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Abstract. We consider the capability of p-groups of class two and odd prime
exponent. The question of capability is shown to be equivalent to a statement
about vector spaces and linear transformations, and using the equivalence we
give proofs of some old results and several new ones. In particular, we estab-
lish a number of new necessary and new sufficient conditions for capability,
including a sufficient condition based only on the ranks of G/Z(G) and [G,G].
Finally, we characterise the capable groups among the 5-generated groups in
this class.

1. Introduction.

In his landmark paper [12] on the classification of finite p-groups, P. Hall re-
marked:

The question of what conditions a group G must fulfill in order
that it may be the central quotient group of another group H ,
G ∼= H/Z(H), is an interesting one. But while it is easy to write
down a number of necessary conditions, it is not so easy to be sure
that they are sufficient.

Following M. Hall and Senior [11], we make the following definition:

Definition 1.1. A group G is said to be capable if and only if there exists a group
H such that G ∼= H/Z(H).

Capability of groups was first studied by R. Baer in [2], where, as a corollary of
deeper investigations, he characterised the capable groups that are direct sums of
cyclic groups. Capability of groups has received renewed attention in recent years,
thanks to results of Beyl, Felgner, and Schmid [3] characterising the capability of a
group in terms of its epicenter; and more recently to work of Graham Ellis [7] that
describes the epicenter in terms of the nonabelian tensor square of the group.

We will consider here the special case of nilpotent groups of class two and expo-
nent an odd prime p. This case was studied in [13], and also addressed elsewhere
(e.g., Prop. 9 in [7]). As noted in the final paragraphs of [1], currently available
techniques seem insufficient for a characterisation of the capable finite p-groups of
class 2, but a characterisation of the capable finite groups of class 2 and exponent p
seems a more modest and possibly attainable goal. The present work is a contribu-
tion towards achieving that goal. We began to study this situation in [18]; here we
will introduce what I believe is clearer notation as well as a general setting to frame
the discussion. We will also be able to use our methods to extend the necessary

2000 Mathematics Subject Classification. Primary 20D15, Secondary 20F12, 15A04.

1



2 ARTURO MAGIDIN

condition from [13] to include groups that do not satisfy Z(G) = [G,G], and to
provide a short new proof of the sufficient condition from [7]. We will also prove a
sufficient condition which is closer in flavor to the necessary condition of Heineken
and Nikolova.

In the remainder of this section we will give basic definitions and our notational
conventions. In Section 2 we will obtain a necessary and sufficient condition for
the capability of a given group G of class at most two and exponent p in terms of
a “canonical witness.” In Section 3 we discuss the general setting in which we will
work from the point of view of Linear Algebra, and the specific instance of that
general setting that occurs in this work is introduced. We proceed in Section 4 to
obtain several easy consequences of this set-up, and their equivalent statements in
terms of capability. In Section 5 we use a counting argument to give a sufficient
condition for the capability of G that depends only on the ranks of G/Z(G) and
[G,G]. Next, in Section 6, we prove a slight strengthening of the necessary condition
first proven in [13], which also depends only on the ranks of G/Z(G) and [G,G].

In Section 7 we characterise the capable groups among the 5-generated p-groups
of prime exponent and class at most two. We also give an alternative geometric
proof for a key part of the classification in the 4-generated case, since it highlights
the way in which the set-up using linear algebra allows us to invoke other tools
(in this case, algebraic geometry) to study our problem. We should mention that
the approach using linear algebra and geometry has been used before in the study
of groups of class two and exponent p; in particular, the work of Brahana [4, 5]
exploits geometry in a very striking fashion to classify certain groups of class two
and exponent p in terms of points, lines, planes, and spaces in a projective space
over Fp. This classification, found in [4], will also play a role in our classification in
the 5-generated case, allowing us to deal with certain groups of order p8 and p9.

Finally, in Section 8 we discuss some of the limits of our results so far, and state
some questions.

Throughout the paper p will be an odd prime, and Fp will denote the field with
p elements. All groups will be written multiplicatively, and the identity element
will be denoted by e; if there is danger of ambiguity or confusion, we will use
eG to denote the identity of the group G. The center of G is denoted by Z(G).
Recall that if G is a group, and x, y ∈ G, the commutator of x and y is defined
to be [x, y] = x−1y−1xy; we use xy to denote the conjugate y−1xy. We write
commutators left-normed, so that [x, y, z] = [[x, y], z]. Given subsets A and B of G
we define [A,B] to be the subgroup of G generated by all elements of the form [a, b]
with a ∈ A, b ∈ B. The terms of the lower central series of G are defined recursively
by letting G1 = G, and Gn+1 = [Gn, G]. A group is nilpotent of class at most k if
and only if Gk+1 = {e}, if and only if Gk ⊂ Z(G). We usually drop the “at most”
clause, it being understood. The class of all nilpotent groups of class at most k
is denoted by Nk. Though we will sometimes use indices to denote elements of a
family of groups, it will be clear from context that we are not refering to the terms
of the lower central series in those cases.

The following commutator identities are well known, and may be verified by
direct calculation:

Proposition 1.2. Let G be any group. Then for all x, y, z ∈ G,

(a) [xy, z] = [x, z][x, z, y][y, z].
(b) [x, yz] = [x, z][z, [y, x]][x, y].
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(c) [x, y, z][y, z, x][z, x, y] ≡ e (mod G4).

(d) [xr , ys] ≡ [x, y]rs[x, y, x]s(
r
2)[x, y, y]r(

s
2) (mod G4).

(e) [yr, xs] ≡ [x, y]−rs[x, y, x]−r(s
2)[x, y, y]−s(r

2) (mod G4).

Here,
(

n
2

)

= n(n−1)
2 for all integers n.

As in [17], our starting tool will be the nilpotent product of groups, specifically
the 2-nilpotent and 3-nilpotent product of cyclic groups. We restrict Golovin’s
original definition [9] to the situation we will consider:

Definition 1.3. Let A1, . . . , An be nilpotent groups of class at most k. The k-
nilpotent product of A1, . . . , An, denoted by A1 qNk · · · qNk An, is defined to be
the group G = F/Fk+1, where F is the free product of the Ai, F = A1 ∗ · · · ∗ An,
and Fk+1 is the (k + 1)-st term of the lower central series of F .

From the definition it is clear that the k-nilpotent product is the coproduct in
the variety Nk, so it will have the usual universal property. Note that if the Ai

lie in Nk, and G is the (k + 1)-nilpotent product of the Ai, then G ∈ Nk+1 and
G/Gk+1 is the k-nilpotent product of the Ai.

When we take the k-nilpotent product of cyclic p-groups, with p ≥ k, we may
write each element uniquely as a product of basic commutators of weight at most k
on the generators, as shown in in [23, Theorem 3]; see [10, §12.3] for the definition
of basic commutators which we will use. In our applications, where each cyclic
group is of order p, the order of each basic commutator is likewise equal to p.

Finally, when we say that a group is k-generated we mean that it can be generated
by k elements, but may in fact need less. If we want to say that it can be generated
by k elements, but not by m elements for some m < k, we will say that it is
minimally k-generated, or minimally generated by k elements.

2. A canonical witness.

The idea behind our development is the following: given a group G, we at-
tempt to construct a witness for the capability of G; meaning a group H such that
H/Z(H) ∼= G. The relations among the elements of G force in turn relations among
the elements of H . When G is not capable, this will manifest itself as undesired
relations among the elements of H , forcing certain elements whose image should
not be trivial in G to be central in H .

When G is a group of class two, this can be achieved by starting from the
relatively free group of class three in an adequate number of generators. However,
any further reductions that can be done in the starting potential witness group H
will yield dividends of simplicity later on; this is the main goal of the following result;
the argument for condition (ii) appears en passant in the proof of [13, Theorem 1].

Theorem 2.1. Let G be a group, generated by g1, . . . , gn. If G is capable, then
there exists a group H, such that H/Z(H) ∼= G, and elements h1, . . . , hn ∈ H
which map onto g1, . . . , gn, respectively, under the isomorphism such that:

(i) H = 〈h1, . . . , hn〉, and
(ii) The order of hi is the same as the order of gi, i = 1, . . . , n.

Moreover, if G is finite, then H can be chosen to be finite as well.

Proof. If G is capable, then there exists a group K such that K/Z(K) ∼= G; if G is
finite, then by [14, Lemma 2.1] we may choose K to be finite.
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Pick k1, . . . , kn ∈ K mapping to g1, . . . , gn, respectively, and let M be the
subgroup of K generated by k1, . . . , kn. Since MZ(K) = K, it follows that
Z(M) = M ∩ Z(K), hence M/Z(M) ∼= K/Z(K) ∼= G. Thus, replacing K by
M if necessary, we may assume that K is generated by k1, . . . , kn, mapping onto
g1, . . . , gn, respectively.

Fix i0 ∈ {1, . . . , n}; we show that we can replace K with a group H with gen-
erators h1, . . . , hn, such that H/Z(H) ∼= G, where hi maps to gi for each i, the
order of hi0 is the same as the order of gi0 , and for all i 6= i0, the order of hi is the
same as the order of ki. Repeating the construction for i0 = 1, . . . , n will yield the
desired group H .

Let C = 〈x〉 be a cyclic group, with x of the same order as ki0 , and considerK×C.
Let m be the order of gi0 (set m = 0 if gi0 is not torsion), and consider the group
M = (K × C)/〈(km

i0
, x−m)〉. Since the intersection of the subgroup generated by

(km
i0
, x−m) with the commutator subgroup ofK×C is trivial, it follows that if (k, xa)

maps to the center of M , then [(k, xa),K ×C] must be trivial, so k ∈ Z(K). That
is, Z(M) is the image of Z(K)×C. Therefore, M/Z(M) ∼= (K×C)/(Z(K)×C) ∼=
K/Z(K) ∼= G. Note that the isomorphism identifies the image of (kj , x

a) with gj

for all j and all integers a.
For i 6= i0, let hi be the image of (ki, e) in M ; and let hi0 be the image of

(ki0 , x
−1) in M . Finally, let H be the subgroup of M generated by h1, . . . , hn.

Then HZ(M) = M , so once again we have H/Z(H) ∼= M/Z(M) ∼= G, and the
map H → H/Z(H) ∼= G sends hi to gi. Moreover, the order of hi0 is equal to the
order of gi0 . This finishes the construction. �

This result now allows us to give a very specific “canonical witness” to the
capability of G.

Theorem 2.2. Let G be a finite noncyclic group of class at most two and exponent
an odd prime p. Let g1, . . . , gn be elements of G that project onto a basis for Gab,
and let F be the 3-nilpotent product of n cyclic groups of order p generated by
x1, . . . , xn, respectively. Let N be the kernel of the morphism ψ : F → G induced
by mapping xi 7→ gi, i = 1, . . . , n. Then G is capable if and only if

G ∼= (F/[N,F ])
/

Z (F/[N,F ]) .

Proof. Sufficiency is immediate. For the necessity, assume that G is capable, and
let H be the group guaranteed by Theorem 2.1 such that G ∼= H/Z(H). Note that
H is of class at most three. Let θ : H/Z(H) → G be an isomorphism that maps
hiZ(H) to gi.

Since h1, . . . , hn are of order p, there exists a (unique surjective) morphism
ϕ : F → H induced by mapping xi to hi, i = 1, . . . , n. If π : H → H/Z(H) is
the canonical projection, then we must have θπϕ = ψ by the universal property of
the coproduct. Thus, ϕ(N) = ker(π) = Z(H), so [N,F ] ⊂ ker(ϕ), and ϕ factors
through F/[N,F ]; surjectivity of ϕ implies that ϕ(Z(F/[N,F ])) ⊂ Z(H), hence
G ∼= H/Z(H) is a quotient of (F/[N,F ])

/

Z(F/[N,F ]).
On the other hand, N [N,F ] ⊆ Z(F/[N,F ]), so G ∼= F/N = F/N [N,F ] has

(F/[N,F ])
/

Z(F/[N,F ]) as a quotient.
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Thus we have that G has (F/[N,F ])
/

Z(F/[N,F ]) as a quotient, which in
turn has G as a quotient. Since G is finite, the only possibility is that the central
quotient of F/[N,F ] is isomorphic to G, as claimed. �

Corollary 2.3. Let G be a finite noncyclic group of class at most two and exponent
an odd prime p. Let g1, . . . , gn be elements of G that project onto a basis for Gab,
and let F be the 3-nilpotent product of n cyclic groups of order p generated by
x1, . . . , xn, respectively. Let ψ : F → G be the map induced by sending xi to gi,
i = 1, . . . , n. Finally, let C be the subgroup of F generated by the commutators
[xj , xi], 1 ≤ i < j ≤ n. If X is the subgroup of C such that ker(ψ) = X ⊕ F3, then
G is capable if and only if

{

c ∈ C | [c, F ] ⊂ [X,F ]
}

= X.

Proof. Let N = ker(ψ). By Theorem 2.2, G is capable if and only if G is isomorphic
to the central quotient of F/[N,F ]. Thus, G is capable if and only if the center of
F/[N,F ] is N/[N,F ], and no larger .

An element h[N,F ] ∈ F/[N,F ] lies in Z(F/[N,F ]) if and only if [h, F ] ⊆ [N,F ].
Since G is of exponent p, F3 ⊆ N ⊆ F2 and so [N,F ] = [X,F ] ⊆ F3. In particular,
we deduce that if h[N,F ] is central, then h must lie in F2. Write h = cf , with c ∈ C
and f ∈ F3. Then [h, F ] = [c, F ], so h[N,F ] is central if and only if [c, F ] ⊂ [X,F ].

If
{

c ∈ C
∣

∣ [c, F ] ⊂ [X,F ]
}

= X , then it follows that h[N,F ] is central if and
only if h = cf with c ∈ X and f ∈ F3, which means that h[N,F ] is central if and
only if h ∈ N . Hence, the center of F/[N,F ] is N/[N,F ], and G is capable.

Conversely, assume that G is capable. Then the center of F/[N,F ] is equal to
N/[N,F ]. Therefore, X ⊆

{

c ∈ C
∣

∣ [c, f ] ⊂ [X,F ]
}

⊆ N ∩ C = X , giving equality
and establishing the corollary. �

One advantage of the description just given is the following: both F2 and F3 are
vector spaces over Fp, and the maps [−, f ] : F2 → F3 are linear transformations for
each f ∈ F ; hence, the condition just described can be restated in terms of vector
spaces, subspaces, and linear transformations. While all the work can still be done
at the level of groups and commutators, the author, at any rate, found it easier to
think in terms of linear algebra. In addition, once the problem has been cast into
linear algebra terms, there is a host of tools (such as geometric arguments) that
can be brought to bear on the issue.

We will discuss this translation and more results on capability below, after a
brief abstract interlude on linear algebra.

3. Some linear algebra.

We set aside groups and capability temporarily to describe the general construc-
tion that we will use in our analysis.

Definition 3.1. Let V and W be vector spaces over the same field, and let {`i}i∈I

be a nonempty family of linear transformations from V to W . Given a subspace X
of V , let X∗ be the subspace of W defined by:

X∗ = span
(

`i(X) | i ∈ I
)

.

Given a subspace Y of W , let Y ∗ be the subspace of V defined by:

Y ∗ =
⋂

i∈I

`−1
i (Y ).

It will be clear from context whether we are talking about subspaces of V or W .
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It is clear that X ⊂ X ′ ⇒ X∗ ⊂ X ′∗ for all subspaces X and X ′ of V , and
likewise Y ⊂ Y ′ ⇒ Y ∗ ⊂ Y ′∗ for all subspaces Y, Y ′ of W .

Theorem 3.2. Let V and W be vector spaces over the same field and let {`i}i∈I

be a nonempty family of linear transformations from V to W . The operator on
subspaces of V defined by X 7→ X∗∗ is a closure operator; that is, it is increasing,
isotone, and idempotent. Moreover, (X∗∗)∗ = (X∗)∗∗ = X∗ for all subspaces X
of V .

Proof. Since `i(X) ⊆ X∗ for all i, it follows that X ⊂ X∗∗, so the operator is
increasing. If X ⊂ X ′, then X∗ ⊂ X ′∗, hence X∗∗ ⊂ X ′∗∗, and the operator is
isotone. The equality of (X∗∗)∗ and (X∗)∗∗ is immediate. Since X ⊂ X∗∗, we
have X∗ ⊂ (X∗∗)∗. And by construction `i(X

∗∗) ⊂ X∗ for each i, so (X∗∗)∗ ⊂ X∗

giving equality.
Thus, (X∗∗)∗∗ = (X∗∗∗)∗ = (X∗)∗ = X∗∗, so the operator is idempotent, finish-

ing the proof. �

It may be worth noting that while this closure operator is algebraic (the closure
of a subspace X is the union of the closures of all finitely generated subspaces
X ′ contained in X), it is not topological (in general, the closure of the subspace
generated by X and X ′ is not equal to the subspace generated by X∗∗ and X ′∗∗).

The dual result holds for subspaces of W :

Theorem 3.3. Let V and W be vector spaces over the same field, and let {`i}i∈I

be a nonempty family of linear transformations from V to W . The operator on
subspaces of W defined by Y 7→ Y ∗∗ is an interior operator; that is, it is decreasing,
isotone, and idempotent. Moreover, (Y ∗∗)∗ = (Y ∗)∗∗ = Y ∗ for all subspaces Y
of W .

