
Math 566 - Homework 9
Solutions

Prof Arturo Magidin

1. Let K be an extension field of F .

(i) Show that [K : F ] = 1 if and only if K = F .

Proof. If K = F , then since F is a one-dimensional vector space over itself we get that
[K : F ] = 1. Conversely, if [K : F ] = 1, then every nonzero element of K spans it as an
F -vector space. In particular, 1 spans K, so K = {f · 1 | f ∈ F} = {f | f ∈ F} = F . □

(ii) Show that if [K : F ] is prime, and L is an intermediate field (that is, F ⊆ L ⊆ K), then
either F = L or L = K.

Proof. By Dedekind’s Product Theorem, we have [K : F ] = [K : L][L : F ]. So [K : L]
divides [K : F ]. As the latter is prime, we have either [K : L] = 1, in which case K = L
by part (i); or [K : L] = [K : F ], in which case [L : F ] = 1 and therefore by (i) we have
L = F . □

(iii) Show that if u ∈ K has degree n over F , and [K : F ] is finite, then n divides [K : F ].

Proof. We have F ⊆ F (u) ⊆ K. Hence [K : F ] = [K : F (u)][F (u) : F ] = [K : F (u)]n.

Therefore, if [K : F ] is finite, then so is [K : F (u)], and n | [K : F ], as desired. □

2. Let p(x) = x3 − 6x2 + 9x+ 3 ∈ Q[x].

(i) Show that p(x) is irreducible over Q.

Proof. This polynomial is “Eisenstein at p = 3”. That is, it satisfies the hypotheses of
Eisenstein’s Irreducibility Criterion with respect to the prime p = 3: leading coefficient is
not a multiple of 3; every other coefficient is a multiple of 3, and the constant term is not a
multiple of 32 = 9. Therefore, p(x) is irreducible over Q. □

(ii) Let u be a root of p(x), and let K = Q(u). Express each of the following elements of K in
terms of the basis {1, u, u2}:
(a) u4.

Answer. Dividing x4 by p(x), we have:

x4 = (x+ 6)(x3 − 6x2 + 9x+ 3) + (27x2 − 57x− 18),

so evaluating at u we get

u4 = (u+ 6)(u3 − 6u2 + 9u+ 3) + (27u2 − 57u− 18) = −18− 57u+ 27u2,

giving the desired expression.
Alternatively, note that 0 = p(u) = u3−6u2+9u+3, hence u3 = 6u2−9u−3. Therefore,

u4 = u(u3) = u(6u2 − 9u− 3) = 6u3 − 9u2 − 3u

= 6(6u2 − 9u− 3)− 9u2 − 3u = 36u2 − 54u− 18− 9u2 − 3u

= −18− 57u+ 27u2,

same answer as above.

(b) u5.
Answer. Dividing x5 by x3 − 6x2 + 9x+ 3, we have:

x5 = (x2 + 6x+ 27)(x3 − 6x2 + 9x+ 3) + (105x2 − 261x− 81),

so evaluating at u and remembering that u3 − 6u2 + 9u+ 3 = 0, we get

u5 = −81− 261u+ 105u2.
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(c) 3u5 − u4 + 2.
Answer. We can use the two results we just obtained:

3u5 − u4 + 2 = 3(105u2 − 261u− 81)− (27u2 − 57u− 18) + 2

= 315u2 − 783u− 243− 27u2 + 57u+ 18 + 2

= −223− 726u+ 288u2.

(d) (u+ 1)−1.
Answer. We express a constant in the form p(x)(x+ 1) + q(x)(x3 − 6x2 + 9x+ 3). We
do this via long division. Dividing x3 − 6x2 + 9x+ 3 by x+ 1, we get

x3 − 6x2 + 9x+ 3 = (x+ 1)(x2 − 7x+ 16)− 13.

After a rearrangement, we get:

13 = (x+ 1)(x2 − 7x+ 16)− (x3 − 6x2 + 9x+ 3)

1 =
1

13
(x+ 1)(x2 − 7x+ 16)− 1

13
(x3 − 6x2 + 9x+ 3).

Evaluating at u, and recalling that u3 − 6u2 + 9u+ 3 = 0, we get

1 = (u+1)

(
1

13
(u2 − 7u+ 16)

)
− 1

13
(u3−6u2+9u+3) = (u+1)

(
1

13
u2 − 7

13
u+

16

13

)
.

