point-to-set” principle (Lutz & Lutz).

μ
μ

α ∈ [0,1] dimH{X : dimH(X) = α} = α



Point to Set

• The Cai-Hartmanis phenomenon shows up in other contexts, too. 

• THM (Jarnik; Besicovitch): 

      

• The irrationality exponent of  is the supremum of all  such that 
there exist infinitely many rational numbers  with 

. 

• With a suitable rephrasing (introducing Diophantine complexity), this 
can be rewritten as an exact analogue of the Cai-Hartmanis result.

dimH{x ∈ [0,1] : x has irrationality exponent α} =
2
α

x δ
p/q

|x − p/q | < q−δ



Point to Set

• Working hypothesis:  
ML-randomness (via Kolmogorov complexity) and Diophantine 
randomness are just two of a whole family of randomness notions 
exhibiting point-to-set behavior in the sense of Cai-Hartmanis, with 
ML-randomness being an extremal point. 

• I have been able to confirm this for two kinds of complexity notions: 

• normal compressors    (introduced by Cilibrasi & Vitanyi) 

• abstract complexity measures    (introduced by Cotner & R.)



Fourier measures

• One of the most intriguing questions coming out of this line of 
investigation is: 
“Which reals are random with respect to a Fourier measure?” 

• A Borel measure  on  is an -Fourier measure if there exists a 
constant  such that for all ,  
 
          , 
 
where  is the Fourier-Stieltjes transform of .

μ ℝ α
c x ∈ ℝ

| ̂μ(x) | ≤ c |x |−α/2

̂μ μ



Fourier measures

• The Fourier dimension of  is defined as  
 
          . 

• It always holds that , but they can be drastically 
different. 

• For example, . 

• Sets for which  are called Salem sets.

A ⊆ ℝ

dimF A = sup{α : ∃α-Fourier μ, μ(A) = 1}

dimF ≤ dimH

dimF(middle-third Cantor set) = 0

dimF = dimH



Fourier measures

• Kaufman showed that the Jarnik-Besicovitch fractal is a Salem set. 

• THM (Slaman): The Cai-Hartmanis fractal is a Salem set. 

• Conjecture: 
Every Cai-Hartmanis set for a reasonably strong complexity measure 
is a Salem set.