Proof. That the operator is isotone follows as it did in the previous theorem. Since
`i(Y

∗) ⊂ Y for each i, it follows that Y ∗∗ ⊂ Y , showing the operator is decreasing.
Set Z = Y ∗∗; by construction, Y ∗ ⊂ `−1

i (Z) for each i, so Y ∗ ⊂ Z∗. Therefore,
Z = Y ∗∗ ⊂ Z∗∗ ⊂ Z. Thus Z = Z∗∗, proving the operator is idempotent.

Again, the equality of (Y ∗∗)∗ and (Y ∗)∗∗ is immediate. To finish we only need
to show that Y ∗ is a closed subspace of V . From Theorem 3.2 we know that
Y ∗ ⊂ (Y ∗)∗∗; since Y ∗∗ ⊂ Y , it follows that (Y ∗)∗∗ = (Y ∗∗)∗ ⊂ Y ∗, giving
equality. �

As above, the interior operator is algebraic but in general not topological. How-
ever, we do have the following result:

Lemma 3.4. Let V and W be vector spaces over the same field, and let {`i}i∈I be a
nonempty family of linear transformations from V to W . If A and B are subspaces
of V , then (A+B)∗ = A∗ +B∗.

Proof. Since A and B are contained in A + B, we have A∗, B∗ ⊆ (A + B)∗, and
therefore A∗ +B∗ ⊆ (A+B)∗. Conversely, if w ∈ (A+B)∗, then we can express w

as a linear combination w = `i1(a1 + b1) + · · · + `ik
(ak + bk), with ai ∈ A, bi ∈ B.

This gives w =
(

`i1(a1) + · · · + `ik
(ak)

)

+
(

`i1(b1) + · · · + `ik
(bk)

)

∈ A∗ + B∗,

proving the equality. �

The lemma implies that (A ⊕ B)∗ = A∗ + B∗; however, in general we cannot
replace the sum on the right hand side with a direct sum.
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Given a family of linear transformations {`i : V →W}i∈I , we will say a subspace
X of V is {`i}i∈I -closed (or simply closed if the family is understood from context)
if and only if X = X∗∗. Likewise, we will say a subspace Y of W is {`i}i∈I -open
(or simply open) if and only if Y = Y ∗∗.

It is easy to verify that the closure and interior operators determined by a
nonempty family {`i}i∈I of linear transformations is the same as the closure opera-
tor determined by the subspace of L(V,W ) (the space of all linear transformations
from V to W ) spanned by the `i. Likewise, the following observation is straight-
forward:

Proposition 3.5. Let V and W be vector spaces, and X be a subspace of V .
Let {`i}i∈I be a nonempty family of linear transformations from V to W , and
let ψ ∈ Aut(V ). If we use ∗∗ to denote the {`i}i∈I closure operator, then the
{`iψ−1}i∈I-closure of ψ(X) is ψ(X∗∗). In particular, X is {`i}-closed if and only
if ψ(X) is {`iψ−1}-closed. If {`i} and {`iψ−1} span the same subspace of L(V,W ),
then X is closed if and only if ψ(X) is closed.

Back to capability. To tie the construction above back to the problem of ca-
pability, we introduce specific vector spaces and linear transformations based on
Corollary 2.3. We fix an odd prime p throughout.

Definition 3.6. Let n > 1. We let U(n) denote a vector space over Fp of dimen-
sion n. We let V (n) denote the vector space U(n)∧U(n) of dimension

(

n

2

)

. Finally,
we let W (n) be the quotient (V (n)⊗U(n))/J , where J is the subspace spanned by
all elements of the form

(a ∧ b) ⊗ c + (b ∧ c) ⊗ a + (c ∧ a) ⊗ b,

with a,b, c ∈ U . The vector space W (n) has dimension 2
(

n+1
3

)

. If there is no
danger of ambiguity and n is understood from context, we will simply write U , V ,
and W to refer to these vector spaces.

The following notation will be used only in the context where there is a single
specified basis for U , to avoid any possibility of ambiguity:

Definition 3.7. Let n > 1, and let U , V , and W be as above. If u1, . . . , un is a
given basis for U , and i, j, and k are integers, 1 ≤ i, j, k ≤ n, then we let vji denote
the vector uj ∧ui of V , and wjik denote vector of W which is the image of vji ⊗uk.
The “prefered basis” for V (relative to u1, . . . , un) will consist of the vectors vji

with 1 ≤ i < j ≤ n. The “prefered basis” for W will consist of the vectors wjik

with 1 ≤ i < j ≤ n and i ≤ k ≤ n.

To specify our closure and interior operators on V andW , we define the following
family of linear transformations:

Definition 3.8. Let n > 1. We embed U into L(V,W ) as follows: given u ∈ U
and v ∈ V , we let ϕu(v) = v ⊗ u, where x denotes the image in W of a vector
x ∈ V ⊗ U . If u1, . . . , un is a given basis for U and i is an integer, 1 ≤ i ≤ n, then
we will use ϕi to denote the linear transformation ϕui

.

The closure operator we will consider is determined by the family {ϕu |u ∈ U}.
As noted above, if u1, . . . , un is a basis for U , then this closure operator is also
determined by the family {ϕ1, . . . , ϕn}.
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Going back to the problem of capability, let F be the 3-nilpotent product of
cyclic groups of order p generated by x1, . . . , xn. We can identify F2 with V ⊕W
by identifying vji with [xj , xi] and wjik with [xj , xi, xk]; this also identifies W
with F3.

Let G be a noncyclic group of class at most two and exponent p, and let g1, . . . , gn

be elements of G that project onto a basis for Gab. If we let ψ : F → G be the
map induced by mapping xi 7→ gi and N = ker(ψ), then as above we can write
N = X ⊕ F3, where X is a subgroup of C = 〈[xj , xi]

∣

∣ 1 ≤ i < j ≤ n〉. Thus, we
can identify X with a subspace of V by identifying the latter with the subgroup C;
abusing notation somewhat, we call this subspace X as well.

Theorem 3.9. Let G, F , C, and X be as in the preceding two paragraphs. Then
G is capable if and only if X is {ϕu |u ∈ U}-closed.
Proof. We know that G is capable if and only if

{

c ∈ C | [c, F ] ⊂ [X,F ]
}

= X . Iden-
tifying C with V and F3 with W , note that ϕi is a map from C to F3, corresponding
to [−, xi]. Thus, X∗ ⊆W corresponds to [X,F ] ⊆ F3, and X∗∗ corresponds to the
set
{

c ∈ C | [c, F ] ⊂ [X,F ]
}

. Therefore, G is capable if and only if

X =
{

v ∈ V
∣

∣ ϕu(v) ∈ X∗ for all u ∈ U
}

= X∗∗,

as claimed. �

In other words, the closure operator codifies exactly the condition we want to
check to test the capability of G. Thus the question “What n-generated p-groups
of class two and exponent p are capable?” is equivalent to the question “What
subspaces of V (n) are {ϕu |u ∈ U}-closed?”

Of course, different subspaces may yield isomorphic groups. In particular, if we
let GL(n, p) act on U , then this action induces an action of GL(n, p) on V = U ∧U ;
if X and X ′ are on the same orbit relative to this action, then the groups G and H
that correspond to X and X ′, respectively, are isomorphic. By Proposition 3.5 the
closures of X and X ′ will also be in the same orbit under the action and G will be
capable if and only if H is capable.

Also of interest is the description of the closure of X when G is not capable. It is
clear that the quotient of G determined by X∗∗ is the largest quotient of G that is
capable. That is, X∗∗/X is isomorphic to the epicenter of G, the smallest normal
subgroup N / G such that G/N is capable. In most cases where a subspace X is
not closed, therefore, we will attempt to give an explicit description of X∗∗ rather
than simply prove X is not closed.

The following explicit descriptions of the linear transformations ϕu, relative to
a given basis, will also be useful and are straightforward:

Lemma 3.10. Fix n > 1, let u1, . . . , un be a basis for U , and let vji, wjik be the
corresponding bases for V and W . For all integers i, j, and k, 1 ≤ i < j ≤ n,
1 ≤ k ≤ n, the image of vji under ϕk in terms of the prefered basis of W is:

ϕk(vji) =

{

wjik if k ≥ i,
wjki − wikj if k < i.

4. Basic applications.

In this section, we obtain some consequences of our set-up so far. We assume
throughout that we have a specified “preferred basis” {ui} for U , from which we
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obtain the corresponding basis {vji | 1 ≤ i < j ≤ n} for V , and likewise the basis
{wjik | 1 ≤ i < j ≤ n, i ≤ k < n} for W .

The following observations follow immediately from the definitions:

Lemma 4.1. Fix n > 1, and let k be an integer, 1 ≤ k ≤ n.

(i) ϕk is one-to-one, and W = 〈ϕ1(V ), . . . , ϕn(V )〉.
(ii) The trivial and total subspaces of V are closed.
(iii) The trivial and total subspaces of W are open.

Definition 4.2. Let i, j, k be integers, 1 ≤ i < j ≤ n, i ≤ k ≤ n. We let
πji : V → 〈vji〉 and πjik : W → 〈wjik〉 be the canonical projections.

Lemma 4.3. Let w ∈ ϕk(V ). If πrst(w) 6= 0, with 1 ≤ s < r ≤ n, s ≤ t ≤ n, then
s ≤ k ≤ t, and at most one of the inequalities is strict.

Proof. It is enough to prove the result for w an element of a basis of ϕk(V ). Such
a basis is given by the vectors wjik with 1 ≤ i < j ≤ n, i ≤ k ≤ n, and the vectors
wjki − wikj with 1 ≤ i < j ≤ n and 1 ≤ k < i. Considering these basis vectors, we
see that the first class has r = j, s = i, t = k, so s ≤ k = t. The second class of
vectors will yield either r = j, s = k, t = i, with s = k < t; or else r = i, s = k,
t = j, with s = k < t. This proves the lemma. �

Lemma 4.4. Let i, j be integers, 1 ≤ i < j ≤ n, and r an integer such that
1 ≤ r ≤ n. For v ∈ V , πjij(ϕr(v)) 6= 0 if and only if πji(v) 6= 0 and r = j.
Likewise, πjii(ϕr(v)) 6= 0 if and only if πji(v) 6= 0 and r = i.

Proof. The vectors wjij occurs in the image of a ϕr exactly when r = j and it is
applied a vector with nontrivial πji projection. Thus, if πjij (v) 6= 0 then πji(v) 6= 0.
The converse is immediate, and the case of πjii is settled in the same manner. �

Lemma 4.5. Fix i, j, 1 ≤ i < j ≤ n. If πji(X) = {0}, then πji(X
∗∗) = {0}.

Proof. Since πji(X) = {0}, it follows that πjii(X
∗) = {0} by Lemma 4.3. There-

fore, if v ∈ V has πji(v) 6= 0 then ϕi(v) /∈ X∗, hence v /∈ X∗∗. Thus, πji(X
∗∗) =

{0}, as claimed. �

These lemmas suffice to establish a result of Ellis [7, Prop. 9], which appears as
Corollary 4.7 below.

Theorem 4.6. If X is a coordinate subspace relative to a basis for U (that is, there
is a basis u1, . . . , un such that X is generated by a subset of {vji | 1 ≤ i < j ≤ n}),
then X is closed.

Proof. Suppose S ⊆ {vji | 1 ≤ i < j ≤ n} is such that X = 〈S〉. By the previous
Lemma, we have that X∗∗ ⊆ 〈S〉; therefore, 〈S〉 = X ⊆ X∗∗ ⊆ 〈S〉 = X , and so
X = X∗∗. �

Corollary 4.7 ([7, Prop. 9]). Let G be a group of class two and exponent p, and let
x1, . . . , xn be elements of G that project onto a basis for G/Z(G). If the nontrivial
commutators of the form [xj , xi], 1 ≤ i < j ≤ n, are distinct and form a basis for
[G,G], then G is capable.

Proof. Such a G corresponds to an X that is a coordinate subspace of V , so capa-
bility follows from Theorem 4.6. �
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The big, the small, and the mixed. The following definition and proposition
will be needed below.

Definition 4.8. Let n be an integer greater than 1, and i an integer, 1 ≤ i ≤ n.
We define Πi : V → 〈vi,1, . . . , vi,i−1, vi+1,i, . . . , vn,i〉 to be the canonical projection.

Proposition 4.9. Let n > 1 and i be an integer, 1 ≤ i ≤ n. Let Wi be the subspace
of W spanned by the basis vectors wrst, 1 ≤ s < r ≤ n, s ≤ t ≤ n, such that exactly
one of r, s, and t is equal to i. If X is a subspace of V such that Πi(X) = {0},
then X∗ ∩Wi = ϕi(X) and X is closed.

Proof. That ϕi(X) is contained in Wi follows because Πi(X) is trivial. Since the
subspace 〈ϕj(X) | j 6= i〉 is contained in the subspace spanned by basis vectors wrst

in which none of r, s, t are equal to i, we have X∗ = ϕi(X)⊕〈ϕj(X) | j 6= i〉 and the
equality of intersection follows. To show X is closed, let v ∈ X∗∗. By Lemma 4.5,
we know that Πi(v) = 0, and so ϕi(v) lies in X∗ ∩ Wi = ϕi(X). Since ϕi is
one-to-one, we deduce that v ∈ X . Thus, X is closed. �

Fix a basis u1, . . . , un for U . Given r, 1 ≤ r < n, we can divide these basis vectors
into “small” and “large”, according to whether their indices are less than or equal
to r, or strictly larger than r, respectively. From this, we obtain a similar partition
of the corresponding basis vectors vji, 1 ≤ i < j ≤ n of V , and wjik , 1 ≤ i < j ≤ n,
i ≤ k ≤ n for W . Namely, we write V = Vs⊕Vm⊕V`, W = Ws⊕Wms⊕Wm`⊕W`,
where:

Vs =
〈

vji

∣

∣

∣
1 ≤ i < j ≤ r

〉

,

Vm =
〈

vji

∣

∣

∣
1 ≤ i ≤ r < j ≤ n

〉

,

V` =
〈

vji

∣

∣

∣
r < i < j ≤ n

〉

,

Ws =
〈

wjik

∣

∣

∣
1 ≤ i < j ≤ r, i ≤ k ≤ r

〉

,

Wms =
〈

wjik

∣

∣

∣
1 ≤ i < j ≤ n, i ≤ k ≤ n, either j ≤ r or k ≤ r, but not both

〉

,

Wm` =
〈

wjik

∣

∣

∣
1 ≤ i ≤ r < j, k ≤ n

〉

,

W` =
〈

wjik

∣

∣

∣
r < i < j ≤ n, i ≤ k ≤ n

〉

.

We refer informally to Vs as the “small part” of V , and its elements as “small
vectors;” V` is the “large part” and contains the “large vectors;” and Vm will be
called the “mixed part” while its elements will be refered to as “mixed vectors.” A
similar informal convention will be followed with W , calling Ws the “small part,”
W` the “large part,” Wms the “mixed-small part,” and Wm` the “mixed-large part”
of W .

Lemma 4.10. Notation as in the previous paragraph. If n > 1 and r is an integer,
1 ≤ r < n, then:

(i) V ∗
s ⊆Ws ⊕Wms.

(ii) V ∗
` ⊆Wm` ⊕W`.

(iii) V ∗
m = Wms ⊕Wm`.
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Proof. Note that the indices involved in the image of ϕk(vji) are i, j, and k. Thus, if
both i and j are small (resp. large), then all images are either small or mixed-small
(resp. mixed large or large); and if i is small and j is large, then all images are mixed.
This proves (i) and (ii), and also proves that V ∗

m is contained in Wms ⊕Wm`. To
finish the proof of (iii), suppose that wjik is one of the generators of Wms⊕Wm`, as
described above. Note that we must have i ≤ r in either case. Then wjik = ϕk(vji).
If j > r, then vji ∈ Vm, so wjik ∈ V ∗

m. If, on the other hand, j ≤ r, then we
must have k > r since wjik is either mixed-small or mixed-large. Then we know
that wkij ∈ V ∗

m by the immediately preceding argument. Also, vkj ∈ Vm, hence
ϕi(vkj) = wkij − wjik ∈ V ∗

m. Since wkij ∈ V ∗
m, we deduce that wjik ∈ V ∗

m as well,
and this finishes the proof of (iii). �

In the following theorem, cls(Xs) is meant to stand for the “small closure of Xs”;
that is, the {ϕi}r

i=1-closure of Xs; likewise, cl`(X`) is the “large closure of X`.”

Theorem 4.11. Let n > 1, and let r be an integer, 1 ≤ r < n, as above. Suppose
that Xs is a subspace of Vs, and X` is a subspace of V`. Then:

(i) (Xs ⊕X`)
∗ = X∗

s ⊕X∗
` .

(ii) (Xs⊕Vm⊕X`)
∗ = 〈ϕi(Xs) | 1 ≤ i ≤ r〉⊕Wms⊕Wm`⊕〈ϕi(X`) | r < i ≤ n〉.

(iii) Xs ⊕X` is closed.
(iv) If cls(Xs) is the {ϕi}r

i=1-closure of Xs and cl`(X`) is the {ϕi}n
i=r+1-closure

of X`, then (Xs ⊕ Vm ⊕X`)
∗∗ = cls(Xs)⊕ Vm ⊕ cl`(X`). In particular, the

subspace Xs ⊕Vm ⊕X` is closed if and only if Xs is {ϕi}r
i=1-closed and X`

is {ϕi}n
i=r+1-closed.