Therefore, (u+ 1)−1 = 16
13 − 7

13u+ 1
13u

2. □

3. Let K be an extension of F , and let u ∈ K. Show that if [F (u) : F ] is finite and odd, then
F (u2) = F (u).

Proof. Since u2 ∈ F (u), we have F (u2) ⊆ F (u). Thus, we have

[F (u) : F ] = [F (u) : F (u2)][F (u2) : F ].

Note that F (u) = F (u2)(u); and that u satisfies a polynomial of degree 2 in F (u2)[x], namely
x2 − u2. That means that [F (u2)(u) : F (u2)] ≤ 2.

However, it cannot equal 2, because it must also divide [F (u) : F ], which is odd. Therefore,
[F (u2)(u) : F (u2)] = 1, and therefore F (u) = F (u2)(u) = F (u2), as required. □

Alternative proof. It is clear that F (u2) ⊆ F (u). Let f(x) be the monic irreducible polyno-
mial of u over F ; write

f(x) = x2n+1 + a2nx
2n + · · ·+ a1x+ a0, ai ∈ F.

Evaluating at u, we have:

u2n+1 + a2nu
2n + · · ·+ a1u+ a0 = 0

u2n+1 + a2n−1u
2n−1 + · · ·+ a1u = −

(
a2nu

2n + a2n−2u
2n−2 + · · ·+ a2u

2 + a0
)

u
(
u2n + a2n−1u

2n−2 + · · ·+ a1
)
= −

(
a2nu

2n + a2n−2u
2n−2 + · · ·+ a2u

2 + a0
)
.

Since f(x) is the monic irreducible of u, the expression

u2n + a2n−1u
2n−2 + · · ·+ a1

does not equal 0. Therefore,

u = − a2nu
2n + · · ·+ a2u

2 + a0
u2n + a2n−1u2n−2 + · · ·+ a1

∈ F (u2).

This proves that F (u) ⊆ F (u2), yielding equality. □
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4. Let E and F be field extensions of Q. Prove that if σ : E → F is a nonzero field homomorphism,
then σ(q) = q for all q ∈ Q.

Proof. A field homomorphism σ : E → F must send 1E to an element satisfying e2 = e; this
means that e2−e = e(e−1F ) = 0. That means that either e = 0 (in which case σ sends everything
to 0), or else e = 1F . Since we are assuming that σ is not the zero map, it follows that σ(1E) = 1F .

Here, 1E = 1 = 1F the rational number 1. We also know that σ(0) = 0. If k is a natural number
and σ(k) = k, then σ(k + 1) = σ(k) + σ(1) = k + 1. By induction, σ(n) = n for all natural
numbers n.

Since σ is in particular a group homomorphism, if n > 0 is an integer, then σ(−n) = −σ(n) = −n,
so σ fixes every integer.

Finally, if a and b are integers, b ̸= 0, then

σ
(a
b

)
= σ(ab−1) = σ(a)σ(b)−1 = ab−1 =

a

b
,

so σ(q) = q for all q ∈ Q, as claimed. □

5. Let F = Q(
√
2).

(i) Show that x2 − 3 ∈ F [x] is irreducible.

Proof. It is enough to show that x2 − 3 has no root in F . Assume to the contrary that
it does. An element of F is of the form p + q

√
2 with p, q ∈ Q, so we would have rational

numbers p and q such that

(p2 + 2q2) + 2pq
√
2 = (p+ q

√
2)2 = 3.

Since {1,
√
2} is a basis for F over Q, we must have 2pq = 0 and p2 + 2q2 = 3.

Since 2pq = 0, either p = 0 or q = 0. If p = 0, then 2q2 = 3. Writing q = a
b with gcd(a, b) = 1,

we have that 2a2 = 3b2. the power of 3 that divides the left hand side is even (since 3 must
divide a), but the power of 3 that divides the right hand side is 1 (since 3 ∤ gcd(a, b). So this
is impossible. Hence p ̸= 0, which means q = 0. Then p2 = 3. But x2 − 3 is irreducible over
Q, so there are no rationals p such that p2 = 3. So this is also impossible. We conclude that
x2 − 3 is irreducible in F [x]. □

(ii) Show that every element of F (
√
3) can be written uniquely in the form

a0 + a2
√
2 + a3

√
3 + a6

√
6, ai ∈ Q.

Hint: Note that {1,
√
3} is a basis for F (

√
3) over F , and that {1,

√
2} is a basis for F

over Q.

