
Math 566 - Homework 6
Solutions

Prof Arturo Magidin

1. Let R = Z6, and S = {2, 4}. Prove that S is a multiplicative subset of R, and that S−1R ∼= Z3.

Proof. I will prove this without invoking the Universal Property of the ring of fractions first; I
will give a proof invoking this property below.

Since 6Z ⊆ 3Z, we have a natural map ψ : Z6 → Z3 given by ψ(a+6Z) = a+3Z. Note that under
this homomorphism, 2+6Z maps to 2+3Z, which is a unit; and 4+6Z maps to 4+3Z = 1+4Z,
which is a unit. In fact, each of them is its own inverse.

This suggests defining f : S−1R→ Z3 by

ϕ
(r
s

)
= ψ(r)ψ(s)−1 = ψ(r)ψ(s) = ψ(rs) = rs+ 3Z.

We just need to verify this works.

First, we check that this is well-defined. Recall that if s ∈ S, then s2 + 3Z = 1 + 3Z, and that
s+ 3Z is not a zero divisor in Z3, so it can be cancelled.

If r
s = u

t , then there exists w ∈ S such that w(rt− us) = 0. Therefore wrt = usw in Z6. But this
means that ψ(wrt) = ψ(usw), and hence that ψ(w)ψ(rs) = ψ(w)ψ(us). As ψ(w) is not a zero
divisor, then ψ(rs) = ψ(us). Thus, ϕ( rs ) = ϕ(ut ).

Next, we have:

ϕ
(r
s
+
u

t

)
= ϕ

(
rt+ us

st

)
= (rt+ us)(st) + 3Z

= (rst2 + uts2) + 3Z = (rs+ ut) + 3Z

= (rs+ 3Z) + (ut+ 3Z) = ϕ
(r
s

)
+ ϕ

(u
t

)
,

ϕ(
(r
s
· u
t

)
= ϕ

(ru
st

)
= ψ(rust) = rust+ 3Z

= (rs+ 3Z)(ut+ 3Z) = ϕ
(r
s

)
ϕ
(u
t

)
.

Thus, we have a ring homomorphism. It is surjective, as 0
2 ,

2
2 , and

4
2 map to 0+3Z, 4+3Z = 1+3Z,

and 8 + 3Z = 2 + 3Z, respectively.
Finally, suppose that r

s maps to 0+3Z. That means that rs+3Z = 0+3Z, so 3|rs. Since s ∈ {2, 4},
then s is relatively prime to 3, so 3|r. Thus, either r+6Z = 0+ 6Z, or else r+6Z = 3+ 6Z. But
in the latter case, we have that 3

s = 2(3)
2s = 6

2s = 0
2s , so in either case we get r

s = 0S−1R. Thus, ϕ
is one-to-one, and hence an isomorphism.

Alternative solution. Under the homomorphism ϕ(a+6Z) = a+3Z from Z6 to Z3, ϕ(2+6Z) =
2+ 3Z is a unit in Z3, and ϕ(4 + 6Z) = 4+ 3Z = 1+Z is a unit in Z3. By the universal property
of the ring of fractions, there is a homomorphism φ : S−1R→ Z3 induced by ϕ. This map will be
given by φ( rs ) = ϕ(r)ϕ(s)−1. Since the inverse of 2 + 3Z is 2 + 3Z and the inverse of 4 + 3Z is
4 + 3Z, in fact our homomorphism will be given by φ( rs ) = ϕ(r)ϕ(s) = ϕ(rs) = rs+ 3Z.
At this point, we can proceed as above; the universal property guarantees that this is indeed
a ring homomorphism that is well-defined, so we can save ourselves the work of verifying these
properties. □
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2. Let S = {±1001k | k a positive integer}. Let φ : Z → S−1Z be the canonical map, φ(a) = 1001a
1001 .

Describe the prime factorization of all a ∈ Z such that φ(a) is a unit in S−1Z.
Proof. We claim that an integer a ∈ Z is mapped to a unit in S−1Z if and only if a is of
the form a = ±7r11s13t, for nonnegative integers r, s, and t. (This is related to the fact that
1001 = 7× 11× 13).

Indeed, first let us note that such an integer is indeed a unit in S−1Z: let a = ±7r11s13t, and set
u = r + s+ t. If let b = ±7u−r11u−s13u−t, then ab = 1001u, so

φ(a)

(
b

1001u

)
=

(
1001a

1001

)(
b

1001u

)
=

1001(ab)

1001u+1
=

1001(1001)u

1001u+1
=

1001

1001
= 1S−1Z.

