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1. Give an example of each of the following; you do not need to prove that the example has the given
properties (though I certainly hope you could if you needed to). (2 points each, 10 points total)

(i) A ring R that is not commutative.

Example. One example is any n X n matrix ring, with n > 2, over a nontrivial ring. For
instance, Max2(R). Of course there are many others.

(ii) A ring R that does not have a unity.

Example. The even integers 2Z with their usual addition and multiplication. Alternatively,
any nontrivial abelian group A with multiplication defined as zy = 0 for all z,y € A.

(iii) A ring R and a left ideal I of R that is not a two-sided ideal of R.
Example. The ideal of 2 x 2 matrices with first column 0 in Msy2(R). That is,
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(iv) A ring R and a two-sided ideal I of R that is a prime ideal but not maximal.

a,bE]R}.

Example. The ideal (0) in Z is prime but not maximal. Also, the ideal (z) in R[z,y] is
prime but not maximal.

(v) A commutative ring R and an ideal I that is not principal.

Example. The ideal (2, z) in Z[x] is not principal: it consists of all polynomials with integer
coefficients that have even constant term.

2. Let Ry,..., R, be rings with unity. Show that if I is an ideal of Ry X --- X R,,, then there exist
ideals J; < R; for : =1,...,n, such that I = J; X -+ X J,. (10 points)
Proof. For each j, let m;: Ry x --- x R, — R; be the projection onto the jth coordinate.
Let <Ry X -+ x R,. Let J; =m;(I) fori=1,...,n. We will prove that [ = J; X -+ X J,.

Note that because 7; is a surjective homomorphism, the image of an ideal of Ry X --- x R,, is an
ideal of R;, so J; < R; for each j. Also, since J; = m;(I), it follows that I C Jy X --- X J,,.

To prove that Jy x --- x J, C I, let (ay,...,a,) € J; X -+ X J,. Fix i, 1 <i <n. Since a; € J;,
there exists « € I such that m;(z) = a;. So z = (b1,...,b;i—1,a;,bi+1,...b,) for some b; € R;,
j=1,...i—1,i+1,...,n

Let e = (0,...,0,1g,,0,...,0) be the element of Ry X --- x R,, that has the unity of R; in the ith
coordinate, the 0 of R; in the jth coordinate for j # 4. Since I is an ideal and e € R, then ex € I.
And of course ex = (0,...,0,a;,0,...,0).

We can do this for each ¢, i = 1,...,n. Thus, we have
(a1,0,...,0), (0,a2,0,...,0), ..., (0,0,...,0,a,)€ I
Since I is an ideal, it is closed under sums, so
(aty...,an) = (a1,0,...,0)+ (0,a2,0,...,0) +---4+(0,...,0,a,) € I.

Thus, we have that if (a1,...,a,) € J1 X -+ X Jy,, then (a1,...,a,) € I. This proves that
Ji X -+ x J, is contained in I, and we obtain the desired equality. [J



3. Let R be a Euclidean commutative ring with unity, with Euclidean function ¢. Prove that a € R
is a unit if and only if p(a) = ¢(1g). (10 points)
Proof. First: if r # 0, theN p(1r) < ¢(r); indeed, we have that the first property of a Euclidean
function yields ¢(1g) < @(1gr) = @(r).
Now let a € R. If a is a unit, then there exists b € R such that ab = 1. Then again using the first
property of the Euclidean function we have ¢(a) < ¢(ab) = ¢(1g). Thus, we have p(a) < ¢(1g),
and p(1r) < ¢(a) always holds, so ¢(1r) = ¢(a), as desired.
Conversely, if ¢(a) = ¢(1r), then using the second property of a Euclidean function to divide 15 by
a, we have that there exist ¢, € R such that 1 = ga+r, and either r = 0 or p(r) < p(a) = ¢(1g).

Since no nonzero element r satisfies ¢(r) < ¢(1g), it follows that we must have r = 0. Thus,
1r = qa, which shows that a has a multiplicative inverse and therefore is a unit. [J

4. Let R be a commutative ring, and let S be a multiplicative subset of R. Show that if R is a
principal ideal ring, then S™!R is a principal ideal ring. (10 points)

Proof. Let s € S, and let p: R — S™'R be the canonical function ¢(a) = 2.

Let J be an ideal of S™'R, and let I = ¢~ 1J. We know from class that J = S~1I. Since I is an
ideal of R, there exists a € R such that I = (a). We prove that (¢(a)) = J.

Since a € I = ¢~1(J), we know ¢(a) € J, so (p(a)) C J. Conversely, let ¢ € J. Since
J = S7'I, there exists « € I and u € S such that % = %. Therefore, there exists v € S such that

v(bu — xt) = 0. Thus, vbu = vzt € T = (a).
Therefore, there exist n € Z and r € R such that buv = na + ra. Then

buus = p(buv) = p(na+ra) =n (%) + (E) (ﬁ) € (E) .
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Now, since 2uus ¢ (%), and vuss € S, we have that:

L= pme (M) € (%) - )

Therefore, ¢ € (p(a)). This proves that J = S~1I C (p(a)), and therefore we have the equality
(p(a)) = J, as desired. O

5. Let R be a commutative ring with unity, and R[z] the ring of polynomials in one indeterminate
with coefficients in R

(i) Prove that R[z]/(x) = R, where (z) is the principal ideal generated by x. (4 points)
Proof. Consider the identity map idg: R — R and the element 0 € R. By the Universal
Property of the polynomial ring, there is a unique ring homomorphism e: R[z] — R such
that e(r) = r for each r € R, and ¢(z) = 0.

Note that ker(e) = (x). Indeed, z lies in the kernel, and if f = ag+ay+-- -+ a,a™ € ker(e),
then 0 = &(f) = ap. Thus, f = x(a1 + asx + -+ + a,z" 1) € ().
Note also that e is surjective, since for all r € R, e(r) = r.
By the First Isomorphism Theorem, we have
Rlz] _ Rlz]

R

1%

ker(e)  (x)’

as claimed. J



(ii) Prove that R is an integral domain if and only if (x) is a prime ideal of R[x]. (& points)
Proof. Since R is a commutative ring with unity, so is R[z]. We know that if I <7 where T'
is a commutative ring with unity, then I is a prime ideal of T" if and only if T'/I is an integral

domain. Thus, (z) is a prime ideal of R[z] if and only if % = R is an integral domain. OJ

(iii) Prove that R is a field if and only if (x) is a maximal ideal of R[x]. (8 points)
Proof. And we know that T/I is a field if and only if I is a maximal ideal of T'. Therefore,
R~ R[x]
(@)

x

is a field if and only if (z) is a maximal ideal of R. OJ