Proof. Part (i) follows from Lemma 3.4 and from Lemma 4.10(i) and (ii).
To prove (ii), note that by Lemmas 3.4 and 4.10, we have:

(Xs ⊕ Vm ⊕X`)
∗ = X∗

s + V ∗
m +X∗

`

= 〈ϕi(Xs) | 1 ≤ i ≤ n〉 +Wms +Wm` + 〈ϕi(X`) | 1 ≤ i ≤ n〉
= 〈ϕi(Xs) | 1 ≤ i ≤ r〉 +Wms +Wm` + 〈ϕi(X`) | 1 ≤ i ≤ r〉.

Now simply observe that the first summand is contained in Ws and the last in W`

to deduce that the sum is direct.
Moving on to (iii), by Lemma 4.5, we know that (Xs⊕X`)

∗∗ ⊆ Vs⊕V`. Let vs+v`

be an element of (Xs⊕X`)
∗∗, with vs a small vector, and v` a large vector. Then for

each i, ϕi(vs + v`) ∈ X∗
s ⊕X∗

` . Thus, we must have ϕi(vs) ∈ X∗
s and ϕi(v`) ∈ X∗

`

for each i, so vs ∈ X∗∗
s and v` ∈ X∗∗

` . Thus, (Xs ⊕X`)
∗∗ ⊆ X∗∗

s ⊕X∗∗
` , and the

reverse inclusion follows because the closure operator is isotonic. It is then enough
to show that each of Xs and X` are closed, and since Π1(X`) = Πn(Xs) = {0},
this follows from Proposition 4.9.

Finally, for (iv), note that if j > r, then ϕj(Vs) ⊆ Wsm ⊆ V ∗
m, so cls(Xs) is

contained in the closure; similarly, cl`(X`) is contained in the closure, so we always
have cls(Xs) ⊕ Vm ⊕ cl`(X`) ⊆ (Xs ⊕ Vm ⊕X`)

∗∗.
Let v = vs +vm +v` ∈ (Xs ⊕Vm ⊕X`)

∗∗, with vs ∈ Vs, v` ∈ V`, and vm ∈ Vm.
Since Vm is contained in the closure, v is in the closure if and only if vs + v` is in
the closure. We further claim that vs +v` is in the closure if and only if each of vs

and v` are in the closure. One implication is immediate. For the converse, suppose
that vs + v` is in the closure, and i ≤ r. Then by (ii) we have:

ϕi(vs) + ϕi(v`) ∈ 〈ϕj(Xs) | j ≤ r〉 ⊕Wms ⊕Wm` ⊕ 〈ϕj(X`) | r < j ≤ n〉.
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In particular, ϕi(vs) ∈ 〈ϕj(Xs) | 1 ≤ j ≤ r〉. Since Vs is contained in ϕ−1
j (Wms) for

all j > r, we conclude that vs lies in the closure of Xs ⊕ Vm ⊕ X`, and hence so
does v`. This proves the claim.

Finally, observe as above that vs lies in the closure if and only if ϕi(vs) lies in
〈ϕj(Xs) | 1 ≤ j ≤ r〉 for i = 1, . . . , r, if and only if vs lies in cls(Xs); and similarly
that v` lies in the closure if and only if it lies in cl`(X`). Thus, the closure of
Xs ⊕ Vm ⊕X` is equal to cls(Xs) ⊕ Vm ⊕ cl`(X`). This proves the theorem. �

The theorem gives the following two interesting corollaries:

Corollary 4.12. Let G1 and G2 be any two nontrivial groups of class at most two
and exponent an odd prime p. Then G = G1 qN2 G2 is capable.

Proof. If G1 is minimally r-generated, and G2 is minimally s-generated, then G is
minimally n = r + s generated. If we number the generators of G1 as g1, . . . , gr,
and those of G2 as gr+1, . . . , gn, then the subspace of V corresponding to G will be
of the form Xs ⊕X`, where Xs ⊆ Vs, X` ⊆ V`; namely, Xs corresponds to G1, and
X` corresponds to G2. By Theorem 4.11(iii), this subspace is always closed. �

Corollary 4.13. Let G1 and G2 be two finite p-groups of class at most two and
exponent p. Then G1 ⊕ G2 is capable if and only if each Gi is either nontrivial
cyclic or capable.

Proof. Proceeding as above, note that the subspace of V corresponding to G1 ⊕G2

is equal to Xs ⊕ Vm ⊕ X`, so by Theorem 4.11(iv), this subspace is closed if and
only if Xs is {ϕi}r

i=1 closed and X` is {ϕi}n
i=r+1-closed. For noncyclic Gi this is

equivalent to being capable, while for cyclic Gi the closure conditions are trivially
met. �

In turn, this yields the following important consequences:

Theorem 4.14. Let G be a p-group of class at most two and exponent p. Then
G⊕ Cp is capable if and only if G is cyclic of order p or capable.

Corollary 4.15. Let G be a p-group of class exactly two and exponent p. If we
write G = K⊕Cr

p , where r ≥ 0 is an integer and K is a group of class two satisfying
Z(K) = [K,K], then G is capable if and only if K is capable.

Note that any group of class exactly two and exponent p can be written in the
form specified by this corollary.

Amalgamated direct products and amalgamated coproducts. We saw in
Corollary 4.12 that if we take two nontrivial groups of class two and exponent p,
then their coproduct (in this variety) will always be capable, while the capability
of a direct sum depends on the factors.

We will now deal with two similar constructions, the direct product with amal-
gamation and the coproduct with amalgamation. The first construction includes
central products (see for example [15, Section 2.2]) but is more general.

Definition 4.16. Let G and K be two groups, and let H be a subgroup of Z(G).
Let φ : H → Z(K) be an embedding. The amalgamated direct product of G and K
(along φ) is the group G×φ K given by

G×φ K =
G×K

{(h, φ(h)−1) |h ∈ H} .
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The maps sending g 7→ (g, e) and k 7→ (e, k) embed copies of G and of K into
G×φ K, respectively, and the intersection of these images is exactly H (identified
with φ(H)). When H = Z(G) and φ is an isomorphism, the construction is called
the central product of G and K in [15], where it is denoted by G ◦K. All extra-
special p-groups other than those of order p3 may be constructed as central products
of smaller extra-special groups.

The following result was inspired by doing an automated brute force search
for non-closed subspaces X of dimensions seven and eight when n = 5. It was
performed with the computer algebra system GAP [8]. I was able to find many
examples, and by examining them was led to the result below. The statement of the
linear algebra theorem is somewhat complicated, but it leads to a straightforward
group-theoretic corollary: if G and K are groups of class two and exponent p, H is a
nontrivial subgroup of [G,G], and φ embeds H into [K,K], then the amalgamated
direct product G×φ K is not capable.

Theorem 4.17. Let n > 3, and let r be an integer, 2 ≤ r ≤ n− 2. Let Xs and X`

be subspaces of Vs and V`, respectively, and let H be a nontrivial subspace of Vs such
that H ∩Xs = {0}. Let φ : H → V` be an embedding such that φ(H) ∩X` = {0}.
Finally, let X be the subspace X = Xs ⊕X` ⊕ Vm ⊕ {h− φ(h) |h ∈ H}. Then the
closure of X∗∗ is the direct sum of the {ϕi}r

i=1-closure of Xs ⊕H, the {ϕi}n
i=r+1-

closure of X` ⊕ φ(H), and Vm. In particular, X is not closed.

Proof. Note that by Lemma 4.10(iii), we have Wms ⊕Wm` = V ∗
m ⊆ X∗. Next, note

that X ∩H = X ∩ ϕ(H) = {0}.
We claim that H∗ ⊆ X∗, and therefore that H ⊆ H∗∗ ⊂ X∗∗. Indeed, let

h ∈ H , and let k be an integer, 1 ≤ k ≤ n. If k ≤ r, then ϕk(φ(h)) ∈ Wm`

(since φ(h) ∈ V`), so ϕk(h) = ϕk(h − φ(h)) + ϕk(φ(h)) ∈ X∗ + Wm` = X∗. And
if r < k ≤ n, then ϕk(h) ∈ Wms ⊆ X∗. Thus, ϕk(h) ∈ X∗ for k = 1, . . . , n, hence
h ∈ X∗∗. This proves that H∗ ⊆ X∗, hence H ⊆ H∗∗ ⊆ X∗∗.

Thus, the closure of X contains Xs ⊕H ⊕X` ⊕ φ(H) ⊕ Vm. The description of
the closure of X now follows as in the proof of Theorem 4.11(iv). We conclude that
X is not closed, because H is nontrivial, H ∩X = {0}, yet H ⊆ X∗∗. �

Corollary 4.18 (cf. [13, Proposition 1]). Let G1 and G2 be two nonabelian groups
of class two and exponent p, let H be a subgroup of [G1, G1], and let φ : H →
[G2, G2] be an embedding. If G is the amalgamated direct product G = G1 ×φ G2,
then G is capable if and only if H = {e} and both G1 and G2 are capable.

Proof. Let r be the rank of Gab
1 , s the rank of Gab

2 , and n = r + s. Since G1 and
G2 are nonabelian, we must have 2 ≤ r ≤ n− 2. The subspace X corresponding to
G1 ×G2 is of the form Xs ⊕ Vm ⊕X`, with Xs and X` determined by G1 and G2,
respectively. Abusing notation, the subgroup H can be made to correspond to
a subspace H of Vs with H ∩ Xs = 0, and φ induces a linear transformation
φ : H → V` which can also be chosen to have φ(H)∩X` = {0}. The subspace of V
corresponding to G1×φG2 is then equal to X = Xs⊕X`⊕Vm⊕{h−ϕ(h) |h ∈ H}.
If H = {0}, then we are in the situation of Corollary 4.13. And if H 6= {0}, then
X is not closed by Theorem 4.17. This proves the result. �

The following is of course well-known, and can be proven using other methods:

Corollary 4.19. Let G be an extra-special p-group. Then G is capable if and only
if it is of order p3 and exponent p.
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Proof. If G is not of exponent p, then it is generated by elements of order p and
one element of order p2 (see for example [15, Theorem 2.2.10]) and therefore is not
capable by [17, Theorem 3.12]. So we may assume G is of exponent p. If G is of
order p2n+1 with n > 1, then it is isomorphic to a direct product with amalgamation
of the extra-special p-group of order p3 and exponent p, and the extra-special p-
group of order p2n−1 and exponent p, identifying their commutator subgroups; as
such, it is not capable by Corollary 4.18 above. The extra-special group of order
p3 and exponent p is closed the coproduct of two cyclic groups of order p, and thus
is capable by Corollary 4.12. �

We move now to the case of the coproduct with amalgamation.

Definition 4.20. Let G and K be two groups of class at most two and exponent p.
Let H be a subgroup of [G,G], and let φ : H → [K,K] be an embedding. The

amalgamated coproduct of G and K (along φ) is the group G qN2

φ K given by:

GqN2

φ K =
G qN2 K

{hφ(h)−1 |h ∈ H} .

Note that the elements h and φ(h)−1 are central, so the subset given above is in
fact a normal subgroup. Again, it is easy to

In general, if G,K ∈ N2, H is an arbitrary subgroup of G, and φ : H → K
an embedding, then the coproduct with amalgamation G qN2

φ K may or may not
contain copies of G and K; and even if it does contain copies of G and K, their
intersection may be strictly larger than H . There are necessary and sufficient
conditions for each of the situations, given in [16, 20, 21]. When G and K are
of exponent p and the identified subgroups are contained in the corresponding
commutator subgroups, however, GqN2

φ K always contains copies of G and K, and
these copies intersect exactly at H .

As before, the statement of the linear algebra result is somewhat complex.

Theorem 4.21. Let n > 3 and let r be an integer, 2 ≤ r ≤ n − 2. Let Xs and
X` be subspaces of Vs and V`, respectively, and let H be a subspace of Vs such that
H ∩ Xs = {0}. Let φ : H → V` be an embedding such that φ(H) ∩ X` = {0}.
Finally, let X be the subspace of V given by X = Xs ⊕X` ⊕ {h − φ(h) |h ∈ H}.
If cls(Xs) is the {ϕi}r

i=1-closure of Xs and cl`(X`) is the {ϕi}n
i=r+1-closure of X`,

then the closure of X is given by:

X∗∗ = X ⊕
{

h ∈ H
∣

∣ h ∈ cls(Xs) and φ(h) ∈ cl`(X`)
}

.

In particular, X is closed if and only if
{

h ∈ H
∣

∣ h ∈ cls(Xs) and φ(h) ∈ cl`(X`)
}

= {0}.

Proof. Note that X ⊂ (Xs ⊕ H) ⊕ (X` ⊕ φ(H)); the latter subspace is closed by
Theorem 4.11(iii), so it contains X∗∗. Thus, to describe the closure of X it is
enough to determine exactly which h ∈ H lie in the closure.

Suppose that h ∈ H∩X∗∗. Then ϕi(h) ∈ X∗ for i = 1, . . . , n; fix i ≤ r. Then we
know that there exist x1, . . . , xn ∈ Xs, y1, . . . , yn ∈ X`, and h1, . . . , hn ∈ H such
that

ϕi(h) = ϕ1(x1 + y1 + h1 − φ(h1)) + · · · + ϕn(xn + yn + hn − φ(hn)).
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By looking at the Ws, Wms, Wm`, and W` components, we deduce that:

ϕi(h) = ϕ1(x1 + h1) + · · · + ϕr(xr + hr),

0 = ϕr+1(xr+1 + hr+1) + · · · + ϕn(xn + hn),

0 = ϕ1(y1 − φ(h1)) + · · · + ϕr(yr − φ(hr)),

0 = ϕr+1(yr+1 − φ(hr+1)) + · · · + ϕn(yn − φ(hn)).

Now, ϕr+1(xr+1 + hr+1) is the only term in the expression that lies in Wms and
involves generators wjik with one of j or k (in fact, k) equal to r + 1. Thus, we
must have ϕr+1(xr+1 +hr+1) = 0, which in turn gives xr+1 = hr+1 = φ(hr+1) = 0,
since ϕr+1 and φ are embeddings and H ∩ Xs = 0. Similarly, we deduce that
xr+1 = xr+2 = · · · = xn = hr+1 = hr+2 = · · · = hn = 0. We are then left with
ϕr+1(yr+1) + · · · + ϕn(yn) = 0 as the only equation involving yr+1, . . . , yn, and so
we may also assume yr+1 = · · · = yn = 0.

Consider now ϕ1(y1 − φ(h1)) + · · · + ϕr(yr − φ(hr)). Again, ϕ1(y1 − φ(h1)) is
the only term in the expression that lies in Wm` and involves generators wjik with
i = 1. Thus, we must have ϕ1(y1 − φ(h1)) = 0, and as above we deduce from
this that y1 = φ(h1) = 0 since ϕ1 and φ are embeddings and φ(H) ∩ X` = 0.
Similarly, we obtain y1 = y2 = · · · = yr = h1 = · · · = hr = 0. And so we
obtain ϕi(h) = ϕ1(x1) + · · · + ϕr(xr) for some vectors x1, . . . , xr ∈ Xs. That is, if
h ∈ H ∩X∗∗, then h is cls(Xs).

A symmetric argument, considering ϕi(φ(h)) with i > r yields that if ϕ(h) lies
in X∗∗, then ϕ(h) must lie in cl`(X`). Since h − φ(h) ∈ X∗∗ for all h ∈ H , we
obtain that a necessary condition for h ∈ H to lie in the closure is that h ∈ cls(Xs)
and φ(h) ∈ cl`(X`). The theorem will be proven if we can show that this condition
is also sufficient.

Suppose that h ∈ H ∩ cls(Xs) is such that φ(h) lies in cl`(X`). Then each of
ϕ1(h), . . . , ϕr(h), ϕr+1(φ(h)), . . . , ϕn(φ(h)) lie in X∗. Since ϕi(h − φ(h)) ∈ X∗

for all i, we deduce that ϕi(h) ∈ X∗ for all i, so h ∈ X∗∗. This proves that the
condition given is also sufficient, and so proves the theorem. �

Recall that Z∗∗(G), the epicenter of G, is the smallest normal subgroup N of G
such that G/N is capable.

Corollary 4.22. Let G and K be two nonabelian groups of class two and expo-
nent p. Let H be a nontrivial subgroup of [G,G], and let φ : H → [K,K] be an

embedding. Then G qN2

φ K is capable if and only if

{h ∈ H |h ∈ Z∗∗(G) and φ(h) ∈ Z∗∗(K)} = {e}.

In particular, if either G or K are capable, then so is G qN2

φ K.

Remark 4.23. It is perhaps interesting to note that when we passed from coproducts
and direct products to their amalgamated counterparts, a kind of reversal took
place. The coproduct of two nontrivial groups in our class is always capable, while
the capability of the direct product depends on the capability of the two factors.
However, when we amalgamate nontrivial subgroups of the commutators, then the
amalgamated direct product which is never capable, while it is in the amalgamated
coproduct that capability depends on the capability of the two groups (and the
precise choice of H).
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5. Dimension Counting.

In this section we will establish a sufficient condition for the capability of a
p-group G of exponent p and class at most two that depends only on the ranks
of G/Z(G) and [G,G]. The idea is the following: given a subspace X of V , we
will find a lower bound for the dimension of X∗ in terms of n and the dimension
of X . If all subspaces X ′ of V that properly contain X yield subspaces X ′∗ of
dimension strictly larger than dim(X∗), then it will follow that X must be closed
since X∗ = (X∗∗)∗. In order to establish these bounds, we will consider the images
ϕ1(X), ϕ2(X), . . . , ϕn(X); since each ϕi is one-to-one, the dimension of X∗ will
depend on how much “overlap” there can be among these subspaces of W .

