MATH 566 – Spring 2024 MIDTERM SOLUTIONS Prof Arturo Magidin

- 1. Give an example of each of the following; you do not need to prove that the example has the given properties (though I certainly hope you could if you needed to). (2 points each, 10 points total)
 - (i) A ring R that is not commutative.

Example. One example is any $n \times n$ matrix ring, with $n \ge 2$, over a nontrivial ring. For instance, $M_{2\times 2}(\mathbb{R})$. Of course there are many others.

- (ii) A ring R that does not have a unity. **Example.** The even integers $2\mathbb{Z}$ with their usual addition and multiplication. Alternatively, any nontrivial abelian group A with multiplication defined as xy = 0 for all $x, y \in \mathbb{A}$.
- (iii) A ring R and a left ideal I of R that is not a two-sided ideal of R. **Example.** The ideal of 2×2 matrices with first column 0 in $M_{2\times 2}(\mathbb{R})$. That is,

$$\left\{ \left(\begin{array}{cc} 0 & a \\ 0 & b \end{array}\right) \in M_{2 \times 2}(\mathbb{R}) \ \middle| \ a, b \in \mathbb{R} \right\}.$$

- (iv) A ring R and a two-sided ideal I of R that is a prime ideal but not maximal. **Example.** The ideal (0) in \mathbb{Z} is prime but not maximal. Also, the ideal (x) in $\mathbb{R}[x, y]$ is prime but not maximal.
- (v) A commutative ring R and an ideal I that is not principal. **Example.** The ideal (2, x) in $\mathbb{Z}[x]$ is not principal: it consists of all polynomials with integer coefficients that have even constant term.
- 2. Let R_1, \ldots, R_n be rings with unity. Show that if I is an ideal of $R_1 \times \cdots \times R_n$, then there exist ideals $J_i \triangleleft R_i$ for $i = 1, \ldots, n$, such that $I = J_1 \times \cdots \times J_n$. (10 points)

Proof. For each j, let $\pi_j: R_1 \times \cdots \times R_n \to R_j$ be the projection onto the jth coordinate.

Let $I \triangleleft R_1 \times \cdots \times R_n$. Let $J_i = \pi_i(I)$ for $i = 1, \ldots, n$. We will prove that $I = J_1 \times \cdots \times J_n$.

Note that because π_j is a surjective homomorphism, the image of an ideal of $R_1 \times \cdots \times R_n$ is an ideal of R_j , so $J_j \triangleleft R_j$ for each j. Also, since $J_j = \pi_j(I)$, it follows that $I \subseteq J_1 \times \cdots \times J_n$.

To prove that $J_1 \times \cdots \times J_n \subseteq I$, let $(a_1, \ldots, a_n) \in J_1 \times \cdots \times J_n$. Fix $i, 1 \leq i \leq n$. Since $a_i \in J_i$, there exists $x \in I$ such that $\pi_i(x) = a_i$. So $x = (b_1, \ldots, b_{i-1}, a_i, b_{i+1}, \ldots, b_n)$ for some $b_j \in R_j$, $j = 1, \ldots, i-1, i+1, \ldots, n$.

Let $e = (0, \ldots, 0, 1_{R_i}, 0, \ldots, 0)$ be the element of $R_1 \times \cdots \times R_n$ that has the unity of R_i in the *i*th coordinate, the 0 of R_j in the *j*th coordinate for $j \neq i$. Since I is an ideal and $e \in R$, then $ex \in I$. And of course $ex = (0, \ldots, 0, a_i, 0, \ldots, 0)$.

We can do this for each i, i = 1, ..., n. Thus, we have

 $(a_1, 0, \dots, 0), (0, a_2, 0, \dots, 0), \dots, (0, 0, \dots, 0, a_n) \in I.$

Since I is an ideal, it is closed under sums, so

$$(a_1,\ldots,a_n) = (a_1,0,\ldots,0) + (0,a_2,0,\ldots,0) + \cdots + (0,\ldots,0,a_n) \in I.$$

Thus, we have that if $(a_1, \ldots, a_n) \in J_1 \times \cdots \times J_n$, then $(a_1, \ldots, a_n) \in I$. This proves that $J_1 \times \cdots \times J_n$ is contained in I, and we obtain the desired equality. \Box

3. Let R be a Euclidean commutative ring with unity, with Euclidean function φ . Prove that $a \in R$ is a unit if and only if $\varphi(a) = \varphi(1_R)$. (10 points)

Proof. First: if $r \neq 0$, then $\varphi(1_R) \leq \varphi(r)$; indeed, we have that the first property of a Euclidean function yields $\varphi(1_R) \leq \varphi(1_R r) = \varphi(r)$.