Thus, φ(a) is a unit in S−1Z.
Conversely, suppose that φ(a) is a unit, and let x

v1001k
be the multiplicative inverse of x, with k a

positive integer, x ∈ Z, and v = ±1; by changing the sign of x if necessary, we may assume that
v = 1. Then

φ(a)
( x

1001k

)
=

1001ax

1001k+1
= 1S−1R =

1001

1001
.

That means that 10012(ax) = 1001k+2, hence ax = 1001k. Thus, a divides 1001k = 7k11k13k,
and therefore a = ±7r11s13t for some nonnegative integers r, s, and t less than or equal to k.
This proves the claim. □

3. Let P be a nonzero prime ideal of Z, and let ZP be the localization of Z at P ; that is, ZP =
(Z− P )−1Z. Show that we can identify ZP with the subring of Q consisting of the rationals that
can be written as a

b with a, b ∈ Z and b /∈ P .

Proof. Take an element a
b ∈ ZP ; then b /∈ P by construction of ZP , showing that all such

elements lie in ZP . Conversely, let q ∈ Q, and assume that q ∈ ZP . Then we can write q = a
b

with a, b ∈ Z, b ̸= 0, gcd(a, b) = 1; and we have q = r
s with r ∈ Z and s /∈ P because q ∈ ZP .

Thus, a
b = r

s , so sa = rb. Since b|as and gcd(a, b) = 1, then b|s, and hence b /∈ P (since s /∈ P ),
proving that when we write q in lowest terms, q = a

b , then b /∈ P . □

4. Show that if we view ZP as a subring of Q as in Problem 3, then⋂
P

ZP = Z,

where the intersection runs over all nonzero prime ideals of Z.
Proof. Since Z is a domain and Z− P does not contain 0, Z is always identified with a subring
of ZP . That means that Z is contained in the intersection.

Conversely, suppose that q ∈ Q lies in the intersection. Write q in lowest terms, q = a
b with a

and b integers, b > 0, and gcd(a, b) = 1. If we can also write q as q = r
s , then

r
s = a

b , so br = as.
That is, b|as, and since gcd(a, b) = 1, then b|s. Thus, every expression of q as a quotient of
integers has denominator that is a multiple of b. Thus, q ∈ ZP if and only if b /∈ P ; if P = (0),
this does not put any restrictions on b; if P = (p) with p > 0 a prime, then b is not divisible by p.
Thus, if q lies in the intersection, then when we express it as a quotient a

b in lowest terms with
b > 0, we have that b is not divisible by any primes. Thus, b = 1, so q ∈ Z. This proves the
intersection is equal to Z. □

5. Fractions of quotients. Let R be a commutative ring, I be an ideal of R, and let π : R→ R/I be
the canonical projection onto the quotient.

(i) Show that if S is a multiplicative subset of R, then πS = {π(s) | s ∈ S} is a multiplicative
subset of R/I.

Proof. If s, t ∈ S, then π(s)π(t) = π(st) ∈ π(S) (since S is multiplicative). □
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(ii) Show that θ : S−1R → (πS)−1(R/I) given by θ( rs ) = π(r)
π(s) is a well-defined surjective ring

homomorphism.

Proof. Suppose that r
s = a

t . Then there exists u ∈ S such that u(rt− as) = 0. Applying π

we obtain π(u)(π(r)π(t)− π(a)π(s)) = 0, and since π(u), π(s), π(t) ∈ π(S), then π(r)
π(s) = π(a)

π(t)

in (πS)−1(R/I). So θ is well-defined.

We then have

θ
(r
s

)
+ θ

(a
t

)
=
π(r)

π(s)
+
π(a)

π(t)
=
π(r)π(t) + π(a)π(s)

π(s)π(t)
=
π(rt+ as)

π(st)

= θ

(
rt+ as

st

)
= θ

(r
s
+
a

t

)
.

θ
(r
s

)
· θ
(a
t

)
=
π(r)

π(s)
· π(a)
π(t)

=
π(r)π(a)

π(s)π(t)

=
π(ra)

π(st)
= θ

(ra
st

)
= θ

(r
s
· a
t

)
.

Thus, θ is a well-defined homomorphism. Finally, if a+I
π(s) ∈ (πS)−1(R/I), then θ(as ) =

π(a)
π(s) =

a+I
π(s) , so θ is surjective.

