Math 566 - Homework 9
 Solutions
 Prof Arturo Magidin

1. Let K be an extension field of F.
(i) Show that $[K: F]=1$ if and only if $K=F$.

Proof. If $K=F$, then since F is a one-dimensional vector space over itself we get that $[K: F]=1$. Conversely, if $[K: F]=1$, then every nonzero element of K spans it as an F-vector space. In particular, 1 spans K, so $K=\{f \cdot 1 \mid f \in F\}=\{f \mid f \in F\}=F$.
(ii) Show that if $[K: F]$ is prime, and L is an intermediate field (that is, $F \subseteq L \subseteq K$), then either $F=L$ or $L=K$.
Proof. By Dedekind's Product Theorem, we have $[K: F]=[K: L][L: F]$. So $[K: L]$ divides $[K: F]$. As the latter is prime, we have either $[K: L]=1$, in which case $K=L$ by part (i); or $[K: L]=[K: F]$, in which case $[L: F]=1$ and therefore by (i) we have $L=F$.
(iii) Show that if $u \in K$ has degree n over F, and $[K: F]$ is finite, then n divides $[K: F]$.

Proof. We have $F \subseteq F(u) \subseteq K$. Hence $[K: F]=[K: F(u)][F(u): F]=[K: F(u)] n$. Therefore, if $[K: F]$ is finite, then so is $[K: F(u)]$, and $n \mid[K: F]$, as desired.
2. Let $p(x)=x^{3}-6 x^{2}+9 x+3 \in \mathbb{Q}[x]$.
(i) Show that $p(x)$ is irreducible over \mathbb{Q}.

Proof. This polynomial is "Eisenstein at $p=3$ ". That is, it satisfies the hypotheses of Eisenstein's Irreducibility Criterion with respect to the prime $p=3$: leading coefficient is not a multiple of 3 ; every other coefficient is a multiple of 3 , and the constant term is not a multiple of $3^{2}=9$. Therefore, $p(x)$ is irreducible over \mathbb{Q}.
(ii) Let u be a root of $p(x)$, and let $K=\mathbb{Q}(u)$. Express each of the following elements of K in terms of the basis $\left\{1, u, u^{2}\right\}$:
(a) u^{4}.

Answer. Dividing x^{4} by $p(x)$, we have:

$$
x^{4}=(x+6)\left(x^{3}-6 x^{2}+9 x+3\right)+\left(27 x^{2}-57 x-18\right),
$$

so evaluating at u we get

$$
u^{4}=(u+6)\left(u^{3}-6 u^{2}+9 u+3\right)+\left(27 u^{2}-57 u-18\right)=-18-57 u+27 u^{2}
$$

giving the desired expression.
Alternatively, note that $0=p(u)=u^{3}-6 u^{2}+9 u+3$, hence $u^{3}=6 u^{2}-9 u-3$. Therefore,

$$
\begin{aligned}
u^{4} & =u\left(u^{3}\right)=u\left(6 u^{2}-9 u-3\right)=6 u^{3}-9 u^{2}-3 u \\
& =6\left(6 u^{2}-9 u-3\right)-9 u^{2}-3 u=36 u^{2}-54 u-18-9 u^{2}-3 u \\
& =-18-57 u+27 u^{2}
\end{aligned}
$$

same answer as above.
(b) u^{5}.

Answer. Dividing x^{5} by $x^{3}-6 x^{2}+9 x+3$, we have:

$$
x^{5}=\left(x^{2}+6 x+27\right)\left(x^{3}-6 x^{2}+9 x+3\right)+\left(105 x^{2}-261 x-81\right)
$$

so evaluating at u and remembering that $u^{3}-6 u^{2}+9 u+3=0$, we get

$$
u^{5}=-81-261 u+105 u^{2}
$$

(c) $3 u^{5}-u^{4}+2$.

Answer. We can use the two results we just obtained:

$$
\begin{aligned}
3 u^{5}-u^{4}+2 & =3\left(105 u^{2}-261 u-81\right)-\left(27 u^{2}-57 u-18\right)+2 \\
& =315 u^{2}-783 u-243-27 u^{2}+57 u+18+2 \\
& =-223-726 u+288 u^{2}
\end{aligned}
$$

(d) $(u+1)^{-1}$.