Lemma 5.1. Fix n > 1, and let i and j be integers, 1 ≤ i < j ≤ n. Then
ϕi(V ) ∩ ϕj(V ) = {0}.

Proof. Let ϕi(v) ∈ ϕj(V ), and assume that πsr(v) 6= 0, 1 ≤ r < s ≤ n. If r ≤ i,
then πsri(ϕi(v)) 6= 0, and since ϕi(v) ∈ ϕj(V ), Lemma 4.3 implies r ≤ j ≤ i,
contradicting the choice of i and j. If i < r, then πsir(ϕi(v)) 6= 0. By Lemma 4.3,
we must have i < j = r. We also have πris(ϕi(v)) 6= 0, and since ϕi(v) ∈ ϕj(V ),
this time we deduce i < j = s. But then we have j = r = s, and this is impossible.
This contradiction arises from assuming πsr(v) 6= 0 for some 1 ≤ r < s ≤ n, hence
v = 0. �

Lemma 5.2. Fix n > 1 and r ≤ n. Let i1, . . . , ir be pairwise distinct integers,
1 ≤ i1, . . . , ir ≤ n. Then ϕ−1

i1

(〈

ϕi2 (V ), . . . , ϕir
(V )
〉)

is of dimension
(

r−1
2

)

, with
basis given by the vectors vab, with a, b ∈ {i2, . . . , ir}, b < a. In particular, the
intersection ϕi1(V ) ∩

〈

ϕi2(V ), . . . , ϕir
(V )

〉

has a basis made up of vectors of the
form wabi1 with a, b ∈ {i2, . . . , ir}, b < a and b < i1; and vectors of the form
wai1b − wbi1a, with a, b ∈ {i2, . . . , ir}, i1 < b < a.

Proof. By Proposition 3.5, it is enough to consider the case where i1 = 1. Let A
denote the pullback described in the statement.

Given a, b ∈ {i2, . . . , ir}, a > b, we have vab ∈ A:

ϕi1 (vab) = wai1b − wbi1a = ϕb(vai1) − ϕa(vbi1 ) ∈ 〈ϕi2 (V ), . . . , ϕir
(V )〉.

Conversely, let v ∈ A, and let a, b be integers, 1 ≤ b < a ≤ n, such that πab(v) 6= 0.
We can write

ϕi1(v) = ϕi2 (v2) + · · · + ϕir
(vr).

Since i1 = 1, πa1b(ϕi1 (v)) = −πb1a(ϕi1 (v)) 6= 0, and therefore we must have
πa1b(ϕij

(vj)) 6= 0 for some j ≥ 2. This implies 1 ≤ ij ≤ b, with at most one
inequality strict by Lemma 4.3. Since 1 = i1 6= ij , we have ij = b. Considering πb1a

instead, we deduce that a = ik for some k ≥ 2, so a, b ∈ {i2, . . . , ir}. Therefore,
A ⊆ 〈vab | a, b ∈ {i2, . . . , ir}, a > b〉. This proves equality.

Since the vectors described are linearly independent, they form a basis. Mapping
them via ϕi1 , which is one-to-one, proves the final clause. �

Corollary 5.3. Let n > 1, r ≤ n, and let 1 ≤ i1 < i2 < · · · < ir ≤ n be integers.
Then

dim (〈ϕi1(V ), . . . , ϕir
(V )〉) = r

(

n

2

)

−
(

r

3

)

.
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Proof. For simplicitly, let Y = 〈ϕi1 (V ), . . . , ϕir
(V )〉. We have:

dim(Y ) =

(

r
∑

k=1

dim(ϕik
(V ))

)

−
(

r
∑

k=2

dim
(

ϕik
(V )∩

〈

ϕi1(V ), . . . , ϕik−1
(V )

〉

)

)

= r

(

n

2

)

−
(

r
∑

k=2

(

k − 1

2

)

)

= r

(

n

2

)

−
(

r

3

)

,

as claimed. �

Definition 5.4. Fix n > 1. We define Φ: V n →W to be

Φ(v1, . . . ,vn) = ϕ1(v1) + · · · + ϕn(vn).

If there is danger of ambiguity, we use Φn to denote the map associated to the
spaces corresponding to the particular choice of n.

Note that if X is a subspace of V , then Φ(Xn) = X∗.

Proposition 5.5. The kernel of Φ is of dimension
(

n

3

)

. A basis for ker(Φ) can be
determined as follows: each choice of integers a, b, c, 1 ≤ a < b < c ≤ n, gives an
element (v1, . . . ,vn) ∈ V n of the basis, with:

vi =















vcb if i = a,
−vca if i = b,
vba if i = c,
0 otherwise.

Proof. Denote the element corresponding to a < b < c by v(abc). Note that v(abc)

is in ker(Φ):

Φ(v(abc)) = ϕa(vcb) + ϕb(−vca) + ϕc(vba) = wcab − wbac − wcab + wbac = 0.

Since Φ is surjective, dim(W ) = n dim(V ) − dim(ker(Φ)), hence

dim(ker(Φ)) = n

(

n

2

)

− 2

(

n+ 1

3

)

=

(

n

3

)

,

so the proposition will be established in full if we prove that the elements v(abc) of
V n are linearly independent.

Let
∑

βabcvabc = (0, . . . ,0) be a linear combination equal to zero. If we look at
the ith coordinate of these n-tuples, we have:

∑

1≤r<s<i≤n

βrsivsr −
∑

1≤r<i<s≤n

βrisvsr +
∑

1≤i<r<s≤n

βirsvsr = 0.

Each basis vector vsr occurs only once. Thus, if i ∈ {a, b, c}, then βabc = 0. This
holds for each choice of i, hence βabc = 0 for all choices of a, b, c. This proves the
v(abc) are linearly independent. �

Theorem 5.6. Let (v1, . . . ,vn) ∈ ker(Φ). Write

vk =
∑

1≤i<j≤n

α
(k)
ji vji,

(i) If i = k or j = k, then α
(k)
ji = 0; i.e., Πk(vk) = 0.

(ii) If 1 ≤ a < b < c ≤ n, then α
(c)
ba = α

(a)
cb = −α(b)

ca .
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(iii) Fix i, j, 1 ≤ i < j ≤ n. Then

Πi(vj) =
i−1
∑

r=1

(

−α(i)
jr

)

vir +

j−1
∑

r=i+1

α
(i)
jr vri +

n
∑

r=j+1

(

−α(i)
rj

)

vri,

Πj(vi) =

i−1
∑

r=1

(

−α(j)
ir

)

vjr +

j−1
∑

r=i+1

α
(j)
ri vjr +

n
∑

r=j+1

(

−α(j)
ri

)

vrj .

Proof. Part (i) holds for the basis elements described in Proposition 5.5, hence
holds for all vectors in the kernel. For part (ii), note that if 1 ≤ a < b < c ≤ n,
then

πbac

(

ϕ1(v1) + · · · + ϕn(vn)
)

=
(

α
(c)
ba − α

(a)
cb

)

wbac,

πcab

(

ϕ1(v1) + · · · + ϕn(vn)
)

=
(

α(b)
ca + α

(a)
cb

)

wcab.

Since both are equal to zero, we deduce that α
(c)
ba = α

(a)
cb and α

(b)
ca = −α(a)

cb . Finally,
for (iii), we know that Πi(vi) = Πj(vj) = 0 from (i), so we can write:

Πi(vj) =

i−1
∑

r=1

α
(j)
ir vir +

j−1
∑

r=i+1

α
(j)
ri vri +

n
∑

r=j+1

α
(j)
ri vri,

Πj(vi) =

i−1
∑

r=1

α
(i)
jr vjr +

j−1
∑

r=i+1

α
(i)
jr vjr +

n
∑

r=j+1

α
(i)
rj vrj ,

and applying (ii) gives the desired identities. �

Corollary 5.7. Let v ∈ ker(Φ). If Πj(vi) = 0, then Πi(vj) = 0. In particular, if
vi = 0, then Πi(vj) = 0 for all j.

Proof. The second assertion follows immediately from the first. The first assertion

is trivial if i = j; for i 6= j, then α
(i)
jr = 0 for all r < j and α

(i)
rj = 0 for j < r, so by

Theorem 5.6(iii) it follows that Πi(vj) = 0. �

Corollary 5.8. Let v ∈ ker(Φ), v 6= (0, . . . ,0). If v = (v1, . . . ,vn) then the
dimension of 〈v1, . . . ,vn〉 is at least 3.

Proof. Write

v =
∑

1≤a<b<c≤n

βabcv(abc).

Fix a, b, c such that 1 ≤ a < b < c ≤ n, βabc 6= 0. We claim that va, vb, and vc

are linearly independent. Indeed, note that Πa(va) = Πb(vb) = Πc(vc) = 0, and
πcb(va) 6= 0. Therefore, if αava + αbvb + αcvc = 0, then we must have αa = 0. A
symmetric argument looking at πca shows that αb = 0, and considering πba shows
that αc = 0. �

Corollary 5.9 (Prop. 4.6 in [18]). Fix n > 1, and let X be a subspace of V . If
dim(X) = 1, then dim(X∗) = n; if dim(X) = 2, then dim(X∗) = 2n.

Proof. We prove the contrapositive. Since dim(X∗) = n dim(X)−dim(Xn∩ker(Φ)),
if dim(X∗) < n dim(X), then Xn ∩ ker(Φ) 6= {0}.

Let v = (v1, . . . ,vn) ∈ Xn ∩ ker(Φ), v 6= 0. Then vi ∈ X for i = 1, . . . , n, so by
Corollary 5.8, dim(X) ≥ 3, as claimed. �
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We now proceed along the lines outlined at the beginning of the section. We
first formalize the observation made there.

Proposition 5.10. Let X < V . Assume that for all subspaces Y of V , if Y
properly contains X then Y ∗ properly contains X∗. Then X = X∗∗.

Proof. If X∗∗ properly contains X , then X∗∗∗ would properly contain X∗. But
X∗∗∗ = X∗, a contradiction. �

We are therefore searching for a function f(k, n), defined for k with 1 ≤ k ≤
(

n

2

)

,
such that for all X < V (n), if dim(X) = k then dim(X∗) ≥ nk − f(k, n). This is
given by:

f(k, n) = max
{

dim(Xn ∩ ker(Φn))
∣

∣ X < V, dim(X) = k}.
Our objective in this section is to find an expression for f(k, n) in terms of k and n;
in fact, it turns out that the value is independent of n. The main workhorse in
our calculations will Lemma 5.12 below. The idea is to find dim(Xn ∩ ker(Φn)) by
examining the “partial intersections”; namely, the intersections of the form

〈

(0, . . .0,vi,vi+1, . . . ,vn)
∣

∣

∣
vj ∈ X

〉

⋂

ker(Φn),

as i ranges from 1 to n− 2 (when i = n− 1 or i = n, the intersection is trivial by
Corollary 5.8). For a fixed i, we can consider the subspace of X consisting of all
vectors vi which can be “completed” to an element of ker(Φ) by taking and n-tuple
with i − 1 copies of 0, followed by vi, followed by some vectors in X ; this is the
same as considering the pullbacks X ∩ ϕ−1

i (〈ϕi+1(X), . . . , ϕn(X)〉). It is easy to
verify that the sum of the dimensions of these pullbacks is equal to the dimension
of Xn ∩ ker(Φn). We will first use the dimension of these pullbacks to establish
a lower bound for the dimension of X ; then we will turn around and use these
calculations to give an upper bound for the dimension of the pullbacks in terms of
the dimension of X .

Making the bounds as precise as possible, however, requires one to keep track of
a lot of information; this in turn requires the use of multiple indices and subindices
in the proof, for which I apologize in advance. To illustrate the ideas and help the
reader navigate through the proof, we will first present an illustration. This is not
an example in the sense of a specific X , but rather a run-through the main part of
the analysis we will perform below, but with specific values for some of the indices
and some of the variables to make it more concrete.

Example 5.11. Set n = 6, and let X be a subspace of V . We will be interested
in bounding above the dimension of Zi in terms of dim(X), where

Zi = X ∩ ϕ−1
i

(

〈ϕi+1(X), . . . , ϕ6(X)〉
)

;

i.e., Zi consists of all v ∈ X for which there exist vi+1, . . . ,v6 in X such that

(0, . . . ,0,v,vi+1, . . . ,v6) ∈ X6 ∩ ker(Φ6).

To do this, we will obtain a lower bound for dim(X) in terms of dim(Zi). To
further fix ideas, set i = 2. Note that by Theorem 5.6(i) and (ii), we must have
Π1(Z2) = Π2(Z2) = 0. Order all pairs (j, i) lexicographically from right to left, so
(j, i) < (b, a) if and only if i < a, or i = a and j < b. Doing row reduction, we can
find a basis v1,2, v2,2, . . . ,vk,2 for Z2 (the second index refers to the fact that these
vectors are in the second component of an element of ker(Φ6)), satisfying that the
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“leading pair” (smallest nonzero component) of each is strictly smaller than that of
its successors, and all other vectors have zero component for that pair. For example,
suppose that dim(Z2) = 4, and that the basis has the form:

v1,2 = v43 + α1v53 + α2v64, v3,2 = v54 + γv64,

v2,2 = v63 + βv64, v4,2 = v65,

for some coefficients α1, α2, β, γ ∈ Fp. We know there exist vectors vi,3, vi,4,
vi,5, vi,6 such that (0,vi,2,vi,3,vi,4,vi,5,vi,6) ∈ X6 ∩ ker(Φ6) for i = 1, 2, 3, 4.
Naturally, X contains all twenty vectors, but there will normally be some linear
dependencies between them: some may even be equal to 0. We want to extract, in
some systematic manner, a subset that we can guarantee is linearly independent.
First let us consider the information we can obtain about these vectors from our
knowledge of the vectors vi,2.

Since (0,vi,2,vi,3,vi,4,vi,5,vi,6) lies in ker(Φ), we can use Theorem 5.6(iii) to
describe the Πi-image of each vector vi,j , where i ≤ 2 and j > 2. The Π1-image
must be trivial, and for the Π2 image we obtain the following:

Π2(v1,3) = v42 + α1v52, Π2(v2,3) = v62,

Π2(v1,4) = −v32 + α2v62, Π2(v2,4) = βv62,

Π2(v1,5) = −α1v32, Π2(v2,5) = 0,

Π2(v1,6) = −α2v42. Π2(v2,6) = −v32 − βv42.

Π2(v3,3) = 0, Π2(v4,3) = 0,

Π2(v3,4) = v52 + γv62, Π2(v4,4) = 0,

Π2(v3,5) = −v42, Π2(v4,5) = v62,

Π2(v3,6) = −γv42. Π2(v4,6) = −v52.

One way to obtain these without too much confusion is as follows: to find Π2 (vj,k),
go through the expression for vj,2 replacing all indices k by 2, remembering that
vab = −vba. Any vba in which neither a nor b are equal to k are simply removed.

To extract systematically a set of linearly independent vectors, we proceed in the
following manner: consider all the pairs which are leading components of the basis
vectors vi,2; in this case, (4, 3), (6, 3), (5, 4), and (6, 5). The individual indices that
occur are 3, 4, 5, and 6. For each of them, we identify the smallest pair in which it
occurs. Thus, 3 first occurs in pair number one, as does 4. The index 5 first occurs
in pair number three, and 6 first occurs in pair number two.

Since the first pair in which 3 appears is the first pair (corresponding to the
first basis vectors v1,2, (4, 3), where it is paired with 4, we will select the vector
v1,4; this vector has first nontrivial component (3, 2). The next index is 4, again in
the first pair, paired with 3; so this time we select v1,3. This has nontrivial (4, 2)
copmonent, and trivial (j, i) component for all (j, i) < (4, 2).

The next index is 5, which first occurs in the third pair (corresponding to v3,2)
paired with 4. So we select v3,4, a vector with trivial (j, i) component for all
(j, i) < (5, 2), and nontrivial (5, 2) component. Next we go to the index 6, that first
occurs in second pair together with 3; so we select the vector v2,3, a vector with
nontrivial (6, 2) component, and trivial (j, i) component for all (j, i) < (6, 2).
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In summary, we want to consider our original basis vectors v1,2, v2,2, v2,3,
and v2,4, plus the vectors we have selected based on the location of the indices,
to wit the vectors v1,4,v1,3,v3,4,v2,3 corresponding, respectively, to the indices
3, 4, 5, and 6. The choices we have made ensure that the Π2-images of these
latter four vectors are linearly independent, and so the vectors themselves must
be linearly independent. Since Π2(Z2) = 0, the full collection of eight vectors is
linearly independent, and so we can conclude that X must have dimension at least
8.

What is more, note that none of the four vectors v1,4, v1,3, v3,4, and v2,3 will
occur in a similar analysis involving Z3 (or more generally Zi with i > 2): when
performing a similar analysis, all vectors will have trivial Πi-image when i < 3, and
these vectors have nontrivial Π2-image. Note as well that the number of indices, in
this case 4, must satisfy dim(Z2) ≤

(

4
2

)

, since we need to be able to obtain at least
dim(Z2) pairs out of the indices that occur.