(iii) Recall that S−1I ◁ S−1R. Prove that (S−1R)/S−1I ∼= (πS)−1(R/I).

Proof. We have a map from S−1R to (πS)−1(R/I), given by θ. So this suggests verifying
that the kernel of this map is exactly S−1I = {a

s | a ∈ I}.
If a

s ∈ S−1I, with a ∈ I, then θ(as ) =
π(a)
π(s) = 0

π(s) = 0, so S−1I is certainly contained in the

kernel.

Now assume that r
s ∈ ker(θ). Then π(r)

π(s) = 0
π(s) . Therefore, there exists π(t) ∈ πS such that

π(t)(π(r)π(s)) = 0 + I. That means that rst ∈ I. But then we have that

r

s
=
rst

sst
∈ S−1I,

which shows that ker(θ) ⊆ S−1I.

This proves that ker(θ) = S−1I, and the First Isomorphism Theorem yields S−1R/S−1I ∼=
(πS)−1(R/I). □

6. Fractions of fractions. Let R be a commutative ring, and S a multiplicative subset of R. Let T
be the a multiplicative subset of S−1R, and let

S∗ =
{
r ∈ R

∣∣∣ r
s
∈ T for some s ∈ S

}
.

(i) Show that S∗ is a multiplicative subset of R.

Proof. First, since T is a multiplicative subset of S−1R, there is some element r
s ∈ T , and

therefore there is some r ∈ S∗; thus, S∗ is nonempty.

Let a, b ∈ S∗. We need to show that ab ∈ S∗. Since a ∈ S∗, there exists s ∈ S such
that a

s ∈ T ; likewise, there exists t ∈ S with b
t ∈ T . Since T is a multiplicative subset,

a
s · b

t = ab
st ∈ T . Since st ∈ S, it follows that ab ∈ S∗, as required. Thus, S∗ is indeed a

multiplicative subset. □

(ii) Prove that if t ∈ S∗ and s ∈ S, then sr ∈ S∗.

Proof. Since t ∈ S∗, there exists u ∈ S such that t
u ∈ T . Since s ∈ S, we know that

st
su = t

u ∈ T , and therefore there is an element v ∈ S (namely v = su) such that st
v ∈ T ; by

definition of S∗, this means that st ∈ S∗, as claimed. □
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(iii) Define f : T−1(S−1R) → S−1
∗ R by f( a/tb/u ) = au

bt . Show that this is a well-defined ring

homomorphism.

Proof. Apologies for the coming change of notation; the choice above is less than optimal,
because we would be inclined to think that the element t lies in T , when in fact it lies in S.
So I will switch to a denominator of the form t

u as an element of T .

What is the intuition behind the isomorphism of T−1(S−1R) and S−1
∗ R that we will establish

in part (iv)? The first is a fraction ring of a fraction ring, so its elements will be “fractions of
fractions.” If we have a “fraction of fractions”, then this ought to be expressible as a regular
fraction (i.e., an element of S−1

∗ R); so what we hope is that the usual identity
a
s
t
u

=
au

st

will hold, where a ∈ R, s ∈ S, and t
u ∈ T (hence t ∈ S∗). Note that this makes sense,

because st ∈ S∗ by part (ii).

Let f : T−1(S−1R) → S−1
∗ R be given by

f

( a
s
t
u

)
=
au

st
,

where a ∈ R, s, u ∈ S, and t
u ∈ T . By part (ii), this at least makes some sense as st ∈ S∗,

so au
st is indeed an element of S−1

∗ R. We do need to show that this is well-defined.

To show this is well defined we are going to have to unwind a couple of definitions. Suppose
that

a
s
t
u

=
b
r
v
w

in T−1(S−1R);

we want to show that au
st = bw

rv in S−1
∗ R.

To say that
a
s
t
u

=
b
r
v
w

in T−1(S−1R)

means that there exists q
z ∈ T such that q

z

(
av
sw − bt

ru

)
= 0S−1R. Doing the operations, we

obtain that qavru−qbtsw
zswbt = 0S−1R. Thus, there exists s′ ∈ S such that s′(qavru− qbtsw) = 0,

or s′q(avru−btsw) = 0. Now, note that since q
z ∈ T , we have q ∈ S∗, and therefore s′q ∈ S∗.

Thus, s′q(avru − btsw) = 0 is exactly the condition we need for au
st = bw

rv to hold in S−1
∗ R,

so the the map is indeed well defined.

