Math 566 - Homework 7
 Solutions
 Prof Arturo Magidin

1. Let R be a ring with unity and let $I \triangleleft R$ be an ideal of R. Prove that $I[x]$ is an ideal of $R[x]$ and $R[x] / I[x] \cong(R / I)[x]$.
Proof. The canonical projection $\pi: R \rightarrow R / I$, composed with the canonical inclusion $(R / I) \hookrightarrow$ $(R / I)[x]$, defines a ring homomorphism $R \rightarrow(R / I)[x]$, sending $a \in R$ to the constant polynomial $a+I$ in $(R / I)[x]$. Then mapping $x \in R[x]$ to $x \in(R / I)[x]$ induces a ring homomorphism $f: R[x] \rightarrow(R / I)[x]$, by

$$
f\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=\left(a_{0}+I\right)+\left(a_{1}+I\right) x+\cdots+\left(a_{n}+I\right) x^{n}
$$

which we are guaranteed is a ring homomorphism by the universal property. Invoking the universal property saves us a lot of verifications.
We claim that $\operatorname{ker}(f)=I[x]$. Indeed, if $a_{i} \in I$ for $i=0, \ldots, n$, then

$$
f\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}=\left(a_{0}+I\right)+\cdots+\left(a_{n}+I\right) x^{n}=0+0 x+\cdots+0 x^{n}=0\right.
$$

so $I[x] \subseteq \operatorname{ker}(f)$. Conversely, if $a_{0}+\cdots+a_{n} x^{n} \in \operatorname{ker}(f)$, then $a_{i}+I=0+I$ for each i, so $a_{i} \in I$ for each i; thus, $\operatorname{ker}(f) \subseteq I[x]$.

Thus, $I[x] \triangleleft R[x]$. Finally, we show that f is surjective: given $b_{0}, \ldots, b_{n} \in R / I$, let $a_{i} \in R$ be such that $a_{i}+I=b_{i}$. Then

$$
f\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=\left(a_{0}+I\right)+\cdots+\left(a_{n}+I\right) x^{n}=b_{0}+\cdots+b_{n} x^{n} .
$$

Thus, by the First Homomorphism Theorem, we have that $R[x] / I[x] \cong(R / I)[x]$, as desired.
2. Let R be the ring of 2×2 matrices with coefficients in \mathbb{Z}
(i) Show that for all $A \in R,(x+A)(x-A)=x^{2}-A^{2}$ holds in $R[x]$.

Proof. This is just the definition of product in the polynomial ring. We have

$$
\begin{aligned}
(x+A)(x-A) & =x x+x(-A)+A x+A(-A)=x^{2}-A x+A x-A^{2} \\
& =x^{2}+(-A+A) x-A^{2}=x^{2}+0 x-A^{2} \\
& =x^{2}-A^{2}
\end{aligned}
$$

because we know that in the polynomial ring $R[x]$ we have $A x=x A$ for all $A \in R$, so $x(-A)=-A x$.
(ii) Show that there are matrices A and C in R such that

$$
(C+A)(C-A) \neq C^{2}-A^{2}
$$

Proof. There are, of course, many possible answers. Here's one. Take

$$
A=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \quad C=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Then

$$
A^{2}=\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right) \quad \text { and } \quad C^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Thus,

$$
C^{2}-A^{2}=\left(\begin{array}{cc}
2 & 0 \\
0 & 2
\end{array}\right)
$$

On the other hand,

$$
\begin{aligned}
(C+A)(C-A) & =\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\right)\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)-\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\right) \\
& =\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right)=\left(\begin{array}{ll}
4 & 0 \\
0 & 0
\end{array}\right) \\
& \neq C^{2}-A^{2} .
\end{aligned}
$$

This means that the "evaluation at C " map is not a ring homomorphism from $R[x]$ to R in this case (because R is not commutative, and C is not in the center of R).
3. Let R be a commutative ring. Given $p \in R[x]$,