Answer. We express a constant in the form $p(x)(x+1)+q(x)\left(x^{3}-6 x^{2}+9 x+3\right)$. We do this via long division. Dividing $x^{3}-6 x^{2}+9 x+3$ by $x+1$, we get

$$
x^{3}-6 x^{2}+9 x+3=(x+1)\left(x^{2}-7 x+16\right)-13
$$

After a rearrangement, we get:

$$
\begin{aligned}
13 & =(x+1)\left(x^{2}-7 x+16\right)-\left(x^{3}-6 x^{2}+9 x+3\right) \\
1 & =\frac{1}{13}(x+1)\left(x^{2}-7 x+16\right)-\frac{1}{13}\left(x^{3}-6 x^{2}+9 x+3\right)
\end{aligned}
$$

Evaluating at u, and recalling that $u^{3}-6 u^{2}+9 u+3=0$, we get

$$
1=(u+1)\left(\frac{1}{13}\left(u^{2}-7 u+16\right)\right)-\frac{1}{13}\left(u^{3}-6 u^{2}+9 u+3\right)=(u+1)\left(\frac{1}{13} u^{2}-\frac{7}{13} u+\frac{16}{13}\right) .
$$

Therefore, $(u+1)^{-1}=\frac{16}{13}-\frac{7}{13} u+\frac{1}{13} u^{2}$.
3. Let K be an extension of F, and let $u \in K$. Show that if $[F(u): F]$ is finite and odd, then $F\left(u^{2}\right)=F(u)$.
Proof. Since $u^{2} \in F(u)$, we have $F\left(u^{2}\right) \subseteq F(u)$. Thus, we have

$$
[F(u): F]=\left[F(u): F\left(u^{2}\right)\right]\left[F\left(u^{2}\right): F\right] .
$$

Note that $F(u)=F\left(u^{2}\right)(u)$; and that u satisfies a polynomial of degree 2 in $F\left(u^{2}\right)[x]$, namely $x^{2}-u^{2}$. That means that $\left[F\left(u^{2}\right)(u): F\left(u^{2}\right)\right] \leq 2$.
However, it cannot equal 2, because it must also divide $[F(u): F]$, which is odd. Therefore, $\left[F\left(u^{2}\right)(u): F\left(u^{2}\right)\right]=1$, and therefore $F(u)=F\left(u^{2}\right)(u)=F\left(u^{2}\right)$, as required.
Alternative proof. It is clear that $F\left(u^{2}\right) \subseteq F(u)$. Let $f(x)$ be the monic irreducible polynomial of u over F; write

$$
f(x)=x^{2 n+1}+a_{2 n} x^{2 n}+\cdots+a_{1} x+a_{0}, \quad a_{i} \in F
$$

Evaluating at u, we have:

$$
\begin{aligned}
u^{2 n+1}+a_{2 n} u^{2 n}+\cdots+a_{1} u+a_{0} & =0 \\
u^{2 n+1}+a_{2 n-1} u^{2 n-1}+\cdots+a_{1} u & =-\left(a_{2 n} u^{2 n}+a_{2 n-2} u^{2 n-2}+\cdots+a_{2} u^{2}+a_{0}\right) \\
u\left(u^{2 n}+a_{2 n-1} u^{2 n-2}+\cdots+a_{1}\right) & =-\left(a_{2 n} u^{2 n}+a_{2 n-2} u^{2 n-2}+\cdots+a_{2} u^{2}+a_{0}\right)
\end{aligned}
$$

Since $f(x)$ is the monic irreducible of u, the expression

$$
u^{2 n}+a_{2 n-1} u^{2 n-2}+\cdots+a_{1}
$$

does not equal 0 . Therefore,

$$
u=-\frac{a_{2 n} u^{2 n}+\cdots+a_{2} u^{2}+a_{0}}{u^{2 n}+a_{2 n-1} u^{2 n-2}+\cdots+a_{1}} \in F\left(u^{2}\right)
$$

This proves that $F(u) \subseteq F\left(u^{2}\right)$, yielding equality.
4. Let E and F be field extensions of \mathbb{Q}. Prove that if $\sigma: E \rightarrow F$ is a nonzero field homomorphism, then $\sigma(q)=q$ for all $q \in \mathbb{Q}$.
Proof. A field homomorphism $\sigma: E \rightarrow F$ must send 1_{E} to an element satisfying $e^{2}=e$; this means that $e^{2}-e=e\left(e-1_{F}\right)=0$. That means that either $e=0$ (in which case σ sends everything to 0), or else $e=1_{F}$. Since we are assuming that σ is not the zero map, it follows that $\sigma\left(1_{E}\right)=1_{F}$.
Here, $1_{E}=1=1_{F}$ the rational number 1 . We also know that $\sigma(0)=0$. If k is a natural number and $\sigma(k)=k$, then $\sigma(k+1)=\sigma(k)+\sigma(1)=k+1$. By induction, $\sigma(n)=n$ for all natural numbers n.
Since σ is in particular a group homomorphism, if $n>0$ is an integer, then $\sigma(-n)=-\sigma(n)=-n$, so σ fixes every integer.
Finally, if a and b are integers, $b \neq 0$, then

$$
\sigma\left(\frac{a}{b}\right)=\sigma\left(a b^{-1}\right)=\sigma(a) \sigma(b)^{-1}=a b^{-1}=\frac{a}{b}
$$

so $\sigma(q)=q$ for all $q \in \mathbb{Q}$, as claimed.
5. Let $F=\mathbb{Q}(\sqrt{2})$.
(i) Show that $x^{2}-3 \in F[x]$ is irreducible.

