Math 566 - Homework 8
 Solutions
 Prof Arturo Magidin

1. Let $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{Z}[x]$ be primitive, $a_{n} \neq 0$, and let p be a prime number. Let

$$
\bar{f}=\overline{a_{0}}+\overline{a_{1}} x+\cdots+\overline{a_{n}} x^{n} \in \mathbb{Z}_{p}[x]
$$

where \bar{a} is the image of a in \mathbb{Z}_{p} under the canonical map $\mathbb{Z} \rightarrow \mathbb{Z}_{p}$ from the integers to the integers modulo p.
(i) Show that if f is monic and \bar{f} is irreducible in $\mathbb{Z}_{p}[x]$ for some prime p, then f is irreducible in $\mathbb{Z}[x]$.
Proof. Suppose that $f=g h$ with $g, h \in \mathbb{Z}[x]$. Since f is monic, the leading coefficients of g and h are both units and multiply to 1 , so they are both equal to 1 or both equal to -1 . Multiplying each by -1 if necessary, we may assume that both g and h are monic.
Reducing modulo p, we obtain that $\bar{f}=\bar{g} \bar{h}$; since g and h are monic, $\operatorname{deg}(\bar{g})=\operatorname{deg}(g)$ and $\operatorname{deg}(\bar{h})=\operatorname{deg}(h)$. Since \bar{f} is irreducible, then one of \bar{h} or \bar{g} is a unit, hence of degree 0 , and so either g is constant (and being monic, equal to 1) or h is constant (and being monic, equal to 1). This shows that any factorization of f into a product of two polynomials always has one factor be a unit, so f is irreducible in $\mathbb{Z}[x]$, as claimed.
(ii) Show the result still holds if we replace " f is monic" with " a_{n} is not a multiple of p ".

Proof. In the argument above, instead of concluding that we may take g and h both monic, we have that g and h both have leading coefficient which is not a multiple of p; that suffices to show that $\operatorname{deg}(\bar{g})=\operatorname{deg}(g)$ and $\operatorname{deg}(\bar{h})=\operatorname{deg}(h)$; so we can still conclude that either g or h are constant. Now we use the assumption that f is primitive to conclude that both g and h are primitive, and a constant primitive polynomial in $\mathbb{Z}[x]$ must be either 1 or -1 , that is a unit. So again we get that f is irreducible.
(iii) Give an example to show that the conclusion may fail to hold if a_{n} is divisible by p.

Answer. Consider $f(x)=3 x^{2}+4 x+1=(x+1)(3 x+1)$. This is a primitive reducible polynomial in $\mathbb{Z}[x]$. If we take $p=3$ and reduce, we get $\bar{f}(x)=\overline{1} x+\overline{1}$, which is degree 1 and hence irreducible. So even though the polynomial is primitive and the reduction modulo p is irreducible, the original polynomial is not irreducible.
2. Prove that if F is a field, and $n \geq 2$, then $F\left[x_{1}, \ldots, x_{n}\right]$ is not a PID.

Proof. We proved in the last homework that if D is a domain and $c \in D$ is irreducible, then (x, c) is not principal in $D[x]$.
Since x_{1} is an irreducible element in the domain $F\left[x_{1}, \ldots, x_{n-1}\right]$, then $\left(x_{1}, x_{n}\right)$ is an ideal in $F\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right]=F\left[x_{1}, \ldots, x_{n}\right]$ that is not principal. So $F\left[x_{1}, \ldots, x_{n}\right]$ is not a PID.
3. In \mathbb{Z}, given any $n>1$, for every $a>0$ there exist unique $r \geq 0$, and integers $a_{0}, \ldots, a_{r}, 0 \leq a_{i}<n$, $a_{r} \neq 0$, such that

$$
a=a_{0}+a_{1} n+a_{2} n^{2}+\cdots+a_{r} n^{r}
$$

that is, we can write every number in "base n ", and the digits are uniquely determined. Prove the following analog for polynomials:
Let F be a field, and let $g \in F[x], \operatorname{deg}(g) \geq 1$. Prove that for every nonzero $f \in F[x]$ there exist unique $r \geq 0$ and polynomials $f_{0}, \ldots, f_{r} \in F[x]$, each f_{i} either equal to 0 or with $\operatorname{deg}\left(f_{i}\right)<\operatorname{deg}(g)$, and $f_{r} \neq 0$, such that

$$
f=f_{0}+f_{1} g+\cdots+f_{r} g^{r}
$$

that is, we can express every polynomial uniquely in "base g. .