To show f is a ring homomorphism, we have:

f

(
a
s
t
u

+
b
r
v
w

)
= f

(
av
sw + bt

ru
tv
uw

)
= f

(
avru+btsw

swru
tv
uw

)
=

(avru+ btsw)(uw)

(swru)(tv)
.

f

( a
s
t
u

)
+ f

(
b
r
v
w

)
=

au

st
+
bw

rv
=
aurv + bwst

strv
.

Note that the two answers are equal, since the crossproducts are equal:

(avru+ btsw)(uw)(strv) = (swru)(tv)(aurv + bwst).

Thus, f is additive. To show f is multiplicative, we have:

f

(
a
s
t
u

·
b
r
v
w

)
= f

(
ab
sr
tv
uw

)
=
abuw

srtv
.

f

( a
s
t
u

)
· f

(
b
r
v
w

)
=

au

st
· bw
rv

=
aubw

strv
.
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Thus, f is also multiplicative, and so is a ring homomorphism. □

(iv) Prove that T−1(S−1R) ∼= S−1
∗ R.

Proof. We show that the map f from part (iii) is in fact an isomorphism. To show that f
is one-to-one, suppose that

f

( a
s
t
u

)
=
au

st
=

0

t

(we can use 0
t , since t ∈ S∗), which means that there exists v ∈ S∗ such that vaut = 0.

We want to show that (a/s)
(t/u) is the zero element of T−1(S−1R). Indeed, since vt ∈ S∗, there

exists z ∈ S such that vt
z ∈ T . Then vt

z

(
a
s

)
= vat

zs = 0S−1R, because u ∈ S satisfies uvat = 0.

Thus, there is an element of T which, multiplied by a
s , is equal to zero, so the element a/s

t/u

is the zero element of T−1(S−1R), as claimed. Thus f is indeed one-to-one

Finally, to show f is onto, let a
t ∈ S−1

∗ R. That means that there exists s ∈ S such that
t
s ∈ T . Then we can look at

f

( a
s
t
s

)
=
as

ts
=
a

t
.

Thus, f is a ring isomorphism, as desired. □

Note: This means that one can realize a ring of quotients of a ring of quotients of R as a ring of
quotients of R; this is analogous to the fact that a quotient of a quotient of R can be realized as
a quotient of R (the Third Isomorphism Theorem).

Remark: In fact, there is a “fancy proof” that S−1
∗ R ∼= T−1(S−1R), using the universal property

of the ring of fractions.

We have the maps φS : R → S−1R and φT : S−1R → T−1(S−1R). Composing them, we get a
map f : R → T−1(S−1R). It is now straightforward to check that if t ∈ S∗, then f(t) is a unit
in T−1(S−1R): there exists s ∈ S such that t

s ∈ T , and so φS(t) =
ts
s = t

s
ss
s is an element of T

times a unit of S−1R. Since φT maps units to units, and elements of T to units, f(t) = φT (φS(t))
is a unit in T−1(S−1R). By the universal property of the ring of fractions, there is a unique
homomorphism ψ : S−1

∗ R→ T−1(S−1R) such that ψ(r) = f(r) for all r ∈ R. Now let t ∈ S∗, and
define the map g : S−1R → S−1

∗ R by mapping a
s to at

st ; this makes sense, since st ∈ S∗. It is a
ring homomorphism:

g

(
a

s
+
b

s′

)
= g

(
as′ + bs

ss′

)
=

(as′ + bs)t

ss′t
,

g
(a
s

)
+ g

(
b

s′

)
=

at

st
+
bt

s′t
=
as′tt+ bstt

ss′tt
=
as′t+ bst

ss′t
.

g

(
a

s
· b
s′

)
=

abt

ss′t
=

abtt

ss′tt
=
at

st
· bt
s′t

= g
(a
s

)
g

(
b

s′

)
.

And if u
s ∈ T , then g(us ) =

ust
st is a unit in S−1

∗ R, because u, t ∈ S∗ and s ∈ S, so ust ∈ S∗. Thus,
g is a ring homomorphism from S−1R to S−1

∗ R that sends every element of T into a unit. This
induces a homomorphism ϕ : T−1(S−1R) → S−1

∗ R such that ϕ( rs ) =
rt
st for all r

s ∈ S−1R.

It is now an easy computation to show that ψ and ϕ are inverses of each other, so they are
isomorphisms. □
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