Proof. It is enough to show that $x^{2}-3$ has no root in F. Assume to the contrary that it does. An element of F is of the form $p+q \sqrt{2}$ with $p, q \in \mathbb{Q}$, so we would have rational numbers p and q such that

$$
\left(p^{2}+2 q^{2}\right)+2 p q \sqrt{2}=(p+q \sqrt{2})^{2}=3 .
$$

Since $\{1, \sqrt{2}\}$ is a basis for F over \mathbb{Q}, we must have $2 p q=0$ and $p^{2}+2 q^{2}=3$.
Since $2 p q=0$, either $p=0$ or $q=0$. If $p=0$, then $2 q^{2}=3$. Writing $q=\frac{a}{b}$ with $\operatorname{gcd}(a, b)=1$, we have that $2 a^{2}=3 b^{2}$. the power of 3 that divides the left hand side is even (since 3 must divide a), but the power of 3 that divides the right hand side is $1(\operatorname{since} 3 \nmid \operatorname{gcd}(a, b)$. So this is impossible. Hence $p \neq 0$, which means $q=0$. Then $p^{2}=3$. But $x^{2}-3$ is irreducible over \mathbb{Q}, so there are no rationals p such that $p^{2}=3$. So this is also impossible. We conclude that $x^{2}-3$ is irreducible in $F[x]$.
(ii) Show that every element of $F(\sqrt{3})$ can be written uniquely in the form

$$
a_{0}+a_{2} \sqrt{2}+a_{3} \sqrt{3}+a_{6} \sqrt{6}, \quad a_{i} \in \mathbb{Q}
$$

Hint: Note that $\{1, \sqrt{3}\}$ is a basis for $F(\sqrt{3})$ over F, and that $\{1, \sqrt{2}\}$ is a basis for F over \mathbb{Q}.
Proof. A basis for $F(\sqrt{3})$ over F is $\{1, \sqrt{3}\}$ (since we just proved that the monic irreducible of $\sqrt{3}$ over F is $x^{2}-3$). A basis for $F=\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} is $\{1, \sqrt{2}\}$, because the monic irreducible of $\sqrt{2}$ over \mathbb{Q} is $x^{2}-2$. As in the proof of Dedekind's Product Theorem, we conclude that the set of pairwise products is a basis for $\mathbb{F}(\sqrt{3})$ over \mathbb{Q}; these pairwise products are $1, \sqrt{2}$, $\sqrt{3}$, and $\sqrt{2} \sqrt{3}=\sqrt{6}$. This proves the result.
(iii) Define $\sigma: F(\sqrt{3}) \rightarrow F(\sqrt{3})$ by

$$
\sigma\left(a_{0}+a_{2} \sqrt{2}+a_{3} \sqrt{3}+a_{6} \sqrt{6}\right)=a_{0}-a_{2} \sqrt{2}+a_{3} \sqrt{3}-a_{6} \sqrt{6} .
$$

Prove that σ is an isomorphism of $F(\sqrt{3})$ to itself which does not restrict to the identity on F.

Proof. This is certainly a nonzero \mathbb{Q}-linear transformation from $F(\sqrt{3})$ to itself, so it is an additive automorphism that is \mathbb{Q}-homogeneous. We just need to show that it is multiplicative. We have:

$$
\begin{aligned}
\left(a_{0}+\right. & \left.a_{2} \sqrt{2}+a_{3} \sqrt{3}+a_{6} \sqrt{6}\right)\left(b_{0}+b_{2} \sqrt{2}+b_{3} \sqrt{3}+b_{6} \sqrt{6}\right) \\
= & \left(a_{0} b_{0}+2 a_{2} b_{2}+3 a_{3} b_{3}+7 a_{6} b_{6}\right) \\
& +\left(a_{0} b_{2}+a_{2} b_{0}+3 a_{3} b_{6}+3 a_{6} b_{3}\right) \sqrt{2} \\
& +\left(a_{0} b_{3}+a_{3} b_{0}+2 a_{2} b_{6}+2 a_{6} b_{2}\right) \sqrt{3} \\
& +\left(a_{0} b_{6}+a_{6} b_{0}+a_{2} b_{3}+a_{3} b_{2}\right) \sqrt{6}, \\
\left(a_{0}-\right. & \left.a_{2} \sqrt{2}+a_{3} \sqrt{3}-a_{6} \sqrt{6}\right)\left(b_{0}-b_{2} \sqrt{2}+b_{3} \sqrt{3}-b_{6} \sqrt{6}\right) \\
= & \left(a_{0} b_{0}+2 a_{2} b_{2}+3 a_{3} b_{3}+7 a_{6} b_{6}\right) \\
& +\left(-a_{0} b_{2}-a_{2} b_{0}-3 a_{3} b_{6}-3 a_{6} b_{3}\right) \sqrt{2} \\
& +\left(a_{0} b_{3}+a_{3} b_{0}+2 a_{2} b_{6}+2 a_{6} b_{2}\right) \sqrt{3} \\
& +\left(-a_{0} b_{6}-a_{6} b_{0}-a_{2} b_{3}-a_{3} b_{2}\right) \sqrt{6} \\
= & \left(a_{0} b_{0}+2 a_{2} b_{2}+3 a_{3} b_{3}+7 a_{6} b_{6}\right) \\
& -\left(a_{0} b_{2}+a_{2} b_{0}+3 a_{3} b_{6}+3 a_{6} b_{3}\right) \sqrt{2} \\
& +\left(a_{0} b_{3}+a_{3} b_{0}+2 a_{2} b_{6}+2 a_{6} b_{2}\right) \sqrt{3} \\
& -\left(a_{0} b_{6}+a_{6} b_{0}+a_{2} b_{3}+a_{3} b_{2}\right) \sqrt{6} .
\end{aligned}
$$

Thus, $\sigma(\alpha \beta)=\sigma(\alpha) \sigma(\beta)$, which proves that σ is indeed a field isomorphism.
Now note that $\sqrt{2} \in F$, but $\sigma(\sqrt{2}) \neq \sqrt{2}$, and we are done.
6. Show that there is an isomorphism from $\mathbb{Q}(\sqrt{2})$ to $\mathbb{Q}(\sqrt{2}+1)$ that restricts to the identity on \mathbb{Q}, even though $\sqrt{2}$ and $\sqrt{2}+1$ do not satisfy the same monic irreducible over \mathbb{Q}.
Proof. Simply note that $\mathbb{Q}(\sqrt{2}+1)=\mathbb{Q}(\sqrt{2})$, so that the isomorphism is simply the identity map on the set. Alternatively, we define $\sigma: \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{2}+1)$ by

$$
\sigma(p+q \sqrt{2})=(p-q)+q(\sqrt{2}+1)
$$

where $p, q \in \mathbb{Q}$.
The monic irreducible ov $\sqrt{2}$ over \mathbb{Q} is $x^{2}-2$. The monic irreducible of $\sqrt{2}+1$ over \mathbb{Q} is

$$
(x-1)^{2}-2=x^{2}-2 x+1-2=x^{2}-2 x-1
$$

7. Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ be a field automorphism.
(i) Prove that σ must send positive reals to positive reals.

Proof. Note that a real number is nonnegative if and only if it is a square. Since σ is multiplicative, $\sigma\left(r^{2}\right)=\sigma(r)^{2}$, so σ sends squares to squares. Since it sends 0 to 0 , it follows that σ sends nonzero squares to nonzero squares, so σ sends positive reals to positive reals. The inverse has the same property, so $\sigma(r)>0$ if and only if $r>0$.
(ii) Prove that if $a, b \in \mathbb{R}$ and $a<b$, then $\sigma(a)<\sigma(b)$.

Proof. We have:

$$
a<b \Longleftrightarrow 0<b-a
$$

$$
\begin{aligned}
& \Longleftrightarrow \sigma(0)<\sigma(b-a) \\
& \Longleftrightarrow 0<\sigma(b)-\sigma(a) \\
& \Longleftrightarrow \sigma(a)<\sigma(b) .
\end{aligned}
$$

(iii) Show that if $q \in \mathbb{Q}$, then $\sigma(q)=q$.

Proof. This follows from Problem 4, taking $E=F=\mathbb{R}$.
(iv) Show that $\sigma(r)=r$ for every $r \in \mathbb{R}$.

Proof. By (ii) and (iii), if $q \in \mathbb{Q}$, then $q<r \Longleftrightarrow q<\sigma(r)$.
If $r<\sigma(r)$, then let $q \in \mathbb{Q}, r<q<\sigma(r)$. Then $r<q$ implies $\sigma(r)<\sigma(q)=q$, which contradicts the choice of q to lie between r and $\sigma(r)$.
If $\sigma(r)<r$, then let $q \in \mathbb{Q}$ with $\sigma(r)<q<r$. Then $q<r$, so $q=\sigma(q)<\sigma(r)$, again contradicting the choice of q.
Thus, we have that $r \nless \sigma(r)$ and $r \ngtr \sigma(r)$. By trichotomy, $r=\sigma(r)$, as desired.