Proof. The idea is the same as for numbers: divide by g and take the remainder to get f_{0}; then take the quotient and divide by g, and the remainder is f_{1}; etc.
Existence. We proceed by induction on $\operatorname{deg}(f)$. Assume the result holds for all polynomials of degree smaller than $\operatorname{deg}(f)$.
If $\operatorname{deg}(f)<\operatorname{deg}(g)$, then take $r=0$ and $f_{0}=f$. Then $f=f_{0}$ and we are done.
If $\operatorname{deg}(f) \geq \operatorname{deg}(g)$, then we can write $f=q g+h$, with $h=0$ or $\operatorname{deg}(h)<\operatorname{deg}(g)$; set $f_{0}=h$. Now note that $q \neq 0$, since $\operatorname{deg}(f) \geq \operatorname{deg}(g)$, and that $\operatorname{deg}(q g)=\operatorname{deg}(f-h)=\operatorname{deg}(f)$ (since either $h=0$ or else $\operatorname{deg}(h)<\operatorname{deg}(f))$; therefore, $\operatorname{deg}(q)=\operatorname{deg}(f)-\operatorname{deg}(g)<\operatorname{deg}(f)$. Thus, by the induction hypothesis, we can write

$$
q=q_{0}+q_{1} g+\cdots+q_{s} g^{s}
$$

where q_{i} are polynomials, each either equal to 0 or with $\operatorname{deg}\left(q_{i}\right)<\operatorname{deg}(g)$, and $q_{s} \neq 0$. Therefore,

$$
f=f_{0}+q g=f_{0}+\left(q_{0}+q_{1} g+\cdots+q_{s} g^{s}\right) g=f_{0}+q_{0} g+q_{1} g^{2}+\cdots+q_{s} g^{s+1}
$$

Set $r=s+1$, and $f_{i}=q_{i-1}$ for $i=1, \ldots, r$. This gives an expression for f in the desired form, completing the induction.
Uniqueness. We proceed by induction on $\operatorname{deg}(f)$. Assume the result holds for all polynomials of degree strictly smaller than $\operatorname{deg}(f)$.

Let

$$
f=f_{0}+f_{1} g+\cdots+f_{r} g^{r}=h_{0}+h_{1} g+\cdots+h_{s} g^{s}
$$

Setting $q_{1}=\left(f_{1}+f_{2} g+\cdots+f_{r} g^{r-1}\right)$ and $q_{2}=h_{1}+h_{2} g+\cdots+h_{s} g^{s-1}$, we note that

$$
f=f_{0}+q_{1} g=h_{0}+q_{2} g
$$

and each of f_{0}, h_{0} is either 0 or of degree strictly smaller than g. By the uniqueness clause of the Division Algorithm for polynomials, we conclude that $f_{0}=h_{0}$ and $q_{1}=q_{2}$. Now notice that q_{1} and q_{2} have degree strictly smaller than f, so applying the induction hypothesis to the two expressions

$$
q_{1}=q_{2}=f_{1}+f_{2} g+\cdots+f_{r} g^{r-1}=h_{1}+h_{2} g+\cdots+h_{s} g^{s-1}
$$

we conclude that $r-1=s-1$ and that $f_{1}=h_{1}, f_{2}=h_{2}, \ldots, f_{r}=h_{r}$. Thus, $r=s$ and $f_{i}=h_{i}$ for $i=0, \ldots, r$, proving uniqueness.
4. We prove Schönemann's Irreducibility Criterion. Let $f(x) \in \mathbb{Z}[x]$ be a polynomial with integer coefficients, $\operatorname{deg}(f)=n>0$, and assume that there exists a prime p, and integer a, and a polynomial $\mathcal{F}(x) \in \mathbb{Z}[x]$ such that

$$
f(x)=(x-a)^{n}+p \mathcal{F}(x) \quad \text { and } \mathcal{F}(a) \not \equiv 0 \quad(\bmod p)
$$

We will prove that if this occurs, then $f(x)$ is irreducible in $\mathbb{Q}[x]$.
(i) Show that the leading coefficient of f is not divisible by p.

