Math 566 - Homework 9
SOLUTIONS
Prof Arturo Magidin

1. Let K be an extension field of F'.

(i) Show that [K : F] =1 if and only if K = F.
Proof. If K = F, then since F' is a one-dimensional vector space over itself we get that

[K : F] = 1. Conversely, if [K : F] = 1, then every nonzero element of K spans it as an
F-vector space. In particular, 1 spans K, so K ={f-1|feF}={f|feF}=F.O

(ii) Show that if [K : F] is prime, and L is an intermediate field (that is, FF C L C K), then
either F =L or L = K.

Proof. By Dedekind’s Product Theorem, we have [K : F] = [K : L|[L : F]. So [K : L]
divides [K : F|. As the latter is prime, we have either [K : L] = 1, in which case K = L
by part (i); or [K : L] = [K : F], in which case [L : F] = 1 and therefore by (i) we have
L=F. 0O

(iii) Show that if u € K has degree n over F, and [K : F] is finite, then n divides [K : F.
Proof. We have FF C F(u) C K. Hence [K : F| = [K : F(u)][F(u) : F] = [K : F(u)]n.
Therefore, if [K : F] is finite, then so is [K : F(u)], and n | [K : F], as desired. O

2. Let p(x) = 2° — 622 + 92 + 3 € Q[x].

(i) Show that p(z) is irreducible over Q.

Proof. This polynomial is “Eisenstein at p = 3”. That is, it satisfies the hypotheses of
Eisenstein’s Irreducibility Criterion with respect to the prime p = 3: leading coefficient is
not a multiple of 3; every other coefficient is a multiple of 3, and the constant term is not a
multiple of 32 = 9. Therefore, p(x) is irreducible over Q. O

(ii) Let u be a root of p(x), and let K = Q(u). Express each of the following elements of K in
terms of the basis {1,u, u?}:

(a) ut.
Answer. Dividing z* by p(x), we have:

zt = (z +6)(z® — 622 + 92 + 3) + (272% — 57z — 18),
so evaluating at u we get
ut = (u+6)(u® — 6u? + 9u + 3) + (27u? — 57u — 18) = —18 — 5Tu + 27u?,

giving the desired expression.
Alternatively, note that 0 = p(u) = u® —6u?+9u+3, hence u® = 6u? —9u—3. Therefore,

ut = u(u®) = u(6u® — Ju — 3) = 6u® — 9u® — 3u
= 6(6u® — 9u — 3) — 9u® — 3u = 36u® — 54u — 18 — 9u? — 3u
= —18 — 57u + 27u?,

same answer as above.
(b) ud.
Answer. Dividing 2° by 23 — 622 + 92 + 3, we have:

25 = (2% + 62 + 27) (2 — 622 + 9z + 3) + (10522 — 261z — 81),
so evaluating at v and remembering that u3 — 6u? 4+ 9u + 3 = 0, we get

u® = —81 — 261u + 105u2.



(c) 3u® —ut +2.
Answer. We can use the two results we just obtained:
3u —ut +2 = 3(105u% — 261u — 81) — (27u? — 57u — 18) + 2
= 315u® — 783u — 243 — 27u® + 57u + 18 + 2
= —223 — T26u + 288u’.
(d) (u+1)"L.

Answer. We express a constant in the form p(z)(x + 1) + g(x)(23 — 622 + 92 + 3). We
do this via long division. Dividing 23 — 622 + 92 + 3 by = + 1, we get

2% — 627+ 92+ 3 = (z + 1)(2* — Tz + 16) — 13.
After a rearrangement, we get:
13 = (z +1)(z* — T2+ 16) — (2 — 62> + 9z + 3)

_1 2 L 3 2
—13(x+1)(m Tz +16) 13(;10 62~ + 9z + 3).