$$
p=a_{0}+a_{1} x+\cdots+a_{n} x^{n},
$$

we have a function $\mathbf{p}: R \rightarrow R$ given by

$$
\mathbf{p}(r)=a_{0}+a_{1} r+\cdots+a_{n} r^{n} .
$$

The assignment $p \mapsto \mathbf{p}$ defines a ring homomorphism $\varphi: R[x] \rightarrow R^{R}$, the ring of all functions from R to itself with pointwise addition and product. (You may take this for granted).
Show that if R is finite and nonzero, then φ is not one-to-one.
Proof. Because R is nonzero, the ring $R[x]$ is infinite: pick $a \in R, a \neq 0$; then $R[x]$ contains a, $a x, a x^{2}, \ldots, a x^{n}, \ldots$.
On the other hand, if R is finite, then $\left|R^{R}\right|=|R|^{|R|}$ is finite. So the function φ goes from an infinite set to a finite set, and hence is not one-to-one.
4. Let D be an integral domain. Show that the morphism $\varphi: D[x] \rightarrow D^{D}$ from the previous problem is one-to-one if and only if D is infinite.
Proof. We saw above that if D is finite then φ is not one-to-one.
Now assume that D is infinite. If $\varphi(f)=\varphi(g)$, then $\varphi(f-g)$ is the zero function, and therefore $(f-g)(r)=0$ for all $r \in D$.
Because D is an integral domain, a polynomial of degree n has at most n roots. Since $(f-g)(r)=0$ for infinitely many r, it follows that $f-g$ must be the zero polynomial, so $f=g$, as desired.
5. Show that if F is a field, then (x) is a maximal ideal of $F[x]$, but it is not the only maximal ideal of F.
Proof. The evaluation map $F[x] \rightarrow F$ given by $p(x) \mapsto p(0)$ is a ring homomorphism, which is surjective, and by the Factor Theorem its kernel is precisely the polynomials that are multiples of x, i.e. (x). Thus, (x) is maximal, since $F[x] /(x) \cong F$, a field.
The evaluation map $F[x] \rightarrow F$ given by $p(x) \mapsto p(1)$ is also a ring homomoprhism, which is surjective (constant polynomials suffice to ensure surjectivity) and its kernel is precisely the polynomials that are multiples of $x-1$, i.e., $(x-1)$. Thus, the ideal $(x-1)$ is also maximal, since $F[x] /(x-1) \cong F$, a field. Also, $(x) \neq(x-1)$, so (x) is not the only maximal ideal of F.
6. Let D be an integral domain, and let $c \in D$ be an irreducible element. Prove that the ideal (x, c) of $D[x]$ is not principal.
Proof. Note that $(x, c) \neq(1)$. This follows because $D[x] /(x) \cong D$, so $D[x] /(x, c) \cong D /(c)$. Since c is assumed to be irreducible, it follows that it is not a unit, so $(c) \neq D$. Hence $D /(c)$ is not trivial, so $(x, c) \neq(1)$.

If $(x, c) \subseteq(a)$, then $a \mid x$ and $a \mid c$ in $D[x]$. Since D is an integral domain, if $a \mid c$ then $\operatorname{deg}(a) \leq \operatorname{deg}(d)=0$, so a is constant. Thus, $a \mid c$ in D, and hence a is a unit or a is an associate of c, given that c is an irreducible element.
If a is an associate of c, then we have that $c \mid a$ and $a \mid x$, so $c \mid x$. But that means that there exists a polynomial of degree $1, r+s x$, such that $c(r+s x)=x$. This means that $c r=0$ and $c s=1$. But the latter says that c is a unit, which is impossible since c is irreducible. Thus, a is a unit.
But if a is a unit, then $(x, c) \neq(1)=(a)$. Thus, if $(x, c) \subseteq(a)$, then $(x, c) \neq(a)$. This proves that (x, c) is not principal, as required.
7. Let R be a commutative ring with unity, and let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x]$. Define the formal derivative of $f(x)$ by $f^{\prime}(x)=a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}$. with $f^{\prime}(x)=0$ if $f=0$.
(i) Prove that $(f+g)^{\prime}=f^{\prime}+g^{\prime},(a f)^{\prime}=a f^{\prime}$, and $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$ for all $f, g \in R[x]$ and all $a \in R$.
Proof. Let $f=a_{0}+\cdots+a_{n} x^{n}$ and $g=b_{0}+\cdots+b_{n} x^{n}$. Then for the sum, we have:

$$
\begin{aligned}
(f+g)^{\prime} & =\left(\sum_{i=0}^{n}\left(a_{i}+b_{i}\right) x^{i}\right)^{\prime}=\sum_{i=1}^{n} i\left(a_{i}+b_{i}\right) x^{i-1}=\sum_{i=1}^{n} i a_{i} x^{i-1}+\sum_{i=1}^{n} i b_{i} x^{i-1} \\
& =\left(\sum_{i=0}^{n} a_{i} x^{i}\right)^{\prime}+\left(\sum_{i=0}^{n} b_{i} x^{i}\right)^{\prime}=f^{\prime}+g^{\prime}
\end{aligned}
$$

