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1. Give an example of each of the following; you do not need to prove that the example has the given
properties (though I certainly hope you could if you needed to). (2 points each, 10 points total)

(i) A ring R that is not commutative.

Example. One example is any n × n matrix ring, with n ≥ 2, over a nontrivial ring. For
instance, M2×2(R). Of course there are many others.

(ii) A ring R that does not have a unity.

Example. The even integers 2Z with their usual addition and multiplication. Alternatively,
any nontrivial abelian group A with multiplication defined as xy = 0 for all x, y ∈ A.

(iii) A ring R and a left ideal I of R that is not a two-sided ideal of R.

Example. The ideal of 2× 2 matrices with first column 0 in M2×2(R). That is,{(
0 a
0 b

)
∈ M2×2(R)

∣∣∣∣ a, b ∈ R
}
.

(iv) A ring R and a two-sided ideal I of R that is a prime ideal but not maximal.

Example. The ideal (0) in Z is prime but not maximal. Also, the ideal (x) in R[x, y] is
prime but not maximal.

(v) A commutative ring R and an ideal I that is not principal.

Example. The ideal (2, x) in Z[x] is not principal: it consists of all polynomials with integer
coefficients that have even constant term.

2. Let R1, . . . , Rn be rings with unity. Show that if I is an ideal of R1 × · · · × Rn, then there exist
ideals Ji ◁ Ri for i = 1, . . . , n, such that I = J1 × · · · × Jn. (10 points)

Proof. For each j, let πj : R1 × · · · ×Rn → Rj be the projection onto the jth coordinate.

Let I ◁ R1 × · · · ×Rn. Let Ji = πi(I) for i = 1, . . . , n. We will prove that I = J1 × · · · × Jn.

Note that because πj is a surjective homomorphism, the image of an ideal of R1 × · · · ×Rn is an
ideal of Rj , so Jj ◁ Rj for each j. Also, since Jj = πj(I), it follows that I ⊆ J1 × · · · × Jn.

To prove that J1 × · · · × Jn ⊆ I, let (a1, . . . , an) ∈ J1 × · · · × Jn. Fix i, 1 ≤ i ≤ n. Since ai ∈ Ji,
there exists x ∈ I such that πi(x) = ai. So x = (b1, . . . , bi−1, ai, bi+1, . . . bn) for some bj ∈ Rj ,
j = 1, . . . , i− 1, i+ 1, . . . , n.

Let e = (0, . . . , 0, 1Ri , 0, . . . , 0) be the element of R1 × · · · ×Rn that has the unity of Ri in the ith
coordinate, the 0 of Rj in the jth coordinate for j ̸= i. Since I is an ideal and e ∈ R, then ex ∈ I.
And of course ex = (0, . . . , 0, ai, 0, . . . , 0).

We can do this for each i, i = 1, . . . , n. Thus, we have

(a1, 0, . . . , 0), (0, a2, 0, . . . , 0), . . . , (0, 0, . . . , 0, an) ∈ I.

Since I is an ideal, it is closed under sums, so

(a1, . . . , an) = (a1, 0, . . . , 0) + (0, a2, 0, . . . , 0) + · · ·+ (0, . . . , 0, an) ∈ I.

Thus, we have that if (a1, . . . , an) ∈ J1 × · · · × Jn, then (a1, . . . , an) ∈ I. This proves that
J1 × · · · × Jn is contained in I, and we obtain the desired equality. □
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3. Let R be a Euclidean commutative ring with unity, with Euclidean function φ. Prove that a ∈ R
is a unit if and only if φ(a) = φ(1R). (10 points)

Proof. First: if r ̸= 0, theN φ(1R) ≤ φ(r); indeed, we have that the first property of a Euclidean
function yields φ(1R) ≤ φ(1Rr) = φ(r).

Now let a ∈ R. If a is a unit, then there exists b ∈ R such that ab = 1R. Then again using the first
property of the Euclidean function we have φ(a) ≤ φ(ab) = φ(1R). Thus, we have φ(a) ≤ φ(1R),
and φ(1R) ≤ φ(a) always holds, so φ(1R) = φ(a), as desired.

Conversely, if φ(a) = φ(1R), then using the second property of a Euclidean function to divide 1R by
a, we have that there exist q, r ∈ R such that 1R = qa+r, and either r = 0 or φ(r) < φ(a) = φ(1R).

Since no nonzero element r satisfies φ(r) < φ(1R), it follows that we must have r = 0. Thus,
1R = qa, which shows that a has a multiplicative inverse and therefore is a unit. □

4. Let R be a commutative ring, and let S be a multiplicative subset of R. Show that if R is a
principal ideal ring, then S−1R is a principal ideal ring. (10 points)

Proof. Let s ∈ S, and let φ : R → S−1R be the canonical function φ(a) = as
s .

Let J be an ideal of S−1R, and let I = φ−1J . We know from class that J = S−1I. Since I is an
ideal of R, there exists a ∈ R such that I = (a). We prove that (φ(a)) = J .

Since a ∈ I = φ−1(J), we know φ(a) ∈ J , so (φ(a)) ⊆ J . Conversely, let b
t ∈ J . Since

J = S−1I, there exists x ∈ I and u ∈ S such that b
t = x

u . Therefore, there exists v ∈ S such that
v(bu− xt) = 0. Thus, vbu = vxt ∈ I = (a).

Therefore, there exist n ∈ Z and r ∈ R such that buv = na+ ra. Then

bvus

s
= φ(buv) = φ(na+ ra) = n

(as
s

)
+

(rs
s

)(as
s

)
∈
(as
s

)
.

Now, since bvus
s ∈

(
as
s

)
, and vuss ∈ S, we have that:

b

t
=

b(vuss)

t(vuss)
=

s

tvus

(
bvus

s

)
∈
(as
s

)
= (φ(a))

Therefore, b
t ∈ (φ(a)). This proves that J = S−1I ⊆ (φ(a)), and therefore we have the equality

(φ(a)) = J , as desired. □

5. Let R be a commutative ring with unity, and R[x] the ring of polynomials in one indeterminate
with coefficients in R

(i) Prove that R[x]/(x) ∼= R, where (x) is the principal ideal generated by x. (4 points)

Proof. Consider the identity map idR : R → R and the element 0 ∈ R. By the Universal
Property of the polynomial ring, there is a unique ring homomorphism ε : R[x] → R such
that ε(r) = r for each r ∈ R, and ε(x) = 0.

Note that ker(ε) = (x). Indeed, x lies in the kernel, and if f = a0 + ax + · · ·+ anx
n ∈ ker(ε),

then 0 = ε(f) = a0. Thus, f = x(a1 + a2x+ · · ·+ anx
n−1) ∈ (x).

Note also that ε is surjective, since for all r ∈ R, ε(r) = r.

By the First Isomorphism Theorem, we have

R ∼=
R[x]

ker(ε)
=

R[x]

(x)
,

as claimed. □
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(ii) Prove that R is an integral domain if and only if (x) is a prime ideal of R[x]. (3 points)

Proof. Since R is a commutative ring with unity, so is R[x]. We know that if I ◁ T where T
is a commutative ring with unity, then I is a prime ideal of T if and only if T/I is an integral

domain. Thus, (x) is a prime ideal of R[x] if and only if R[x]
(x)

∼= R is an integral domain. □

(iii) Prove that R is a field if and only if (x) is a maximal ideal of R[x]. (3 points)

Proof. And we know that T/I is a field if and only if I is a maximal ideal of T . Therefore,

R ∼= R[x]
(x) is a field if and only if (x) is a maximal ideal of R. □
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