Proof. Note that $\operatorname{deg}(\mathcal{F}(x)) \leq n$ (since $\operatorname{deg}(g+h) \leq \max (\operatorname{deg} g, \operatorname{deg} h)$, with equality if $\operatorname{deg}(g) \neq \operatorname{deg}(h))$. Write

$$
\begin{gathered}
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \\
\mathcal{F}(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}
\end{gathered}
$$

where $a_{n} \neq 0$, but we allow $b_{n}=0$. Since $(x-a)^{n}=x^{n}+$ terms of lower degree, we have $a_{n}=1+p b_{n}$. Therefore, $a_{n} \equiv 1(\bmod p)$, so a_{n} is not divisible by p.
(ii) Assume that $f(x)=G(x) H(x)$ with $G(x), H(x)$ polynomials with integer coefficients. Let $\overline{f(x)}, \overline{G(x)}$ and $\overline{H(x)}$ denote the images of $f(x), G(x)$, and $H(x)$ in $(\mathbb{Z} / p \mathbb{Z})[x]$ obtained by reducing the coefficients modulo p. Prove that we have $\operatorname{deg}(G(x))=\operatorname{deg}(G(x))$ and $\operatorname{deg}(\overline{H(x)})=\operatorname{deg}(H(x))$.
Proof. The leading coefficient of $f(x), a_{n}$, is the product of the leading coefficient of G and the leading coefficient of H. Since p does not divide a_{n}, p cannot divide the leading coefficient of G nor the leading coefficient of H, so when we reduce modulo p, the leading coefficient of $\overline{G(x)}$ is the reduction modulo p of the leading coefficient of $G(x)$ (which is not zero). So $\operatorname{deg}(\overline{G(x)})=\operatorname{deg}(G(x))$, as claimed. Same argument holds for $\overline{H(x)}$.
(iii) Show that $\overline{G(x)}=(x-\bar{a})^{i}$ and $\overline{H(x)}=(x-\bar{a})^{j}$ for some nonnegative integers i, j with $i+j=n$.
Proof. Note that $\mathbb{Z} / p \mathbb{Z}$ is a field, so the ring of polynomials with coefficients in $\mathbb{Z} / p \mathbb{Z}$ is a Euclidean domain, hence a Unique Factorization Domain. Since $f(x)=(x-a)^{n}+p \mathcal{F}(x)$, it follows that

$$
\overline{f(x)}=\overline{(x-a)^{n}+p \mathcal{F}(x)}=\overline{(x-a)}^{n}+\bar{p} \overline{\mathcal{F}(x)}=\overline{(x-a)}^{n}=(x-\bar{a})^{n} .
$$

Since $\overline{f(x)}=\overline{G(x)} \overline{H(x)}$, by unique factorization we must have $\overline{G(x)}=(x-\bar{a})^{i}, \overline{H(x)}=$ $(x-\bar{a})^{j}$ for some nonnegative integers i and j with $i+j=n$, as claimed.
(iv) Show that if $i, j>0$, then $G(a) \equiv H(a) \equiv 0(\bmod p)$.

Proof. Since $\overline{G(x)}=(x-\bar{a})^{i}$, it follows that if $i>0$, then

$$
\overline{G(a)}=(\bar{a}-\bar{a})^{i}=\overline{0},
$$

so $G(a) \equiv 0(\bmod p)$; similarly, if $j>0$, then $\overline{H(a)}=(\bar{a}-\bar{a})^{j}=\overline{0}$, so $H(a) \equiv 0(\bmod p)$.
(v) Show that if $i, j>0$, then $p \mathcal{F}(a) \equiv 0\left(\bmod p^{2}\right)$, and reach a contradiction.

Proof. Since each of $G(a)$ and $H(a)$ are divisible by p, then $G(a) H(a)$ is divisible by p^{2}. Therefore,

$$
\begin{aligned}
0 & \equiv G(a) H(a) \quad\left(\bmod p^{2}\right) \\
& \equiv f(a) \quad\left(\bmod p^{2}\right) \\
& \equiv(a-a)^{n}+p \mathcal{F}(a) \quad\left(\bmod p^{2}\right) \\
& \equiv p \mathcal{F}(a) \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

But if $p \mathcal{F}(a) \equiv 0\left(\bmod p^{2}\right)$, then $\mathcal{F}(a) \equiv 0(\bmod p)$, which contradicts our assumption that $\mathcal{F}(a) \not \equiv 0(\bmod p)$.
(vi) Conclude that $f(x)$ is irreducible in $\mathbb{Q}[x]$.

Proof. If $f(x)$ is reducible in $\mathbb{Q}[x]$, then by Gauss's Lemma and its corollaries we can express $f(x)$ as a product of two nonconstant polynomials $f(x)=G(x) H(x)$, with $G(x), H(x) \in \mathbb{Z}[x]$. But in that case, from (iii) we would conclude that $\overline{G(x)}=(x-\bar{a})^{i}$ with $i>0$, and $\overline{H(x)}=(x-\bar{a})^{j}$ with $j>0$, which yields a contradiction as in (v). Therefore, $f(x)$ must be irreducible in $\mathbb{Q}[x]$, as claimed.