Now let $a \in R$. If a is a unit, then there exists $b \in R$ such that $ab = 1_R$. Then again using the first property of the Euclidean function we have $\varphi(a) \leq \varphi(ab) = \varphi(1_R)$. Thus, we have $\varphi(a) \leq \varphi(1_R)$, and $\varphi(1_R) \leq \varphi(a)$ always holds, so $\varphi(1_R) = \varphi(a)$, as desired.

Conversely, if $\varphi(a) = \varphi(1_R)$, then using the second property of a Euclidean function to divide 1_R by a, we have that there exist $q, r \in R$ such that $1_R = qa + r$, and either r = 0 or $\varphi(r) < \varphi(a) = \varphi(1_R)$. Since no nonzero element r satisfies $\varphi(r) < \varphi(1_R)$, it follows that we must have r = 0. Thus, $1_R = qa$, which shows that a has a multiplicative inverse and therefore is a unit. \Box

4. Let R be a commutative ring, and let S be a multiplicative subset of R. Show that if R is a principal ideal ring, then $S^{-1}R$ is a principal ideal ring. (10 points)

Proof. Let $s \in S$, and let $\varphi \colon R \to S^{-1}R$ be the canonical function $\varphi(a) = \frac{as}{s}$.

Let J be an ideal of $S^{-1}R$, and let $I = \varphi^{-1}J$. We know from class that $J = S^{-1}I$. Since I is an ideal of R, there exists $a \in R$ such that I = (a). We prove that $(\varphi(a)) = J$.

Since $a \in I = \varphi^{-1}(J)$, we know $\varphi(a) \in J$, so $(\varphi(a)) \subseteq J$. Conversely, let $\frac{b}{t} \in J$. Since $J = S^{-1}I$, there exists $x \in I$ and $u \in S$ such that $\frac{b}{t} = \frac{x}{u}$. Therefore, there exists $v \in S$ such that v(bu - xt) = 0. Thus, $vbu = vxt \in I = (a)$.

Therefore, there exist $n \in \mathbb{Z}$ and $r \in R$ such that buv = na + ra. Then

$$\frac{bvus}{s} = \varphi(buv) = \varphi(na + ra) = n\left(\frac{as}{s}\right) + \left(\frac{rs}{s}\right)\left(\frac{as}{s}\right) \in \left(\frac{as}{s}\right).$$

Now, since $\frac{bvus}{s} \in \left(\frac{as}{s}\right)$, and $vuss \in S$, we have that:

$$\frac{b}{t} = \frac{b(vuss)}{t(vuss)} = \frac{s}{tvus} \left(\frac{bvus}{s}\right) \in \left(\frac{as}{s}\right) = (\varphi(a))$$

Therefore, $\frac{b}{t} \in (\varphi(a))$. This proves that $J = S^{-1}I \subseteq (\varphi(a))$, and therefore we have the equality $(\varphi(a)) = J$, as desired. \Box

- 5. Let R be a commutative ring with unity, and R[x] the ring of polynomials in one indeterminate with coefficients in R
 - (i) Prove that R[x]/(x) ≅ R, where (x) is the principal ideal generated by x. (4 points) **Proof.** Consider the identity map id_R: R → R and the element 0 ∈ R. By the Universal Property of the polynomial ring, there is a unique ring homomorphism ε: R[x] → R such that ε(r) = r for each r ∈ R, and ε(x) = 0.
 Note that ker(ε) = (x). Indeed, x lies in the kernel, and if f = a₀ + a_x + ··· + a_nxⁿ ∈ ker(ε), then 0 = ε(f) = a₀. Thus, f = x(a₁ + a₂x + ··· + a_nxⁿ⁻¹) ∈ (x).
 Note also that ε is surjective, since for all r ∈ R, ε(r) = r.
 By the First Isomorphism Theorem, we have

$$R \cong \frac{R[x]}{\ker(\varepsilon)} = \frac{R[x]}{(x)},$$

as claimed. \Box

- (ii) Prove that R is an integral domain if and only if (x) is a prime ideal of R[x]. (3 points) **Proof.** Since R is a commutative ring with unity, so is R[x]. We know that if $I \triangleleft T$ where T is a commutative ring with unity, then I is a prime ideal of T if and only if T/I is an integral domain. Thus, (x) is a prime ideal of R[x] if and only if $\frac{R[x]}{(x)} \cong R$ is an integral domain. \Box
- (iii) Prove that R is a field if and only if (x) is a maximal ideal of R[x]. (3 points) **Proof.** And we know that T/I is a field if and only if I is a maximal ideal of T. Therefore, $R \cong \frac{R[x]}{(x)}$ is a field if and only if (x) is a maximal ideal of R. \Box