MATH 566 - Spring 2024

MIDTERM
Solutions
Prof Arturo Magidin

1. Give an example of each of the following; you do not need to prove that the example has the given properties (though I certainly hope you could if you needed to). (2 points each, 10 points total)
(i) A ring R that is not commutative.

Example. One example is any $n \times n$ matrix ring, with $n \geq 2$, over a nontrivial ring. For instance, $M_{2 \times 2}(\mathbb{R})$. Of course there are many others.
(ii) A ring R that does not have a unity.

Example. The even integers $2 \mathbb{Z}$ with their usual addition and multiplication. Alternatively, any nontrivial abelian group A with multiplication defined as $x y=0$ for all $x, y \in \mathbb{A}$.
(iii) A ring R and a left ideal I of R that is not a two-sided ideal of R.

Example. The ideal of 2×2 matrices with first column 0 in $M_{2 \times 2}(\mathbb{R})$. That is,

$$
\left\{\left.\left(\begin{array}{cc}
0 & a \\
0 & b
\end{array}\right) \in M_{2 \times 2}(\mathbb{R}) \right\rvert\, a, b \in \mathbb{R}\right\} .
$$

(iv) A ring R and a two-sided ideal I of R that is a prime ideal but not maximal.

Example. The ideal (0) in \mathbb{Z} is prime but not maximal. Also, the ideal (x) in $\mathbb{R}[x, y]$ is prime but not maximal.
(v) A commutative ring R and an ideal I that is not principal.

Example. The ideal $(2, x)$ in $\mathbb{Z}[x]$ is not principal: it consists of all polynomials with integer coefficients that have even constant term.
2. Let R_{1}, \ldots, R_{n} be rings with unity. Show that if I is an ideal of $R_{1} \times \cdots \times R_{n}$, then there exist ideals $J_{i} \triangleleft R_{i}$ for $i=1, \ldots, n$, such that $I=J_{1} \times \cdots \times J_{n}$. (10 points)
Proof. For each j, let $\pi_{j}: R_{1} \times \cdots \times R_{n} \rightarrow R_{j}$ be the projection onto the j th coordinate.
Let $I \triangleleft R_{1} \times \cdots \times R_{n}$. Let $J_{i}=\pi_{i}(I)$ for $i=1, \ldots, n$. We will prove that $I=J_{1} \times \cdots \times J_{n}$.
Note that because π_{j} is a surjective homomorphism, the image of an ideal of $R_{1} \times \cdots \times R_{n}$ is an ideal of R_{j}, so $J_{j} \triangleleft R_{j}$ for each j. Also, since $J_{j}=\pi_{j}(I)$, it follows that $I \subseteq J_{1} \times \cdots \times J_{n}$.
To prove that $J_{1} \times \cdots \times J_{n} \subseteq I$, let $\left(a_{1}, \ldots, a_{n}\right) \in J_{1} \times \cdots \times J_{n}$. Fix $i, 1 \leq i \leq n$. Since $a_{i} \in J_{i}$, there exists $x \in I$ such that $\pi_{i}(x)=a_{i}$. So $x=\left(b_{1}, \ldots, b_{i-1}, a_{i}, b_{i+1}, \ldots b_{n}\right)$ for some $b_{j} \in R_{j}$, $j=1, \ldots, i-1, i+1, \ldots, n$.
Let $e=\left(0, \ldots, 0,1_{R_{i}}, 0, \ldots, 0\right)$ be the element of $R_{1} \times \cdots \times R_{n}$ that has the unity of R_{i} in the i th coordinate, the 0 of R_{j} in the j th coordinate for $j \neq i$. Since I is an ideal and $e \in R$, then $e x \in I$. And of course $e x=\left(0, \ldots, 0, a_{i}, 0, \ldots, 0\right)$.
We can do this for each $i, i=1, \ldots, n$. Thus, we have

$$
\left(a_{1}, 0, \ldots, 0\right), \quad\left(0, a_{2}, 0, \ldots, 0\right), \quad \ldots, \quad\left(0,0, \ldots, 0, a_{n}\right) \in I .
$$

Since I is an ideal, it is closed under sums, so

$$
\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}, 0, \ldots, 0\right)+\left(0, a_{2}, 0, \ldots, 0\right)+\cdots+\left(0, \ldots, 0, a_{n}\right) \in I .
$$

Thus, we have that if $\left(a_{1}, \ldots, a_{n}\right) \in J_{1} \times \cdots \times J_{n}$, then $\left(a_{1}, \ldots, a_{n}\right) \in I$. This proves that $J_{1} \times \cdots \times J_{n}$ is contained in I, and we obtain the desired equality.
3. Let R be a Euclidean commutative ring with unity, with Euclidean function φ. Prove that $a \in R$ is a unit if and only if $\varphi(a)=\varphi\left(1_{R}\right)$. (10 points)
Proof. First: if $r \neq 0$, theN $\varphi\left(1_{R}\right) \leq \varphi(r)$; indeed, we have that the first property of a Euclidean function yields $\varphi\left(1_{R}\right) \leq \varphi\left(1_{R} r\right)=\varphi(r)$.