Thus we have seen that if dim(Z2) = 4, then dim(X) ≥ 8. If we move on to Z3,
we will obtain new vectors that must lie in X ; while the vectors in the basis for Z2

may again occur in that analysis, the vectors v1,4, v1,3, v3,4, and v2,3 will not, and
so by keeping track of them we can give an even better lower bound for dim(X). �

What ensures that this process will work the way we want is how we choose the
vectors of the basis and the vectors that “correspond” to each index. The former
count towards the value of dim(Xn ∩ ker(Φn)), while the latter may be removed
from consideration when we move on to Zi+1. This is all done in generality in the
proof of the following promised lemma:

Lemma 5.12. Fix n > 1, and let X be a subspace of V . For each i, 1 ≤ i ≤ n, let

Zi = X ∩ ϕ−1
i

(

〈ϕi+1(X), . . . , ϕn(X)〉
)

;

i.e., Zi consists of all v ∈ X for which there exist vi+1, . . . ,vn in X such that

(0, . . . ,0,v,vi+1, . . . ,vn) ∈ Xn ∩ ker(Φ).

If dim
(

X ∩ 〈vsr | i ≤ r < s ≤ n〉
)

= di and dim(Zi) = ri, then ri ≤
(

di−ri

2

)

.

Morevoer, if si is the smallest positive integer such that ri ≤
(

si

2

)

, then we must
have di+1 ≤ di − si.

Proof. Fix i0, 1 ≤ i0 ≤ n. For simplicity, write r = ri0 . By Theorem 5.6, if v ∈ Zi0

then Πi(v) = 0 for all i ≤ i0.
Let v1i0 , . . . ,vri0 be a basis for Zi0 . We will modify it as follows:
Order all pairs (j, i), i0 < i < j ≤ n by letting (j, i) < (b, a) if and only if i < a

or i = a and j < b (lexicographically from right to left). Let (j1, i1) be the smallest
pair for which πj1i1(vki0 ) 6= 0 for some k, 1 ≤ k ≤ r. Reordering if necessary
we may assume k = 1. Replacing v1i0 with a scalar multiple of itself and adding
adequate multiples to the remaining vki0 if necessary we may also assume that

πj1i1 (vki0 ) =

{

vj1i1 if k = 1;
0 if k 6= 1.

Let (j2, i2) be the smallest pair for which πj2i2(vki0 ) 6= 0 for some k, 2 ≤ k ≤ r.
Again we may assume k = 2, and that

πj2i2 (vki0 ) =

{

vj2i2 if k = 2;
0 if k 6= 2.
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Proceeding in the same way for k = 3, . . . , r, we obtain an ordered list of pairs
(j1, i1) < (j2, i2) < . . . < (jr, ir) and a basis v1i0 , . . . ,vri0 such that

πj`i`
(vki0 ) =

{

vj`i`
if ` = k,

0 if ` 6= k;

and such that πba (vki0 ) = 0 for all (b, a) < (jk, ik). Write vki0 =
∑

i0<i<j≤n

α
(k,i0)
ji vji.

From the above we have:

α
(k,i0)
ji =

{

1 if (j, i) = (jk, ik),
0 if (j, i) < (jk, ik).

For k = 1, . . . , r and i = i0 + 1, . . . , n, let vki be vectors in X such that

(0, . . . ,0,vki0 ,vki0+1, . . . ,vkn) ∈ ker(Φ) ∩Xn.

By Theorem 5.6(iii) we have

Πi0 (vkj) =

j−1
∑

m=i0+1

α
(k,i0)
jm vmi0 −

n
∑

m=j+1

α
(k,i0)
mj vmi0 .

For simplicity, set α
(k,i0)
ji = −α(k,i0)

ij , and α
(k,i0)
jj = 0; then we can rewrite the above

expression as:

(5.13) Πi0 (vkj) =

n
∑

m=i0+1

α
(k,i0)
jm vmi0 .

Let s be the cardinality of the set {i1, j1, . . . , ir, jr}; that is, s is the number
of distinct indices that occur in the list (j1, i1), . . . , (jr, ir). Note that r ≤

(

s
2

)

.
Let a1 < a2 < · · · < as be the list of these distinct indices. For each ` with
1 ≤ ` ≤ s, let (jk(`), ik(`)) be the smallest pair among (j1, i1), . . . , (jr, ir) that has
a` ∈ {ik(`), jk(`)}. If a` = ik(`), let b` = jk(`); if a` = jk(`), let b` = ik(`). Consider
the following list of vectors from X :

v1i0 ,v2i0 , . . . ,vri0 ,vk(1)b1 ,vk(2)b2 , . . . ,vk(s)bs
.

Note that all of these vectors lie inX∩〈vji | i0 ≤ i < j ≤ n〉. We will show that these
vectors are linearly independent. Since v1i0 , . . . ,vri0 are linearly independent and
Πi0(vki0 ) = 0 for k = 1, . . . , r, it suffices to show that Πi0(vk(1)b1 ), . . . ,Πi0(vk(s)bs

)
are linearly independent.

First, from (5.13) we have πa`i0

(

vk(m)bm

)

= α
(k(m),i0)
bma`

. We claim that if ` < m,

then α
(k(m),i0)
bma`

= 0. By construction, this claim will follow if we can show that
either a` = bm, or else the pair made up of bm and a` is strictly smaller than
the pair made up of am and bm (which is equal to (jk(m), ik(m))); the claim will

then follow because α
(k,i0)
ba = 0 whenever (b, a) < (jk, ik). Indeed, we know that

a` < am. If am = ik(m) and bm = jk(m), then replacing am in the pair (bm, am)
with something smaller (namely a`) gives a smaller pair: (bm, a`) < (bm, am). If,
on the other hand, we have am = jk(m) and bm = ik(m), then if a` > bm we have
(a`, bm) < (am, bm), and if a` < bm then we also have (bm, a`) < (am, bm). The
only remaining possibility is a` = bm, which is of course no trouble.
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Thus, we conclude that α
k(m),i0
bma`

= 0 whenever ` < m. To see that the vectors

Π2(vk(1)b1 ), . . . ,Π2(vk(s)bs
) are linearly independent, note that

πa`i0

(

vk(m)bm

)

= α
(k(m),i0)
bma`

=

{

0 if ` < m,
vb`a`

if m = `.

Therefore, if β1Πi0 (vk(1)b1 ) + · · · + βsΠi0(vk(s)bs
) = 0, then β1 = 0 since the only

vector with nontrivial (a1, i0)-component is Πi0 (vk(1)b1 ). Hence β2 = 0, because
the only remaining vector with nontrivial (a2, i0)-component is Πi0(vk(2)b2 ); and
continuing this way we conclude βj = 0 for all j. So the vectors are indeed linearly
independent. Thus we have established that

v1i0 ,v2i0 , . . . ,vri0 ,vk(1)b1 ,vk(2)b2 , . . . ,vk(s)bs

is a collection of linearly independent vectors in X ∩ 〈vsr | i0 ≤ r < s ≤ n〉.
Thus we conclude that di0 ≥ r + s. Since r ≤

(

s

2

)

, it follows that

r ≤
(

s

2

)

≤
(

di0 − r

2

)

,

as claimed.
To complete the proof, it only remains to establish the upper bound on di0+1.

We have di0 = di0+1 +dim
(

〈vji | i0 ≤ i < j ≤ n〉∩{v ∈ X |Πi0(v) 6= 0}
)

. Since the
vectors vk(1)b1 , . . . ,vk(s)bs

are linearly independent, have nontrivial Πi0 projection,

and lie in X ∩
〈

vji

∣

∣ i0 ≤ i < j ≤ n
〉

, we have di0 ≥ di0+1 + s. Moreover, since

r ≤
(

s
2

)

, we also have si0 ≤ s; therefore, di0+1 ≤ di0 − s ≤ di0 − si0 , as desired. �

Note that Zn−1 and Zn are always trivial.

Definition 5.14. Let d be a nonnegative integer. We define r(d) to be the largest

integer such that r(d) ≤ d and r(d) ≤
(

d−r(d)
2

)

.

Theorem 5.15. Fix n > 1 and let X < V . Fix i0, 1 ≤ i0 ≤ n− 2, and let

Zi0 = X ∩ ϕ−1
i0

(〈

ϕi0+1(X), . . . , ϕn(X)
〉)

.

If dim(X ∩ 〈vji | i0 ≤ i < j ≤ n〉) = d, then dim(Zi0) ≤ r(d). Equivalently,

(5.16) dim(Zi0) ≤ d−
⌈
√

8d+ 1 − 1

2

⌉

where dxe is the smallest integer greater than or equal to x.

Proof. Let dim(Zi0) = r. By Lemma 5.12, r ≤
(

d−r
2

)

, so r ≤ r(d), as claimed.

From r(d) ≤
(

d−r(d)
2

)

we easily obtain (5.16). �

We have two other ways of describing the function r(d), which will prove useful
below:

Corollary 5.17. Let d be a positive integer. Then r(d) is the number of nontri-
angular numbers strictly less than d. Equivalently, if we write d =

(

t
2

)

+ s, with

0 < s ≤ t, then r(d) =
(

t−1
2

)

+ (s− 1).

Proof. Since r(d) ≤
(

d−r(d)
2

)

≤
(

(d+1)−r(d)
2

)

, it follows that r(d+1) ≥ r(d). We also
have

r(d) + 2 > r(d) + 1 >

(

d− (r(d) + 1)

2

)

=

(

(d+ 1) − (r(d) + 2)

2

)

,
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so r(d+ 1) < r(d) + 2. If r(d) <
(

d−r(d)
2

)

, then

r(d) + 1 ≤
(

d− r(d)

2

)

=

(

(d+ 1) − (r(d) + 1)

2

)

,

so r(d+1) ≥ r(d)+1 and in this case we have r(d+1) = r(d)+1. If r(d) =
(

d−r(d)
2

)

,

then r(d) + 1 >
(

(d+1)−(r(d)+1)
2

)

, hence r(d + 1) < r(d) + 1 and we conclude that
r(d+ 1) = r(d). In summary, we have:

r(d + 1) =

{

r(d) + 1 if r(d) <
(

d−r(d)
2

)

,

r(d) if r(d) =
(

d−r(d)
2

)

.

We claim that r(d) =
(

d−r(d)
2

)

if and only if d is a triangular number: when d =
(

t+1
2

)

for some t ≥ 0, we have
(

t

2

)

=

(
(

t+1
2

)

−
(

t

2

)

2

)

=

(

d−
(

t

2

)

2

)

,

so r(d) =
(

t
2

)

=
(

d−r(d)
2

)

. Conversely, if r(d) =
(

d−r(d)
2

)

, then solving for d we obtain

d =
(

d−r(d)+1
2

)

, proving that d is a triangular number. Therefore, we have:

r(d+ 1) =

{

r(d) + 1 if d is not a triangular number,
r(d) if d is a triangular number.

Since r(1) = 0, we conclude that r(d) is the number of nontriangular numbers
strictly smaller than d, as claimed. To establish the formula, note that the value
of r at

(

t
2

)

is
(

t−1
2

)

, and therefore r
((

t
2

)

+ s
)

=
(

t−1
2

)

+ (s− 1) for 0 < s < t, since

there are exactly s− 1 more nontriangular numbers strictly less than
(

t
2

)

+ s than

there are strictly less than
(

t

2

)

. And
(

t

2

)

+ t =
(

t+1
2

)

, so we also get equality when
s = t. �

Remark 5.18. These alternate descriptions can also be obtained by examining se-
quence A083920 in [22]; for example, compare the closed formula there with (5.16).
I first realized these alternate descriptions hold by calculating the first few values
of r(d) directly, and then consulting [22].

We can now obtain an upper bound for
∑

dim(Zk) in terms of dim(X), which
in turn gives a lower bound for dim(X∗) in terms of dim(X).

Definition 5.19. For n > 0 and integer m, 0 ≤ m ≤
(

n

2

)

, we let f(m,n) denote
the largest possible value of

∑

dim(Zk) for a subspace X of V with dim(X) = m;
equivalently,

f(m,n) = max
{

dim
(

Xn ∩ ker(Φn)
)

∣

∣

∣
X < V (n), dim(X) = m

}

.

Remark 5.20. As we will see below, the value of f(m,n) does not depend on n;
meaning that if m ≤

(

n

2

)

and n ≤ N , then f(m,n) = f(m,N). It is easy to verify
that f(m,n) ≤ f(m,N): if X is a subspace of V (n) of dimension m, we can also
consider it as a subspace of V (N). If the dimension of X∗ with respect to {ϕi}n

i=1

is nm− r, then the dimension of X∗ with respect to {ϕi}N
i=1 is Nm− r; so we have

dim(Xn ∩ ker(Φn)) = dim(XN ∩ ker(ΦN )).

Intuitively, the reason the reverse inequality also holds is that the largest value of
f(m,n) occurs when the vectors in Zi use fewer indices rather than more. Because
more indices means a larger value of s in the proof of Lemma 5.12, which means
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more vectors are “taken out of circulation” for Zi+1, which gives a smaller possible
value for X ∩ 〈vrs | i < r < s < n〉. So the “best” strategy for larger intersection
with ker(Φn) is to keep X confined to as small a number of indices as possible.
The proof below will formalize this intuition, and show that indeed the value of f
depends only on m.

Theorem 5.21. Let m > 0, and write m =
(

T
2

)

+ s, 0 ≤ s ≤ T . If m ≤
(

n
2

)

, then

f(m,n) =

(

T

3

)

+

(

s

2

)

.

Remark 5.22. Although there is some ambiguity in the expression for m, since
(

T

2

)

+ T =
(

T+1
2

)

, note that the values
(

T

3

)

+
(

T

2

)

and
(

T+1
3

)

+
(

0
2

)

are equal, so the
given value of f(m) is well-defined.

Proof. By replacing
(

T+1
2

)

with
(

T

2

)

+ T if necessary, we may assume s > 0. Note

that we must have T < n in this situation. First we show that f(m,n) ≥
(

T

3

)

+
(

s

2

)

.
Let X be the m-dimensional coordinate subspace of V (n) generated by all vji

with 1 ≤ i < j ≤ T , and the vectors vT+1,1, . . . , vT+1,s. Then X∗ is the coordinate
subspace of W (n) generated by all vectors of the form wjik with 1 ≤ i < j ≤ T ,
i ≤ k ≤ n; plus the vectors of the form wT+1,i,k with 1 ≤ i ≤ s, i ≤ k ≤ n. There

are 2
(

T+1
2

)

+ (n− T )
(

n

2

)

vectors of the first kind, and

n+ (n− 1) + (n− 2) + · · · + n− (s− 1) = sn−
(

s

2

)

of the second kind. Thus dim(X∗) = 2
(

T+1
2

)

+ (n−T )
(

T
2

)

+ sn−
(

s
2

)

; and we have:

n dim(X) − dim(X∗) = T

(

T

2

)

− 2

(

T + 1

3

)

+

(

s

2

)

= (T − 2)

(

T

2

)

− 2

(

T

3

)

+

(

s

2

)

=

(

T

3

)

+

(

s

2

)

.

Therefore, f(m,n) ≥
(

T
3

)

+
(

s
2

)

.
For the reverse inequality, we will apply induction. Assume the for any X ′ space

of V (n) with dim(X ′) < m. Write m =
(

T

2

)

+ s with 0 < s ≤ T , and T < n, and
let X be a subspace of V of dimension m. We want to show that

∑

dim(Zi) is

bounded above by
(

T
3

)

+
(

s
2

)

. If all Zi are trivial, this follows. Otherwise, assume i
is the smallest index with nontrivial Zi, and that dim(Zi) = k > 0. Then k ≤ r(m),

and if ` is the smallest positive integer such that k ≤
(

`

2

)

then

dim
(

X ∩ 〈vsr | i < r < s ≤ n〉
)

≤ m− `.

So the sum of the dimensions of the Zj with j > i is at most f(m− `, n); that is,
the sum over all k is bounded:

∑

dim(Zk) ≤ k + f(m− `, n).

We want to show that k + f(m− `, n) ≤
(

T

3

)

+
(

s

2

)

for all k and ` that satisfy the
relevant conditions. It is easy to show that for m = 1, 2, 3, 4, and 5, all values of the
form k + f(m− `, n), k ≤ r(m) and ` as above are less than or equal to

(

T
3

)

+
(

s
2

)

.
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If ` = T = m− r(m), then since k ≤ r(m) we have

k + f(m− `, n) ≤ r(m) + f(r(m), n)

=

(

T − 1

2

)

+ (s− 1) + f

((

T − 1

2

)

+ (s− 1), n

)

=

(

T − 1

2

)

+ (s− 1) +

(

T − 1

3

)

+

(

s− 1

2

)

=

(

T

3

)

+

(

s

2

)

;

If ` < T , since k ≤
(

`

2

)

, it is enough to to show that for 1 < ` < T ,
(

`

2

)

+ f(m− `, n) ≤
(

T

3

)

+

(

s

2

)

.

If 2 ≤ ` ≤ s, then:
(

`

2

)

+ f(m− `, n) =

(

`

2

)

+ f

((

T

2

)

+ (s− `), n

)

=

(

`

2

)

+

(

T

3

)

+

(

s− `

2

)

≤
(

T

3

)

+

(

s

2

)

.

The last inequality follows since
(

`
2

)

+
(

s−`
2

)

is the number of two element subsets of
{1, . . . , s}, where either both elements are less than or equal to `, or both strictly
larger than `.

If s < ` < T , then write ` = s+ a, a > 0. We then have

m− ` =

(

T

2

)

+ s− (s+ a) =

(

T − 1

2

)

+ (T − 1 − a),

so
(

`

2

)

+ f(m− `, n) =

(

`

2

)

+

(

T − 1

3

)

+

(

T − 1 − a

2

)

.

Since `+ 1 − T ≤ 0 and a > 0, we must have

6a(s+ a+ 1 − T ) ≤ 0.