Evaluating at u, and recalling that u® — 6u? + 9u + 3 = 0, we get

1

1 1 1 7 16
1= D=2 =Tu+16) )| — = (> —6u2+9u+3) = D=u?= —u+—]).
(u+ )(13(u u+ )) 13(u u?+9u+3) = (u+ )(13u 13u+13

Therefore, (u+1)7! =18 — Ty + Lu2. 0O

3. Let K be an extension of F', and let v € K. Show that if [F'(u) : F] is finite and odd, then
F(u?) = F(u).
Proof. Since u? € F(u), we have F(u?) C F(u). Thus, we have
[F(u): F] = [F(u) : F(u?®)][F(u?): F).
Note that F(u) = F(u?)(u); and that u satisfies a polynomial of degree 2 in F(u?)[z], namely
22 — u?. That means that [F(u?)(u) : F(u?)] < 2.

However, it cannot equal 2, because it must also divide [F(u) : F], which is odd. Therefore,
[F(u?)(u) : F(u?)] =1, and therefore F(u) = F(u?)(u) = F(u?), as required. [J

ALTERNATIVE PROOF. It is clear that F(u?) C F(u). Let f(z) be the monic irreducible polyno-
mial of u over F'; write

f(@) = 2" + az,2®" + -+ + a12 + ao, a; € F.

Evaluating at u, we have:

W 4 g+t autag =0

u?" M foag, T 4 au = — (agnu2" + agn_ou® 2 4 o 4 agu® + ao)

u (" + agn 1"+ ar) = — (a2pU + azp—2u” TP+ + agu® +oag) -
Since f(z) is the monic irreducible of u, the expression

w2t ag, w4y

does not equal 0. Therefore,

2n 2
AU + -+ agu” +a
u=— 22n 5 22 0 € F(u?).
U + agp Ut 4+

This proves that F(u) C F(u?), yielding equality. [J



4. Let E and F be field extensions of Q. Prove that if 0: E — F' is a nonzero field homomorphism,
then o(q) = ¢ for all ¢ € Q.
Proof. A field homomorphism o: E — F must send 1g to an element satisfying e? = e; this
means that e? —e = e(e—1r) = 0. That means that either e = 0 (in which case o sends everything
t0 0), or else e = 1p. Since we are assuming that o is not the zero map, it follows that o(1g) = 1p.

Here, 15 = 1 = 1y the rational number 1. We also know that ¢(0) = 0. If k£ is a natural number
and o(k) = k, then o(k+ 1) = o(k) + 0(1) = k+ 1. By induction, o(n) = n for all natural
numbers n.

Since o is in particular a group homomorphism, if n > 0 is an integer, then o(—n) = —o(n) = —n,
so o fixes every integer.

Finally, if a and b are integers, b # 0, then

o (%) =a(ab™) =o(a)o(b) ™ =ab”" = %’

so o(q) = q for all ¢ € Q, as claimed. O
5. Let F = Q(V/2).

(i) Show that 2 — 3 € F[x] is irreducible.

Proof. It is enough to show that 22 — 3 has no root in F. Assume to the contrary that
it does. An element of F is of the form p + ¢v/2 with p,q € Q, so we would have rational
numbers p and ¢ such that

(P* +2¢°) + 2pqV2 = (p + qV2)* = 3.

Since {1,+/2} is a basis for F over Q, we must have 2pq = 0 and p? + 2¢° = 3.

Since 2pg = 0, either p = 0 or ¢ = 0. If p = 0, then 2¢* = 3. Writing ¢ = ¢ with ged(a,b) =1,
we have that 2a? = 3b. the power of 3 that divides the left hand side is even (since 3 must
divide a), but the power of 3 that divides the right hand side is 1 (since 3 { gcd(a, b). So this
is impossible. Hence p # 0, which means ¢ = 0. Then p? = 3. But 22 — 3 is irreducible over
Q, so there are no rationals p such that p?> = 3. So this is also impossible. We conclude that
z? — 3 is irreducible in F|z]. O

(ii) Show that every element of F'(v/3) can be written uniquely in the form
ao+a2\/§+a3\/§+a6\/6, a; € Q.

HiNT: Note that {1,v/3} is a basis for F(v/3) over F, and that {1,v/2} is a basis for F
over Q.