Now let $a \in R$. If a is a unit, then there exists $b \in R$ such that $a b=1_{R}$. Then again using the first property of the Euclidean function we have $\varphi(a) \leq \varphi(a b)=\varphi\left(1_{R}\right)$. Thus, we have $\varphi(a) \leq \varphi\left(1_{R}\right)$, and $\varphi\left(1_{R}\right) \leq \varphi(a)$ always holds, so $\varphi\left(1_{R}\right)=\varphi(a)$, as desired.
Conversely, if $\varphi(a)=\varphi\left(1_{R}\right)$, then using the second property of a Euclidean function to divide 1_{R} by a, we have that there exist $q, r \in R$ such that $1_{R}=q a+r$, and either $r=0$ or $\varphi(r)<\varphi(a)=\varphi\left(1_{R}\right)$.

Since no nonzero element r satisfies $\varphi(r)<\varphi\left(1_{R}\right)$, it follows that we must have $r=0$. Thus, $1_{R}=q a$, which shows that a has a multiplicative inverse and therefore is a unit.
4. Let R be a commutative ring, and let S be a multiplicative subset of R. Show that if R is a principal ideal ring, then $S^{-1} R$ is a principal ideal ring. (10 points)
Proof. Let $s \in S$, and let $\varphi: R \rightarrow S^{-1} R$ be the canonical function $\varphi(a)=\frac{a s}{s}$.
Let J be an ideal of $S^{-1} R$, and let $I=\varphi^{-1} J$. We know from class that $J=S^{-1} I$. Since I is an ideal of R, there exists $a \in R$ such that $I=(a)$. We prove that $(\varphi(a))=J$.
Since $a \in I=\varphi^{-1}(J)$, we know $\varphi(a) \in J$, so $(\varphi(a)) \subseteq J$. Conversely, let $\frac{b}{t} \in J$. Since $J=S^{-1} I$, there exists $x \in I$ and $u \in S$ such that $\frac{b}{t}=\frac{x}{u}$. Therefore, there exists $v \in S$ such that $v(b u-x t)=0$. Thus, $v b u=v x t \in I=(a)$.
Therefore, there exist $n \in \mathbb{Z}$ and $r \in R$ such that $b u v=n a+r a$. Then

$$
\frac{b v u s}{s}=\varphi(b u v)=\varphi(n a+r a)=n\left(\frac{a s}{s}\right)+\left(\frac{r s}{s}\right)\left(\frac{a s}{s}\right) \in\left(\frac{a s}{s}\right)
$$

Now, since $\frac{b v u s}{s} \in\left(\frac{a s}{s}\right)$, and vuss $\in S$, we have that:

$$
\frac{b}{t}=\frac{b(v u s s)}{t(v u s s)}=\frac{s}{t v u s}\left(\frac{b v u s}{s}\right) \in\left(\frac{a s}{s}\right)=(\varphi(a))
$$

Therefore, $\frac{b}{t} \in(\varphi(a))$. This proves that $J=S^{-1} I \subseteq(\varphi(a))$, and therefore we have the equality $(\varphi(a))=J$, as desired.
5. Let R be a commutative ring with unity, and $R[x]$ the ring of polynomials in one indeterminate with coefficients in R
(i) Prove that $R[x] /(x) \cong R$, where (x) is the principal ideal generated by x. (4 points)

Proof. Consider the identity map $\operatorname{id}_{R}: R \rightarrow R$ and the element $0 \in R$. By the Universal Property of the polynomial ring, there is a unique ring homomorphism $\varepsilon: R[x] \rightarrow R$ such that $\varepsilon(r)=r$ for each $r \in R$, and $\varepsilon(x)=0$.
Note that $\operatorname{ker}(\varepsilon)=(x)$. Indeed, x lies in the kernel, and if $f=a_{0}+a_{x}+\cdots+a_{n} x^{n} \in \operatorname{ker}(\varepsilon)$, then $0=\varepsilon(f)=a_{0}$. Thus, $f=x\left(a_{1}+a_{2} x+\cdots+a_{n} x^{n-1}\right) \in(x)$.
Note also that ε is surjective, since for all $r \in R, \varepsilon(r)=r$.
By the First Isomorphism Theorem, we have

$$
R \cong \frac{R[x]}{\operatorname{ker}(\varepsilon)}=\frac{R[x]}{(x)}
$$

as claimed.
(ii) Prove that R is an integral domain if and only if (x) is a prime ideal of $R[x]$. (3 points)

Proof. Since R is a commutative ring with unity, so is $R[x]$. We know that if $I \triangleleft T$ where T is a commutative ring with unity, then I is a prime ideal of T if and only if T / I is an integral domain. Thus, (x) is a prime ideal of $R[x]$ if and only if $\frac{R[x]}{(x)} \cong R$ is an integral domain.
(iii) Prove that R is a field if and only if (x) is a maximal ideal of $R[x]$. (3 points)

Proof. And we know that T / I is a field if and only if I is a maximal ideal of T. Therefore, $R \cong \frac{R[x]}{(x)}$ is a field if and only if (x) is a maximal ideal of R.