Proof. A basis for F (
√
3) over F is {1,

√
3} (since we just proved that the monic irreducible of√

3 over F is x2−3). A basis for F = Q(
√
2) over Q is {1,

√
2}, because the monic irreducible

of
√
2 over Q is x2 − 2. As in the proof of Dedekind’s Product Theorem, we conclude that

the set of pairwise products is a basis for F(
√
3) over Q; these pairwise products are 1,

√
2,√

3, and
√
2
√
3 =

√
6. This proves the result. □

(iii) Define σ : F (
√
3) → F (

√
3) by

σ(a0 + a2
√
2 + a3

√
3 + a6

√
6) = a0 − a2

√
2 + a3

√
3− a6

√
6.

Prove that σ is an isomorphism of F (
√
3) to itself which does not restrict to the identity

on F .
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Proof. This is certainly a nonzero Q-linear transformation from F (
√
3) to itself, so it is an

additive automorphism that isQ-homogeneous. We just need to show that it is multiplicative.
We have: (

a0 + a2
√
2 + a3

√
3 + a6

√
6
)(

b0 + b2
√
2 + b3

√
3 + b6

√
6
)

= (a0b0 + 2a2b2 + 3a3b3 + 7a6b6)

+ (a0b2 + a2b0 + 3a3b6 + 3a6b3)
√
2

+ (a0b3 + a3b0 + 2a2b6 + 2a6b2)
√
3

+ (a0b6 + a6b0 + a2b3 + a3b2)
√
6,(

a0 − a2
√
2 + a3

√
3− a6

√
6
)(

b0 − b2
√
2 + b3

√
3− b6

√
6
)

= (a0b0 + 2a2b2 + 3a3b3 + 7a6b6)

+ (−a0b2 − a2b0 − 3a3b6 − 3a6b3)
√
2

+ (a0b3 + a3b0 + 2a2b6 + 2a6b2)
√
3

+ (−a0b6 − a6b0 − a2b3 − a3b2)
√
6

= (a0b0 + 2a2b2 + 3a3b3 + 7a6b6)

− (a0b2 + a2b0 + 3a3b6 + 3a6b3)
√
2

+ (a0b3 + a3b0 + 2a2b6 + 2a6b2)
√
3

− (a0b6 + a6b0 + a2b3 + a3b2)
√
6.

Thus, σ(αβ) = σ(α)σ(β), which proves that σ is indeed a field isomorphism.

Now note that
√
2 ∈ F , but σ(

√
2) ̸=

√
2, and we are done. □

6. Show that there is an isomorphism from Q(
√
2) to Q(

√
2 + 1) that restricts to the identity on Q,

even though
√
2 and

√
2 + 1 do not satisfy the same monic irreducible over Q.

Proof. Simply note that Q(
√
2 + 1) = Q(

√
2), so that the isomorphism is simply the identity

map on the set. Alternatively, we define σ : Q(
√
2) → Q(

√
2 + 1) by

σ(p+ q
√
2) = (p− q) + q(

√
2 + 1),

where p, q ∈ Q.

The monic irreducible ov
√
2 over Q is x2 − 2. The monic irreducible of

√
2 + 1 over Q is

(x− 1)2 − 2 = x2 − 2x+ 1− 2 = x2 − 2x− 1. □

7. Let σ : R → R be a field automorphism.

(i) Prove that σ must send positive reals to positive reals.

Proof. Note that a real number is nonnegative if and only if it is a square. Since σ is
multiplicative, σ(r2) = σ(r)2, so σ sends squares to squares. Since it sends 0 to 0, it follows
that σ sends nonzero squares to nonzero squares, so σ sends positive reals to positive reals.
The inverse has the same property, so σ(r) > 0 if and only if r > 0. □

(ii) Prove that if a, b ∈ R and a < b, then σ(a) < σ(b).

Proof. We have:

a < b ⇐⇒ 0 < b− a
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⇐⇒ σ(0) < σ(b− a)

⇐⇒ 0 < σ(b)− σ(a)

⇐⇒ σ(a) < σ(b). □

(iii) Show that if q ∈ Q, then σ(q) = q.

Proof. This follows from Problem 4, taking E = F = R. □
(iv) Show that σ(r) = r for every r ∈ R.

Proof. By (ii) and (iii), if q ∈ Q, then q < r ⇐⇒ q < σ(r).

If r < σ(r), then let q ∈ Q, r < q < σ(r). Then r < q implies σ(r) < σ(q) = q, which
contradicts the choice of q to lie between r and σ(r).

If σ(r) < r, then let q ∈ Q with σ(r) < q < r. Then q < r, so q = σ(q) < σ(r), again
contradicting the choice of q.

Thus, we have that r ≮ σ(r) and r ≯ σ(r). By trichotomy, r = σ(r), as desired.

5