Proof. A basis for F(v/3) over F'is {1,1/3} (since we just proved that the monic irreducible of
V3 over Fis x2—3). A basis for F = Q(+/2) over Q is {1,/2}, because the monic irreducible
of v/2 over Q is 2 — 2. As in the proof of Dedekind’s Product Theorem, we conclude that
the set of pairwise products is a basis for F(y/3) over Q; these pairwise products are 1, v/2,
\/3, and v/2v/3 = v/6. This proves the result. [J

(iii) Define o: F(v/3) — F(v/3) by
olap + asV2 + asV3 + agx/é) =ag — asV2 + a3V3 — ag V6.

Prove that o is an isomorphism of F(1/3) to itself which does not restrict to the identity
on F.



Proof. This is certainly a nonzero Q-linear transformation from F(v/3) to itself, so it is an
additive automorphism that is Q-homogeneous. We just need to show that it is multiplicative.
We have:

(ao +a2v2 +azV3+ aﬁx/é) (bo +boV2 + b3V3 + b6x/6>
= (aobo + 2a2bs + 3asbs + Tagbg)
+ (agby + asbo + 3asbs + 3aghs) V2
+ (aobs 4 asbo + 2asbg + 2a6b2)V3
+ (aobg + agbo + asbs + asby)V6,
(ao —asV2 + azV3 — aﬁ\@) (bo — boV/2 + b33 — be\/6>
= (agbo + 2a2by + 3azbs + Tagbg)
+ (—aobs — azby — 3aszbg — 3a663)\/§
+ (aobs + asbo + 2azbs + 2a6by) V'3
+ (—apbg — agby — azbs — agbg)\/é
= (apbo + 2a2b2 + 3azbs + Tagbs)
— (agba + asbo + 3azbs + 3aghs) V2
+ (aobs + asbo + 2asbs + 2a6b2) V'3
— (agbs + agbo + a2b3 + ang)\/é.

Thus, o(af) = o(«a)o(B), which proves that o is indeed a field isomorphism.
Now note that v/2 € F, but o(v/2) # v/2, and we are done. [J

6. Show that there is an isomorphism from Q(+/2) to Q(v/2 + 1) that restricts to the identity on Q,
even though v/2 and v/2 + 1 do not satisfy the same monic irreducible over Q.

Proof. Simply note that Q(v/2 + 1) = Q(v/2), so that the isomorphism is simply the identity
map on the set. Alternatively, we define o: Q(v/2) — Q(v/2 + 1) by

olp+qv2)=(p—q)+q(vV2+1),

where p,q € Q.
The monic irreducible ov v/2 over Q is 22 — 2. The monic irreducible of v2 + 1 over Q is

(z—-1)2-2=2*-2r+1-2=2>-2z—-1. O

7. Let 0: R — R be a field automorphism.

(i) Prove that o must send positive reals to positive reals.
Proof. Note that a real number is nonnegative if and only if it is a square. Since o is
multiplicative, o(r?) = o(r)?, so o sends squares to squares. Since it sends 0 to 0, it follows
that ¢ sends nonzero squares to nonzero squares, so o sends positive reals to positive reals.
The inverse has the same property, so o(r) > 0 if and only if > 0. O

(ii) Prove that if a,b € R and a < b, then o(a) < o(b).
Proof. We have:

a<b<<— 0<b—a



— o0(0) <o(b—a)
— 0<o(b) —o(a)
< o(a) <o(b). O

(iii) Show that if ¢ € Q, then o(q) = q.
Proof. This follows from Problem 4, taking £ = F =R. O
(iv) Show that o(r) = r for every r € R.
Proof. By (ii) and (iii), if ¢ € Q, then ¢ < r < ¢ < o(7).
If r < o(r), thenlet ¢ € Q, r < ¢ < o(r). Then r < ¢ implies o(r) < o(q) = ¢, which
contradicts the choice of ¢ to lie between r and o(r).
If o(r) < r, then let ¢ € Q with o(r) < ¢ < r. Then ¢ < r, so ¢ = o(q) < o(r), again
contradicting the choice of q.
Thus, we have that r £ o(r) and r % o(r). By trichotomy, r = o(r), as desired.