Next,

$$
\begin{aligned}
(a f)^{\prime} & =\left(a \sum_{i=0}^{n} a_{i} x^{i}\right)^{\prime}=\left(\sum_{i=0}^{n} a a_{i} x^{i}\right)^{\prime} \\
& =\sum_{i=1}^{n} i a a_{i} x^{i-1}=a \sum_{i=1}^{n} i a_{i} x^{i-1}=a f^{\prime}
\end{aligned}
$$

For the product, we first prove that for $r \geq 0,\left(x^{r} g\right)^{\prime}=r x^{r-1} g+x^{r} g^{\prime}$. Indeed, for $r=0$ this just says $g^{\prime}=g^{\prime}$. For $r>0$, we have

$$
\begin{aligned}
\left(x^{r} g\right)^{\prime} & =\left(\sum_{j=0}^{n} b_{j} x^{j+r}\right)^{\prime}=\sum_{j=0}^{n}(j+r) b_{j} x^{j+r-1} \\
r x^{r-1} g+x^{r} g^{\prime} & =\left(\sum_{j=0}^{n} r b_{j} x^{j+r-1}\right)+x^{r}\left(\sum_{j=0}^{n-1}(j+1) b_{j+1} x^{j}\right) \\
& =\sum_{j=0}^{n} r b_{j} x^{j+r-1}+\sum_{j=0}^{n-1}(j+1) b_{j+1} x^{r+j} \\
& =\sum_{j=0}^{n} r b_{j} x^{j+1-1}+\sum_{j=1}^{n} j b_{j} x^{r+j-1} \\
& =\sum_{j=0}^{n}\left(r b_{j}+j b_{j}\right) x^{r+j-1} \\
& =\sum_{j=0}^{n}(j+r) b_{j} x^{r+j-1}=\left(x^{r} g\right)^{\prime} .
\end{aligned}
$$

Now applying the formulas for addition and multiplication by a constant, we have:

$$
\begin{aligned}
(f g)^{\prime} & =\left(\left(\sum_{i=0}^{n} a_{i} x^{i}\right) g\right)^{\prime}=\sum_{i=0}^{n} a_{i}\left(x^{i} g\right)^{\prime} \\
& =\sum_{i=0}^{n} a_{i}\left(i x^{i-1} g+x^{i} g^{\prime}\right)=\left(\sum_{i=0}^{n} i a_{i} x^{i-1} g\right)+\left(\sum_{i=0}^{n} a_{i} x^{i} g^{\prime}\right) \\
& =\left(\sum_{i=0}^{n} i a_{i} x^{i-1}\right) g+\left(\sum_{i=0}^{n} a_{i} x_{i}\right) g^{\prime} \\
& =f^{\prime} g+f g^{\prime}
\end{aligned}
$$

as claimed.
(ii) Prove that if R is an integral domain, $\operatorname{deg}(f)>0$, and $\operatorname{char}(R)=0$, then $f^{\prime} \neq 0$.

Proof. Let $f(x)=a_{0}+\cdots+a_{n} x^{n}$ with $n>0$ and $a_{n} \neq 0$. Then

$$
f^{\prime}(x)=a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}
$$

Since $n-1 \geq 0$ and $n a_{n} \neq 0$, then $f^{\prime}(x) \neq 0$.
(iii) Prove that if R is an integral domain, $\operatorname{deg}(f)>0$, and $\operatorname{char}(R)=p$, then $f^{\prime}=0$ if and only if f is a polynomial in x^{p}. That is,

$$
f=a_{0}+a_{p} x^{p}+a_{2 p} x^{2 p}+\cdots+a_{m p} x^{m p}, \quad a_{i} \in R .
$$

Proof. For f a polynomial in x^{p}, we have

$$
\left(a_{0}+a_{p} x^{p}+\cdots a_{m p} x^{m p}\right)^{\prime}=p a_{p} x^{p-1}+\cdots p m a_{m p} x^{m p-1}=0
$$

since all coefficients are 0 (because $p a=0$ for all $a \in R$).
Conversely, assume that $f^{\prime}=0$. Write $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$. We show that if $p \nmid i$, then $a_{i}=0$. Indeed, if $p \nmid i$ then $i>0$, and the coefficient of x^{i-1} in f^{\prime} is $i a_{i}$. Since $f^{\prime}=0$, then $i a_{i}=0$. This is equal to

$$
(\underbrace{1_{R}+\cdots+1_{R}}_{i \text { summands }}) a_{i}=0,
$$

which can only happen if either $1_{R}+\cdots+1_{R}=0$ (which only occurs if the number of summands is a multiple of p, which in this case it is not), or if $a_{i}=0$. Thus, we must have $a_{i}=0$, as desired.