Rewriting and introducing suitable terms we have:

6as+ 3a2 − 3a− 3T 2 + 9T − 6 + 3T 2 − 9T − 6aT + 9a+ 3a2 + 6 ≤ 0

In turn, this can be rewritten as

6as+ 3a2 − 3a− 3(T − 1)(T − 2) + 3(T − a− 1)(T − a− 2) ≤ 0.

This gives:

3(s2 + 2as+ a2 − s− a) − 3(T − 1)(T − 2) + 3(T − a− 1)(T − a− 2) ≤ 3(s2 − s),

and so

3((s+ a)2 − (s+ a)) − 3(T − 1)(T − 2) + 3(T − a− 1)(T − a− 2) ≤ 3(s2 − s).

Substituting ` for s+ a and adding T (T − 1)(T − 2) to both sides we have

3(`2−`)+(T−3)(T−2)(T−1)+3(T−a−1)(T−a−2) ≤ T (T−1)(T−2)+3(s2−s);
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dividing through by 6 yields the desired inequality:
(

`

2

)

+ f(m− `, n) ≤
(

`

2

)

+

(

T − 1

3

)

+

(

T − 1 − a

2

)

≤
(

T

3

)

+

(

s

2

)

.

We therefore conclude that f(m,n) ≤
(

T
3

)

+
(

s
2

)

, which completes the proof. Note
that indeed, the value of n is not relevant to the value of f(m,n), so long as n is
large enough to satisfy m ≤

(

n

2

)

. �

Since the value of f(m,n) does not depend on n, we will drop the second argu-
ment and simly call this function f(m).

Theorem 5.23. Fix n > 1 and let X be a subspace of V . Write dim(X) =
(

T
2

)

+s,
0 ≤ s ≤ T . Then

n dim(X) −
(

T

3

)

−
(

s

2

)

≤ dim(X∗) ≤ min

{

n dim(X), 2

(

n+ 1

3

)}

.

Proof. The lower bound follows from dim(X∗) ≥ n dim(X) − f(dim(X)), and the
upper bound is immediate. �

Corollary 5.24. Fix n > 1 and let X be a subspace of V with dim(X) = m. If
dim(X∗) = nm− k and n+ k > f(m+ 1), then X is closed.

Proof. Suppose X is as in the statement, and let Y be any subspace of V of dimen-
sion m+ 1. From the definition of f we know that

dim(Y ∗) ≥ n(m+ 1) − f(m+ 1),

so dim(Y ∗) − dim(X∗) ≥ n + k − f(m + 1) > 0. Therefore every Y strictly
larger than X must have dim(X∗) < dim(Y ∗), which shows that X is closed by
Proposition 5.10. �

Corollary 5.25. Fix n > 1 and let X be a subspace of V with dim(X) = m. Write

m =
(

T

2

)

+ s, 0 ≤ s < T . If
(

T

3

)

+
(

s+1
2

)

< n, then X is closed.

Proof. This follows from the previous corollary and the formula for f(m + 1) in
Theorem 5.21. �

For reference, Table 1 contains the values of f(m), 3 ≤ m ≤ 50. Note that
f(1) = f(2) = 0 by Corollary 5.9. The sequence of values of f(m) appears as
sequence A111138 in [22].

Translating back into group theory, we obtain the following:

Theorem 5.26. Let G be a group of class at most two and exponent p, where p is
an odd prime. Let rank(Gab) = n, and let rank([G,G]) = m. If f

((

n
2

)

−m+1
)

< n,
where f(k) is the function in Theorem 5.21, then G is capable.

Proof. The subspace X of V (n) corresponding to G has dimension
(

n
2

)

−m; so the
result follows directly from Corollary 5.25. �
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m f(m) m f(m) m f(m)

3 1 19 26 35 77
4 1 20 30 36 84
5 2 21 35 37 84
6 4 22 35 38 85
7 4 23 36 39 87
8 5 24 38 40 90
9 7 25 41 41 94
10 10 26 45 42 99
11 10 27 50 43 105
12 11 28 56 44 112
13 13 29 56 45 120
14 16 30 57 46 120
15 20 31 59 47 121
16 20 32 62 48 123
17 21 33 66 49 126
18 23 34 71 50 130

Table 1. Explicit values of f(m), 3 ≤ m ≤ 50

6. A Necessary Condition.

In this section, we use our set-up to give a proof of a slight strengthening of
the necessary condition proven by Heineken and Nikolova in [13]. The proof is
essentially that given in [13] “translated” into our notation and set-up. We do
gain two improvements on their result: a necessary condition for equality to hold,
and a weakening of the hypothesis by dropping an assumption. In [13] the authors
assume throughout that the capable group G they investigate satisfies the condition
Z(G) = [G,G], and so their result is restricted to that situation. We will be able
to obtain their result with this assumption dropped.

The object of this section is to prove that if G is capable, of class at most two

and exponent p, and [G,G] is of order pk, then G/Z(G) is of order at most p2k+(k

2).
It is interesting to note that while the results from the previous sections, leading

to sufficient conditions, have focused on the closure operator on the subspaces of V ,
the proof here will proceed by placing considerable emphasis on the interior operator
on the subspaces of W . I do not know if this is simple happenstance, or if we can
indeed expect that considerations of the interior operator on W will generally point
towards necessary conditions while the closure operator on V will give sufficient
ones.

In addition to the linear transformations ϕu, an important role in the proof
is played by elements g ∈ Z(G) which have nontrivial image in Gab. In order
to account for these elements in our setting, we will use another family of linear
transformations which we introduce now:

Definition 6.1. Let n > 1. We embed U into L(U, V ) as follows: given u ∈ U ,
we define ψu(a) = a ∧ u for all a ∈ U . If u1, . . . , un is a given basis for U and i is
an integer, 1 ≤ i ≤ n, then we let ψi denote the transformation ψui

. Note that for
any a,b ∈ U , ψa(b) = −ψb(a).
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Fix an isomorphism between Gab and U . Let g ∈ G be an element whose
image in Gab is nontrivial, and let ug be the corresponding element of U . Then
g ∈ Z(G) if and only if ψug

(U) is contained in X . Note also that for any u ∈ U ,
ψu(U) = 〈u〉∗ = span(ψ1(u), . . . , ψn(u)). This is how we will use the maps above
to address the central elements of G that are not in [G,G]

An explicit description of the maps ψ in terms of a basis for U is easy:

Lemma 6.2. Fix n > 1, let u1, . . . , un be a basis for U , and let vji be the corre-
sponding basis for V . For all integers i and j, 1 ≤ i, j ≤ n, the image of uj under
ψi in terms of the basis vji is given by:

ψi(uj) =







vji if i < j,
0 if i = j,
−vij if i > j.

Let Y be a subspace of W . If we let X = Y ∗ then X is closed by Theorem 3.3;
moreover, any closed subspace X of V can be realized this way, by letting Y = X∗.
Given such an X and Y , we define two subsets of U as follows:

Z =
{

u ∈ U
∣

∣ ψu(U) ⊆ X
}

,

C =
{

u ∈ U
∣

∣ ϕu(V ) ⊆ Y
}

.

Let F be the 3-nilpotent product of n cyclic groups of order p, and let U , V , W
correspond to F ab, 〈[xj , xi] | 1 ≤ i < j ≤ n〉, and F3 respectively, as in Section 3,
Let N correspond to X , and G = F/(X⊕F3), H = F/Y . Then G is capable (since
X is closed), H is a witness for the capability of G, and it is not hard to see that
Z will correspond to the image of Z2(H) in Hab (this is the same as the image
of Z(G) in Gab, i.e., those elements that are central in G but do not come from
commutators), while C will correspond to the image of the centralizer C([H,H ]) in
Hab. These two sets (in fact, subspaces as we will prove below) play a key role in
our analysis.

Lemma 6.3. Let Y be a subspace of W , and let X = Y ∗. If

Z =
{

u ∈ U
∣

∣ ψu(U) ⊆ X
}

and C =
{

u ∈ U
∣

∣ ϕu(V ) ⊆ Y
}

,

then both Z and C are subspaces of U , and Z ⊆ C.

Proof. The map u 7→ ψu is a linear embedding from U to L(U, V ). The canonical
projection V → V/X induces a map U → L(U, V/X). The kernel of this map is Z,
so Z is a subspace.

Similarly, the kernel of the composite map U → L(V,W ) → L(V,W/Y ), given
by composing the embedding u 7→ ϕu with the map induced by the canonical
projection W →W/Y has kernel C, so C is a subspace.

To prove that Z ⊆ C, let z ∈ Z. If z = 0, then trivially z ∈ C. If z 6= 0, then
complete it to a basis z = u1, . . . , un of U , and let vji, wjik be the corresponding
prefered bases for V and W . Since z = u1 ∈ Z, it follows that vj1 ∈ X for
j = 2, . . . , n. We want to show that ϕ1(vji) ∈ Y for all i, j, 1 ≤ i < j ≤ n. If i = 1,
then vji ∈ X , so ϕu(vji) ∈ Y for all u ∈ U and there is nothing to do. If i > 1,
then ϕ1(vji) = wj1i − wi1j = ϕi(vj1) − ϕj(vi1). Since vj1, vi1 ∈ X , we have that
both ϕi(vj1) and ϕj(vi1) lie in Y , hence ϕ1(vji) ∈ Y . This proves that z ∈ C, as
claimed. �
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We continue by stating some results on the interactions between the maps ψu

and the maps ϕu′ .

Lemma 6.4. For a, b, c ∈ U , ϕa(ψb(c)) + ϕc(ψa(b)) + ϕb(ψc(a)) = 0.

Proof. This is simply the Jacobi identity. Evaluating the left hand side, we obtain

(c ∧ b) ⊗ a + (b ∧ a) ⊗ c + (a ∧ c) ⊗ b,

where (r ∧ s) ⊗ t represents the image of r∧ s⊗ t in (V ⊗U)/J (see Definition 3.6).
But since this element is one of the generators of the subspace J , the left hand side
is trivial in W , as claimed. �

Lemma 6.5. Let Y be a subspace of W , and let X = Y ∗. Let

C =
{

u ∈ U
∣

∣ ϕu(V ) ⊆ Y
}

.

If c ∈ C, then for all a,b ∈ U ,

ϕb(ψc(a)) ≡ ϕa(ψc(b)) (mod Y ).

Proof. From Lemma 6.4, we know that ϕa(ψb(c)) + ϕb(ψc(a)) = −ϕc(ψa(b)).
Since c ∈ C, we must have ϕc(ψa(b)) ∈ Y . Therefore,

ϕb(ψc(a)) ≡ −ϕa(ψb(c)) (mod Y )

≡ ϕa(−ψb(c)) (mod Y )

≡ ϕa(ψc(b)) (mod Y ).

This proves the lemma. �

Lemma 6.6. Let Y be a subspace of W , X = Y ∗, and let

C =
{

u ∈ U
∣

∣ ϕu(V ) ⊆ Y
}

.

If codimW (Y ) = 1, then codimV (X) = codimU (C).

Proof. The map C → L(V,W/Y ) factors through L(V/X,W/Y ), and the kernel of
the induced map U → L(V/X,W/Y ) is C. Therefore,

codimU (C) = dim(U/C) ≤ dim(L(V/X,W/Y )) = dim(V/X) dim(W/Y )

= codimU (X)codimW (Y ) = codimU (X),

proving one inequality.
To prove the reverse inequality, let w ∈ W\Y , codimV (X) = k, and pick el-

ements v1, . . . ,vk of V whose images in the quotient V/X form a basis. Since
v1 /∈ X , there exists u1 ∈ U such that ϕu1

(v1) /∈ Y . Note that u1 /∈ C. Adjusting
v1 by a scalar if necessary, and adding multiples of v1 to v2, . . . ,vk if necessary,
we may assume that

ϕu1
(v1) ≡ w (mod Y ) and ϕu1

(vi) ≡ 0 (mod Y ) for i > i.

Since v2 /∈ X , there exists u2 ∈ U such that ψu2
(v2) /∈ Y . Multiplying v2 by a

scalar and adding multiples of v2 to v3, . . . ,vk if necessary, we may assume that

ϕu2
(v2) ≡ w (mod Y ) and ϕu2

(vi) ≡ 0 (mod Y ) for i > 2.

Proceeding in the same manner, we obtain elements u1, . . . ,uk ∈ U such that
ϕui

(vi) ≡ w (mod Y ) for i = 1, . . . , k, and ϕui
(vj) ∈ Y for j > i. Let ϕu1

, . . . , ϕuk

be the images of u1, . . . ,uk in L(V,W/Y ). These linear transformations are linearly
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independent, because if α1ϕu1
+ · · ·+ αkϕuk

is the zero transformation, then eval-
uating at vk we deduce that αk = 0; then evaluating at vk−1 we obtain αk−1 = 0;
etc. Since the images of u1, . . . ,uk are linearly independent under a map with
kernel C, it follows that their images in U/C are also linearly independent, proving
that codimU (C) = dim(U/C) ≥ k. This proves the reverse inequality, and we are
done. �

From the proof above we also deduce the following technical corollary; we will
use it in argument below:

Corollary 6.7. Let Y be a subspace of W , and let X = Y ∗. Let

C =
{

u ∈ U
∣

∣ ϕu(V ) ⊆ Y
}

,

and let w ∈ W\Y . If codimW (Y ) = 1 and codimV (X) = k, then there exist
v1, . . . ,vk ∈ V and u1, . . . ,uk ∈ U such that:

(i) The images of v1, . . . ,vk in V/X form a basis for V/X.
(ii) The images of u1, . . . ,uk in U/C form a basis for U/C. In particular,

U = 〈u1, . . . ,uk〉 ⊕ C.
(iii) ϕui

(vi) ≡ w (mod Y ) for i = 1, . . . , k.
(iv) ϕui

(vj) ≡ 0 (mod Y ) for all i, j, 1 ≤ i < j ≤ k.

Lemma 6.8. Let Y be a subspace of W , and let X = Y ∗. Let

Z =
{

u ∈ U
∣

∣ ψu(U) ⊆ X
}

and C =
{

u ∈ U
∣

∣ ϕu(V ) ⊆ Y
}

.

Let u1, . . . ,uk ∈ U be elements such that U = 〈u1, . . . ,uk〉 + C. If c ∈ C is such
that ψc(ui) ∈ X for i = 1, . . . , k, then c ∈ Z.

Proof. To prove that v ∈ V lies in X , it is enough to show that ϕui
(v) ∈ Y for

i = 1, . . . , k; this follows since U is spanned by the vectors u1, . . . ,uk and C, the
latter always mapping into Y , and X =

{

v ∈ V
∣

∣ ϕu(v) ∈ Y for all u ∈ U
}

. Thus,
to prove that c ∈ Z, it is enough to show that for every u ∈ U and i = 1, . . . , k,
ϕuk

(ψc(u)) ∈ Y . Since c ∈ C, we know from Lemma 6.5 that

ϕuk
(ψc(u)) ≡ ϕu(ψc(uk)) (mod Y ).

By assumption, ψc(uk) ∈ X , and therefore ϕu(ψc(uk)) ∈ Y . Thus, ϕuk
(ψc(u)) lies

in Y , and we are done. �

The following counting argument will be needed a few times, and will be the key
tool used to establish the upper bounds.

Lemma 6.9. Let A and B be vector spaces over the same field, dim(A) = n and
dim(B) = 1. Let a1, . . . , an be a basis for A, and let b ∈ B be a nonzero vector.
Let f1, . . . , fn ∈ L(A,B) be linear transformations such that

fi(ai) = b for i = 1, . . . , n; and fi(aj) = 0 if 1 ≤ i < j ≤ n.

Then the dimension of the subspace
{

(

v1, . . . ,vn

)

∈ An
∣

∣

∣
fi(vj) = fj(vi), 1 ≤ i, j ≤ n

}

is n+
(

n
2

)

.
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Proof. Express vi in terms of the basis for A, vi = αi1a1 + · · · + αinan. We have
n degrees of freedom for choosing v1. Once v1 is fixed, we must have

α21b = f1(v2) = f2(v1),

which fixes the value of α21, leaving n−1 degrees of freedom for choosing v2. Once
both v1 and v2 are fixed, v3 must satisfy

α31b = f1(v3) = f3(v1),

α31f2(a1) + α32b = f2(v3) = f3(v2).

The first equation completely determines α31, which together with the second equa-
tion completely determines α32, leaving n− 2 degrees of freedom for choosing v3.

Continuing in this manner we have n− 3 degrees of freedom for v4, n− 4 for v5,
and so on, until we have one degree of freedom left for vn. In total, we have

n+ (n− 1) + (n− 2) + · · · + 2 + 1 = n+

(

n

2

)

degrees of freedom in choosing the n-tuple; this proves that the subspace in question
has dimension n+

(

n
2

)

, as claimed. �

Our proof that we can bound dim(U/Z) in terms of dim(V/X) will proceed by
induction on codimW (Y ). The basis of the induction is contained in the following
lemma:

Lemma 6.10 (cf. [13, Lemma 1]). Let Y be a subspace of W of codimension one.
Let X = Y ∗, and let Z =

{

u ∈ U
∣

∣ ψu(U) ⊆ X
}

. If codimV (X) = k, then

dim(U/Z) ≤ 2k +
(

k
2

)

.

Proof. As before, let C =
{

u ∈ U
∣

∣ ϕu(V ) ⊆ Y
}

. From Lemma 6.6 we know that

dim(U/C) = k, so we only need to prove that dim(C/Z) ≤ k+
(

k

2

)

. Fix w ∈W\Y ,
and let v1, . . . ,vk and u1, . . . ,uk be the vectors given by Corollary 6.7.

Consider the linear map C 7→ (V/X)k defined by:

c 7→
(

ψc(u1), . . . , ψc(uk)
)

,

where v is the image of v ∈ V under the canonical projection V → V/X . By
Lemma 6.8, the kernel of the map is Z, so we obtain an embedding of C/Z into

(V/X)k. Note also that the image of c ∈ C is a vector (ψc(u1), . . . , ψc(uk)) that
satisfies the congruence ϕuj

(ψc(ui)) ≡ ϕui
(ψc(uj)) (mod Y ) by Lemma 6.5. This

is well defined, since elements of X always map into Y via any ϕu.
By Lemma 6.9, the image of c lies in a subspace of dimension k+

(

k

2

)

; therefore,

C/Z is of dimension at most k +
(

k
2

)

, By Lemma 6.6:

dim(U/Z) = dim(U/C) + dim(C/Z) ≤ k + k +

(

k

2

)

= 2k +

(

k

2

)

,

proving the lemma. �

One final observation is needed:

Lemma 6.11. Let Y be a subspace of W , and let Y ′ be a subspace of W with the
same interior as Y ; that is, such that Y ′∗∗ = Y ∗∗. Then Y ′∗ = Y ∗.

Proof. This follows from Theorem 3.3, since Y ′∗ = Y ′∗∗∗ = Y ∗∗∗ = Y . �
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We can now prove the main result of this section:

Theorem 6.12 (cf. [13, Theorem 1]). Let Y be a subspace of W , let X = Y ∗, and

let Z =
{

u ∈ U
∣

∣ ψu(U) ⊆ X
}

. If codimV (X) = k, then dim(U/Z) ≤ 2k +
(

k

2

)

,
and equality holds only if there exists a subspace Y ′ of W such that codimW (Y ′) ≤ 1
and Y ′∗∗ = Y ∗∗.

Proof. We proceed by induction on r = codimW (Y ). If codimW (Y ) = 0, then
X = V , Z = U , and the result holds trivially. If codimW (Y ) = 1, then the result is
Lemma 6.10; the final clause also holds, since the consequent is trivially true with
Y ′ = Y . Assume then that codimW (Y ) ≥ 2. As before, let

C =
{

u ∈ U
∣

∣ ϕu(V ) ⊆ Y
}

.

Suppose inductively that the result holds for any subspace Y ′ of W such that
codimW (Y ′) < codimW (Y ) = r. If there exists Y ′ with codimW (Y ′) < codimW (Y )
and Y ′∗∗ = Y ∗∗, then we can replace Y with Y ′. Note that since Y ′∗ = Y ∗, the
subspaces Z of U and X of V are not affected by change, so the result holds by
induction. We may therefore assume that if Y2 is any subspace of W that properly
contains Y , then Y ∗ is properly contained in Y ∗

2 . To prove the result for Y , we will
need to establish that the strict inequality holds in this situation.

Among all Y2 such that Y ⊆ Y2, and dim(Y2) = dim(Y ) + 1, we pick one for
which X2 = Y ∗

2 is of minimal dimension. Note that X is properly contained in
X2; if we let ω = dim(X2/X), then 0 < ω < k and codimV (X2) = k − ω. Let
Z2 =

{

u ∈ U
∣

∣ ψu(U) ⊆ X2

}

; again we have that Z ⊆ Z2. By the induction

hypothesis, we know that dim(U/Z2) ≤ 2(k−ω)+
(

k−ω
2

)

. We now want to estimate
the dimension of Z2/Z. We will do this in two steps, first by giving an upper bound
for the dimension of Z2/(Z2∩C), and then giving an upper bound for the dimension
of (Z2 ∩ C)/Z.

Let Y3 be any subspace of W that contains Y , dim(Y3) = dim(Y ) + 1, and
Y3 6= Y2. This is possible because dim(Y ) < dim(W ) − 1, so there are at least
p + 1 subspaces of dimension one more than dim(Y ). Let X3 = Y ∗

3 ; by choice of
Y2, dim(X3/X) ≥ ω, and so dim(V/X3) ≤ k − ω.

If v ∈ X3 and u ∈ Z2, then ϕu(v) ∈ Y2 ∩ Y3 = Y ; so the map Z2 7→ L(V, Y2/Y )
defined by u 7→ ϕu factors through L(V/X3, Y2/Y ). The kernel of this map is
Z2 ∩ C, and therefore

dim(Z2/(Z2 ∩ C)) ≤ dim(L(V/X3, Y2/Y )) = dim(V/X3) ≤ k − ω.

Finally, we want an upper bound for dim((Z2 ∩C)/Z). This is the difficult part
of the induction.

By Corollary 6.7, we can select elements x1, . . . ,xω in X2, and u1, . . . ,uω in U ,
such that the xi projecto onto a basis for X2/X , and

ϕui
(xi) ≡ w (mod Y ) 1 ≤ i ≤ ω,

ϕui
(xj) ≡ 0 (mod Y ) 1 ≤ i < j ≤ ω.

Since the images of u1, . . . ,uω are linearly independent when we project to U/C, if
we project to U/(Z2 ∩C) the images are also linearly independent. Extend this list
to u1, . . . ,uω,uω+1, . . . ,us such that the projections form a basis for U/(Z2 ∩ C).

Fix j > ω. Adding suitable multiples of uω to uj , we may assume that ϕuj
(xω)

is in Y . Then, adding multiples of uω−1 to uj , which will not change the value of
ϕuj

(xω) modulo Y , we may also assume that ϕuj
(xω−1) ∈ Y . Continuing in this



34 ARTURO MAGIDIN

manner, adding multiples of uω−2, . . . ,u1, we may assume that ϕuj
(xi) ∈ Y for

i = 1, . . . , ω; repeating this for each j > ω, we obtain:

ϕuj
(xi) ∈ Y for all i, j, 1 ≤ i ≤ ω < j ≤ s.

Since X2 = 〈x1, . . . ,xω〉 +X , we thus have that for j > ω, ϕuj
(X2) ⊆ Y .

Given u ∈ Z2 ∩ C, consider
(

ψu(u1), . . . , ψu(uω), ψu(uω+1), . . . , ψu(us)
)

∈ (X2/X)s.

Since u ∈ C, if 1 ≤ i < j ≤ s then by Lemma 6.5 the coordinates satisfy

ϕuj
(ψu(ui)) ≡ ϕui

(ψu(uj)) (mod Y );

the values are well defined modulo X , since X = Y ∗. In addition, u ∈ Z2, and so
ψu(ui) ∈ X2; therefore, if j > ω, then ϕuj

(ψu(ui)) ∈ ϕuj
(X2) ⊆ Y . In particular,

if j > ω, then ϕuj
(ψu(ui)) ≡ 0 (mod Y ) for all i, and therefore

ϕu1
(ψu(uj)) ≡ · · · ≡ ϕus

(ψu(uj)) ≡ 0 (mod Y ).

Since U = 〈u1, . . . ,us〉 + C, it follows that if j > ω then ϕa(ψu(uj)) ∈ Y for
all a ∈ U . Therefore ψu(uj) ∈ X for all j > ω. Thus, we conclude that for all
u ∈ Z2 ∩ C and all j > ω, ψu(uj) ∈ X . Therefore, in the s-tuple

(

ψu(u1), . . . , ψu(uω), ψu(uω+1), . . . , ψu(us)
)

∈ (X2/X)s

only the first ω components may be nontrivial.
Consider then the linear map Z2 ∩ C 7−→ (X2/X)s given by

u 7→
(

ψu(u1), . . . , ψu(uω), ψu(uω+1), . . . , ψu(us)
)

.

We claim that the kernel of this map is Z.
Certainly, Z is contained in the kernel. Conversely, let u ∈ Z2 ∩ C be such that

ψu(uj) ∈ X for j = 1, . . . , s. Since U = 〈u1, . . . ,us〉+(Z2∩C), to prove that u ∈ Z
it is enough to show that ψu(Z2 ∩C) ⊆ X . In turn, to establish this it is enough to
show that if z ∈ Z2 ∩C, then for all a ∈ U , ϕa(ψu(z)) ∈ Y . Since u ∈ Z2 ∩C ⊆ C,
we know that ϕa(ψu(z)) ≡ ϕz(ψu(a)) (mod Y ); and since z ∈ Z2 ∩ C ⊆ C, we
also have that ϕz(ψu(a)) ∈ Y . Therefore, ϕa(ψu(ϕz)) ∈ Y for all a ∈ U and we
conclude that ψu(z) ∈ X as desired. Therefore u ∈ Z, proving the claim. Putting
this claim together with the observation that only the first ω components can be
nontrivial in any case, we conclude that we have an embedding

(Z2 ∩ C)/Z ↪→ (X2/X)ω

u 7−→
(

ψu(u1), . . . , ψu(uω)
)

,

and that the ω-tuples in the image satisfy

ϕuj
(ψu(ui)) ≡ ϕui

(ψu(uj)) (mod Y ) for all i, j, 1 ≤ i < j ≤ ω.

Applying Lemma 6.9, we have that (Z2∩C)/Z embeds into a subspace of dimension
ω +

(

ω
2

)

, and therefore dim((Z2 ∩ C)/Z) ≤ ω +
(

ω
2

)

.
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Thus we have shown that:

dim(U/Z) = dim(U/Z2) + dim(Z2/(Z2 ∩ C)) + dim((Z2 ∩ C)/Z),

dim(U/Z2) ≤ 2(k − ω) +

(

k − ω

2

)

,

dim(Z2/(Z2 ∩ C)) ≤ k − ω,

dim((Z2 ∩ C)/Z) ≤ ω +

(

ω

2

)

.

Putting it all together, we have (cf. Theorem 1 in [13]):

dim(U/Z) ≤ 3k − 2ω +

(

k − ω

2

)

+

(

ω

2

)

= 3k − 2ω +
k2 − k

2
+ ω(ω − k)

= 2k +

(

k

2

)

+ (k − ω)(1 − ω) − ω

= 2k +

(

k

2

)

−
(

(ω − 1)(k − ω − 1) + 1
)

< 2k +

(

k

2

)

.

The last inequality holds since 0 < ω < k, and therefore both ω − 1 and k − ω − 1
are nonnegative.

This strict inequality finishes the inductive step, and proves the theorem. �

Translating back to groups we obtain the promised improvement on the necessary
condition of Heineken and Nikolova:

Theorem 6.13. Let G be a p-group of class at most 2 and exponent p. If G is
capable, and [G,G] is of rank k, then G/Z(G) is of rank at most 2k+

(

k

2

)

. Moreover,
equality holds only if there exists a witness H to capability such that H3 is cyclic
(possibly trivial).

Proof. If we fix an isomorphism Gab ∼= U and let X be the corresponding subspace
of V , then [G,G] ∼= V/X and G/Z(G) ∼= U/Z, where Z =

{

u ∈ U
∣

∣ ψu(U) ⊆ X
}

.
Thus, the inequality by Theorem 6.12. For the “moreover” clause, note that if we
let H be F/M , where F is the 3-nilpotent product of n groups of order p (with
n the rank of Gab), and M is the subspace of H3 corresponding to any Y with
Y ∗ = X , then H will be a witness fot the capability of X (as we are assuming
that X is closed). By picking the Y ′ of codimension at most 1 guaranteed by the
theorem, we obtain a witness with the desired property. �

7. The 5-generated case.

In this section we combine our results so far to characterise the capable groups
among the 5-generated groups of class at most two and exponent p.

One way to interpret Corollary 5.25 is that if G is of class exactly two and
exponent p, and the commutator subgroup of G is “large enough,” then G will
be capable. On the other hand, Theorem 6.13 says that if G is capable, of class
exactly two and exponent p, then the commutator subgroup of G cannot be “too
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small”. Put together, the results seem to indicate that a group of class exactly two
and prime exponent will be capable if and only if it is “nonabelian enough.” The
characterisation below seems to reinforce this intuition.

The 4-generated case. It is of course well known that a nontrivial cyclic group
cannot be capable. It has also also been long known that an extra-special p-group
is capable if and only if it is of order p3 and exponent p. The following result shows
that, at least for 4-generated groups in the class we are considering, these are the
only exceptions to capability.

Theorem 7.1. Let p be a prime, and let G be a 4-generated group of class at most 2
and exponent p. Then G is one and only one of the following:

(i) Cyclic and nontrivial;
(ii) Extra-special of order p5 and exponent p;
(iii) Capable.

Proof. Following the notation of Theorem 5.26, let n be the rank of Gab, and let
m be the rank of [G,G].

The case of p = 2 is trivial, since G is abelian in this case. Assume then p > 2.
The three categories are of course disjoint, so we only need to show that any such G
is one of the three. If G is trivial, then it is capable. If G is minimally 1-generated,
then it is nontrivial cyclic.

For G minimally 2-generated, Theorem 5.26 shows that G is capable: we have
n = 2 and m = 0 or 1, and in either case f(

(

2
2

)

−m + 1) < 2. For G minimally
3-generated, again Theorem 5.26 settles the problem: here we have m = 0, 1, 2,
or 3, and f(

(

3
2

)

−m+ 1) < 3 in all cases.
Consider then the case of G minimally 4-generated; m must satisfy 0 ≤ m ≤ 6. If

m ≥ 2, then f(
(

4
2

)

−m+1) < 4, so G will be capable. If m = 0, then G ∼= C4
p , which

is capable. Thus, the only case not covered is when m = 1, i.e., the commutator
subgroup is cyclic.

If Z(G) 6= [G,G], then we apply Theorem 4.14 and the n = 3 case to deduce that
G is capable. Finally, if Z(G) = [G,G] then we apply Theorem 6.13: the group
cannot be capable, since 4 > 2(1)+

(

1
2

)

. Alternatively, G is of order p5, exponent p,
and extra-special, and so we apply Corollary 4.19. �

The minimally 5-generated case. We next consider the case of n = 5. Here,
Theorem 5.26 settles the cases m ≥ 4; and the case m = 0 is of course trivial.
We can finish the characterisation applying some easy group theory, and finally by
applying non-trivial work of Brahana [4] to obtain a very satisfying result similar
to Theorem 7.1.

If m = 1 then our group G has cyclic commutator subgroup. We cannot then
have Z(G) = [G,G] since Gab is of order p5, and so the group G will be either of
the form E ⊕ Cp, where E is extra-special of order p5 and exponent p (hence G is
not capable), or else of the form K ⊕C3

p where K is the nonabelian (extra-special)

group of order p3 and exponent p (and so G will be capable).
To discuss the cases of m = 2 and m = 3, recall that if V is a vector space and

k is an integer, 0 ≤ k ≤ dim(V ), then the Grassmannian Gr(k, V ) is the set of all
k-dimensional subspaces of V . This set has a rich geometric structure, though we
will only touch on it briefly.
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To solve the cases of m = 2 and m = 3, by Proposition 3.5 we only need to
consider one representative from each orbit of the action of GL(5, p) in Gr(7, V )
(for the case m = 3) and Gr(8, V ) (for the case m = 2). In [4], Brahana shows that
there are 6 orbits in Gr(2, V ) and 22 orbits in Gr(3, V ). By taking the orthogonal
complement of each subspace (relative to our prefered basis vji, 1 ≤ i < j ≤ n, with
〈vji, vrs〉 = 1 if (j, i) = (r, s) and 0 otherwise) we obtain a well-known duality that
shows that the number of orbits in Gr(k, V ) is the same as the number of orbits
in Gr(

(

n
2

)

− k, V ) (see for example the paragraphs leading to [6, Theorem 1]; the
argument there is for n = 4 and k = 6, but it trivially generalizes); thus, we can
take the lists from [4] and by taking orthogonal complements, obtain a complete
list of orbit representatives for the cases we are interested in. It is then an easy
matter to check which ones correspond to closed subspaces and which do not.

There are six orbits of 8-dimensional subspaces under the action of GL(5, p): we
give representatives of the orbits as orthogonal complements to the representatives
found under the heading “the lines of S” in [4, p. 547]:

1. The coordinate subspace X1 = 〈v41, v51, v32, v42, v52, v43, v53, v54〉; this is
closed by Theorem 4.6. Alternatively, note that u5 is central in the cor-
responding G, so we can apply Corollary 4.15 to reduce to the n = 4,
dim(X) = 4 case.

2. The coordinate subspace X2 = 〈v31, v41, v51, v32, v42, v52, v53, v54〉; again,
this is closed either by appplying Theorem 4.6 or Corollary 4.15.

3. The subspace X3 = 〈v21 − v43, v31, v41, v51, v42, v52, v53, v54〉. Again, note
that ψ5(U) is contained in X3, so by Corollary 4.15 we conclude that X3 is
closed.

4. The subspace X4 = 〈v21 − v43, rv31 − v42, v41, v51, v32, v52, v53, v54〉, with r
not a square in Fp. Since ψ5(U) ⊆ X4, we conclude as before that X4 is
closed.

5. The subspace X5 = 〈v21 − v43, v31, v41, v32, v42, v52, v53, v54〉. In this case,
X5 is not closed: it corresponds to the amalgamated direct product of two
groups: a 2-nilpotent product of two cyclic groups of order p, generated
by g3 and g4; and the 2-nilpotent product of a cyclic group of order p
generated by g1 and the direct sum of two cyclic groups of order p, generated
by g2 and g5. We amalgamate along the subgroup generated by [g4, g3],
identifying it with [g2, g1]. Theorem 4.17 shows X5 is therefore not closed.

6. The subspace X6 = 〈v21 − v43, v31 − v52, v41, v51, v32, v42, v53, v54〉. This
subspace is closed, as can be verified with a simple computation in GAP.
Alternatively, if X6 were not closed then the closure would contain either
v21 or v31, but it is not hard to verify that neither w213 nor w312 lie in X∗

6 .

Moving on to the 7-dimensional spaces, we obtain representatives of the orbits
as orthogonal complements of the twenty-two planes of S listed in [4, pp. 547–548].
We present them in the same order as Brahana. The first six orbits correspond to
groups G with Z(G) 6= [G,G]; this allows us reduce the problem to a subspace with
n = 4 and codimension 3, all of which are necessarily closed as already noted. In
all six cases, u5 corresponds to a central element:

1. The subspace X1 = 〈v41, v51, v42, v52, v43, v53, v54〉.
2. The subspace X2 = 〈v51, v32, v42, v52, v43, v53, v54〉.
3. The subspace X3 = 〈v41, v51, v32, v42, v52, v53, v54〉.
4. The subspace X4 = 〈v21 − v43, v51, v32, v42, v52, v53, v54〉.
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5. The subspace X5 = 〈v21 − v43, v41, v51, v32, v52, v53, v54〉.
6. The subspace X6 = 〈v21 − v43, rv31 − v42, v51, v32, v52, v53, v54〉, with r not

a square in Fp.

The next fifteen orbits correspond to subspaces that are closed; this is easy to
determine using GAP, and not hard to verify by hand as well (either by applying
one of our theorems, or by explicit computation). We list them without comment
and leave routine (though often tedious) verification that they are indeed closed to
the interested reader:

7. The subspace X7 = 〈v21 − v43 + rv53, v31 − v52, v41, v51, v32, v42 − v53, v54〉,
where x3 + rx− 1 is irreducible over Fp.

8. The subspace X8 = 〈v21 − v43, v31 − v52, v41 + rv32, v51, v42, v53, v54〉, with
r not a square in Fp.

9. The subspace X9 = 〈v21 − v43, v31 − v52, v41, v51, v32 − v54, v42, v53〉.
10. The subspace X10 = 〈v21 − v43, v31 − v52, v41, v51, v42, v53, v54〉.
11. The subspace X11 = 〈v21 − v43, v31 − v52, v41, v51, v32, v53, v54〉.
12. The subspace X12 = 〈v21 − v43, v31 − v52, v51, v32, v42, v53, v54〉.
13. The subspace X13 = 〈v21 − v43, v31 − v52 − rv42, v41, v51, v32, v53, v54〉, with

r not a square in Fp.
14. The subspace X14 = 〈v21−v43, v31−v42, v41−rv51, v32, v42, v53, v54〉, r 6= 0.
15. The subspace X15 = 〈v21 − v43, v31 − v52, v41, v51, v32, v42, v53〉.
16. The subspace X16 = 〈v31 − v52, v41, v51, v32, v42, v53, v54〉.
17. The subspace X17 = 〈v21 − v41 − v43, v31 − v52, v51, v32, v42, v53, v54〉.
18. The subspace X18 = 〈v21 − v31 − v43 + v52, v41, v51, v32, v42, v53, v54〉.
19. The subspace X19 = 〈v31, v41, v51, v32, v42, v52, v43〉.
20. The subspace X20 = 〈v21 − v43, v31, v41, v51, v42, v52, v54〉.
21. The subspace X21 = 〈v21 − v43, v31, v41, v51, v32, v42, v54〉.

The twenty-second and final orbit corresponds to an amalgamated direct product
of the 2-nilpotent product of two cyclic groups of order p, generated by g1 and g2,
with the 2-nilpotent product of three cyclic groups of order p, generated by g3, g4,
and g5, amalgamating by identifying the commutator [g2, g1] with [g4, g3]. Thus,
by Theorem 4.17 it gives the only nonclosed subspace of dimension 7 when n = 5
(up to the action of GL(5, p)):

22. The subspace X22 = 〈v21 − v43, v31, v41, v51, v32, v42, v52〉.
We then obtain:

Theorem 7.2. Let G be a minimally 5-generated p-group of class at most two and
exponent p. Then G is one and only one of the following:

(i) Isomorphic to a direct product E×Cp, where E is the extra-special p-group
of order p5 and exponent p;

(ii) Isomorphic to the amalgamated direct product
(

〈x1〉 qN2 〈x2〉
)

×φ

(

〈x3〉 qN2 〈x4〉 qN2 〈x5〉
)

,

with each xi of order p, and φ([x2, x1]) = [x4, x3];
(iii) Isomorphic to the amalgamated direct product

(

〈x1〉 qN2 〈x2〉
)

×φ

(

(

〈x3〉 qN2 〈x4〉 qN2 〈x5〉
)

/〈[x5, x4]〉
)

,

with each xi of order p and φ([x2, x1]) = [x4, x3];
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(iv) Capable.

If we recall that the extraspecial group of order p5 and exponent p is obtained
by taking the central product of two nonabelian groups of order p3 and exponent p
(more precisely, a central product) , we combine Theorems 7.1 and 7.2 into a single
statement:

Theorem 7.3. Let G be a 5-generated group of class at most 2 and exponent p.
Then G is one and only one of the following:

(i) Nontrivial cyclic;
(ii) Isomorphic to an amalgamated direct product G1 ×φ G2 of two nonabelian

groups, amalgamating a nontrivial cyclic subgroup of the commutator sub-
groups.

(iii) Capable.

An alternative geometrical proof. The only part of the proof of Theorem 7.1
that does not follow by applying Theorem 5.26 is the case of n = 4 and dim(X) = 5.
I would like to present an alternative proof for this case. The reason for doing so
is that a key step in the proof is geometric rather than algebraic. This highlights
what I believe to be one of the potential strengths of the approach through linear
algebra, namely that by casting the problem in terms of linear algebra we have
an array of tools that can be brought to bear on the problem, most particularly
geometric tools whose application may not be so easy to discern when the problem
is presented in terms of commutators. This can also be seen in [4], though it will
not be apparent in our presentation above. The geometric part of the argument is
due to David McKinnon.

Fix n = 4. Given a vector u ∈ U , u 6= 0, we obtain a subspace ψu(U) of V ; it is
easy to verify that this subspace is 3-dimensional. Moreover, any nontrivial scalar
multiple of u will yield the same subspace. Thus we obtain a map from the one
dimensional subspaces of V (which form projective 3-space over Fp) to Gr(3, V );
that is, a map Ψ: P

3 → Gr(3, V ). Explicitly, given [α1 : α2 : α3 : α4] ∈ P
3, we

associate to it the subspace U ∧ (α1u1 + α2u2 + α3u3 + α4u4).
Turning now to ker(Φ), where Φ is the map from Definition 5.4, it is easy to

verify that if p ∈ P
3, v ∈ V is an arbitrary vector, and X = 〈Ψ(p),v〉, then

X4 ∩ kerΦ is trivial if and only if v ∈ Ψ(p).
Let (v1,v2,v3,v4) be a nontrivial element of ker(Φ). The subspace of V spanned

by v1,v2,v3,v4 is exactly 3-dimensional. This gives a mapping from the one-
dimensional subspaces of ker(Φ) to the 3-dimensional subspaces of V ,

Υ: Gr(1, ker(Φ)) → Gr(3, V ).

We can identify Gr(1, ker(Φ)) with P
3 (or to be more precise, with P

(4

3)−1): we have
a bijection between a basis for ker(Φ) and the choice of triples from {1, 2, 3, 4}, so a
point [α1 : α2 : α3 : α4] can be identified, for example, with the element α1v(234) +
α2v(134)+α3v(124)+α4v(123) (using the notation from the proof of Proposition 5.5).

Thus we have two maps with domain P
3 and codomain Gr(3, V ).

Consider a 5-dimensional subspace X of V . From Theorem 5.23, we know that
dim(X∗) = 18, dim(X∗) = 19, or dim(X∗) = 20. Since the only subspace of V
that properly contains X is V itself, we deduce that X is closed if and only if
X4 ∩ ker(Φ4) is nontrivial; that is, a 5-dimensional subspace of V is closed if and
only if there exists q ∈ P

3 such that Υ(q) ⊆ X . As noted above, if X contains
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Ψ(p) for some p ∈ P
3, then X will be closed. The result we want is the converse:

that if X is closed, then there exists p ∈ P
3 such that Ψ(p) ⊆ X . This result can

be established by considering the maps Ψ, Υ, and using a little algebraic geometry.
Suppose first we are working over the algebraic closure Fp of Fp (so we can do

algebraic geometry). The maps Ψ: P
3 → Gr(3, V ) and Υ: P

3 → Gr(3, V ) are both
regular maps, since they are defined everywhere and are locally (relative to the
Zariski topology) determined by rational functions on the coordinates. We define
two subsets of the algebraic variety Gr(4, V ) × P

3, namely:

A =
{

(X,p)
∣

∣,Ψ(p) ⊆ X
}

, and B =
{

(X,q)
∣

∣ Υ(q) ⊆ X
}

.

Since both Ψ and Υ are regular, both A and B are closed subvarieties of Gr(4, V )×
P

3. If we now consider the projections,

p1 : Gr(4, V ) × P
3 → Gr(4, V )

p2 : Gr(4, V ) × P
3 → P

3,

we obtain maps from each of A and B into Gr(4, V ) and P
3, respectively. The

maps to P
3 are surjections, and the fibers all have dimension 2 because the fiber

over p (resp. over q) is the set of all 4-dimensional subspaces of V that contain
the 3-dimensional space Ψ(p) (resp. Υ(q)); this set is isomorphic to the set of lines
in the quotient space V/Ψ(p) (resp. V/Υ(q)), which in turn is isomorphic to the
projective plane P

2, hence 2-dimensional.
The maps are also smooth, so we have smooth maps of fiber dimension 2 over

a smooth 3-dimensional variety; this means that both A and B are of dimension
3 + 2 = 5.

Consider now the projections to Gr(4, V ). We know that p1(A) and p1(B)
are irreducible subvarieties of Gr(4, V ) of dimension at most 5, and that p1(A)
is contained in p1(B) (to see this last assertion, note that if (X,p) ∈ A, then
X4 ∩ ker(Φ) is nontrivial, so there exists q such that (X,q) ∈ B). If we can show
that p1(A) is of dimension exactly 5, then the irreducibility of B will imply that
p1(A) = p1(B). To show that p1(A) is of dimension exactly 5 it is enough to show
that it is generically finite; for this it is, in turn, enough to show there is at least
one X ∈ Gr(4, V ) such that p−1

1 (X) is nonempty and finite. But in fact p−1
1 (X)

has at most one element, for if p 6= q, then 〈Ψ(p),Ψ(q)〉 contains U ∧ U ′ with U ′

of dimension 2 (spanned by the lines corresponding to p and q); and this subspace
is of dimension 5. So the conclusion that p1(A) = p1(B) holds over Fp.

Thus, if q ∈ P
3 and X ∈ Gr(4, V ) are such that (X,q) ∈ B, then there exists

p ∈ P
3 such that (X,p) ∈ A. We want to show that if q and X are defined over

Fp, then p is also defined over Fp. If we apply a Galois automorphism to the

varieties over Fp, both X and q are fixed, and every conjugate of p will also satisfy
the conclusion; however, we know that if (X,p), (X,p′) ∈ A, then p = p′, by the
argument above, so we conclude that p is fixed by all Galois automorphisms of Fp,
proving it is indeed defined over Fp.

This proves what we want: if X ′ is a 5-dimensional subspace of V , and if there
exists (X,p) ∈ A such that X ⊆ X ′, then X ′ is closed. And if X ′ is closed, then
there exists (X,q) ∈ B with X ⊆ X ′, and this implies the existence of p ∈ P

3 with
(X,p) ∈ A. Thus, X ′ is closed if and only if it contains Ψ(p) for some p ∈ P

3.
In terms of the groups, it says that a group G of class two, exponent p, with Gab

of rank 4 and [G,G] of order p is capable if and only if [G,G] 6= Z(G). That is, a
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5-dimensional subspace of V is closed if and only if the corresponding group is not
extra-special.

Remark 7.4. The proof that there exist p ∈ P
3 such that Ψ(p) ⊆ X if and only if

there exists q ∈ P
3 such that Υ(q) ⊆ X can be done purely at an algebraic level;

see for example [19]. However, I find the geometric argument more satisfying.

8. Final remarks and questions.

The gap between our necessary and sufficient condition, unfortunately, grows
with n. Thus, when n = 4 the necessary condition allows us to discard the case
dim(X) = 5 (when X does not contain Ψ(u) for some nontrivial u ∈ U), while the
sufficient condition handles the remaining cases with dim(X) ≤ 4. When we move
to n = 5, however, Theorem 6.13 deals only with dim(X) = 9 (where we are reduced
to the case n = 4 as above), while Corollary 5.25 dispatches dim(X) ≤ 6, leaving
us to deal with the cases of dimension 7 and 8. Our success above was achieved
thanks to the careful geometric analysis of Brahana. With n = 6, Theorem 6.13
would handle dim(X) = 14 and 15 (we can either reduce to a smaller n, or else
the subspace is not closed), and Corollary 5.25 deals with dim(X) ≤ 7, leaving
now six potential dimensions open. As n increases, the gap between our numerical
necessary and sufficient conditions continues to widen, making them less and less
useful.

Heineken proved that the necessary condition is sharp, in that there are examples
of capable groups in which the inequality from Theorem 6.13 is an equality. We
might likewise wonder if we can sharpen the sufficient condition. There is some hope
this might be possible, since for example Corollary 5.24 considers all subspaces of
dimension strictly larger than X , while Proposition 5.10 only requires us to look at
those subspaces that properly contain X . So we ask:

Question 8.1. Is the sufficient condition in Corollary 5.25 sharp? That is, is it
true that for all n > 1, if m is the smallest integer such that 0 < m <

(

n
2

)

and
f(m+ 1) ≥ n, then there exists X < V such that dim(X) = m and X 6= X∗∗?

Note that if we can find a non-closed subspace X < V (n) with dim(X) = k, then
we can find non-closed subspaces X ′ < V (n) with dim(X ′) = r for any r satisfying
k ≤ r <

(

n
2

)

: enlarge X by adding vectors from X∗∗ not in X until we obtain a
subspace of codimension one in its closure; and then continue by adding vectors
that do not lie in X∗∗ until we obtain a subspace of codimension 1 in V (n). So it
is enough to ask about the smallest value of m with dim(X) = m and X 6= X∗∗.

For m ≤ 5, the answer to Question 8.1 is affirmative. Consider then n = 6;
by taking an amalgamated central product of the 2-nilpotent product of two cyclic
groups of order p and the 2-nilpotent product of 4 cyclic groups of order p we
can find a non-closed subspace of dimension 9; the least m, however, for which
f(m+ 1) ≥ 6 is m = 8. So we ask:

Question 8.2. Is there a subspace X of V (6) with dim(X) = 8 and X 6= X∗∗?

I do not know the answer to this question yet; I have done a brute force search
using GAP and have found no examples yet. However, though the search has con-
sidered over one hundred million subspaces, the total number of eight dimensional
subspaces of the fifteen dimensional space V (6) is approximately 9.3 × 1026 if we
work over F3, so the negative results in this search are hardly significant.
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In general, given n, taking an amalgamated central product of two relatively
free groups, one of rank 2 and one of rank n − 2, and identifying a subgroup of
order p from each, yields a non-closed subspace of dimension 2n − 3 (we need
2(n − 2) relations to state the generators from one relatively free group commute
with those of the other, and one relation to identify one nontrivial commutator from
each factor with each other). This is the smallest nonclosed subspace we can obtain
with amalgamated direct products, but it is not necessarily the smallest non-closed.
For example, with n = 8, the amalgamated direct product yields a non-closed X
of dimension 13; but if we take the amalgamated coproduct of two extra-special
groups of order p5 and exponent p, identifying the commutator subgroups, we obtain
a non-closed X of dimension 11 (we will need 5 relations to describe each of the
extra-special groups, plus one relation to identify the two commutator subgroups).
This eleven dimensional subspace still falls two short of the 9-dimensional example
we would need for n = 8 if Corollary 5.25 is indeed sharp.

Aknowledgements

In addition to the theorems from [4], the work of Brahana helped to clarify many
notions with which I had been playing; I thank Prof. Mike Newman very much for
bringing the work of Brahana to my attention and other helpful references. I also
thank Michael Bush for his help. I especially thank David McKinnon for many
stimulating conversations, most of the geometry that appears in this work, and
for his help in finding a formula for the function f(m). Part of this work was
conducted while the author was on a brief visit to the University of Waterloo at
the invitation of Prof. McKinnon; I am very grateful to him for the invitation, and
to the Department of Pure Mathematics and the University of Waterloo for the
great hospitality I received there. The work was begun while the author was at the
University of Montana, and finished at the University of Louisiana in Lafayette.

References

[1] Michael R. Bacon and Luise-Charlotte Kappe, On capable p-groups of nilpotency class two,
Illinois J. Math. 47 (2003), no. 1/2, 49–62. MR 2004j:20036

[2] Reinhold Baer, Groups with preassigned central and central quotient group, Trans. Amer.
Math. Soc. 44 (1938), 387–412.

[3] F. Rudolf Beyl, Ulrich Felgner, and Peter Schmid, On groups occurring as central factor
groups, J. Algebra 61 (1979), 161–177. MR 81i:20034

[4] H. R. Brahana, Finite metabelian groups and the lines of a projective four-space, Amer. J.
Math. 73 (1951), no. 3, 539–555. MR 0042411 (13,104i)
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