Math 566 - Homework 6
 Solutions
 Prof Arturo Magidin

1. Let $R=\mathbb{Z}_{6}$, and $S=\{2,4\}$. Prove that S is a multiplicative subset of R, and that $S^{-1} R \cong \mathbb{Z}_{3}$.

Proof. I will prove this without invoking the Universal Property of the ring of fractions first; I will give a proof invoking this property below.
Since $6 \mathbb{Z} \subseteq 3 \mathbb{Z}$, we have a natural map $\psi: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{3}$ given by $\psi(a+6 \mathbb{Z})=a+3 \mathbb{Z}$. Note that under this homomorphism, $2+6 \mathbb{Z}$ maps to $2+3 \mathbb{Z}$, which is a unit; and $4+6 \mathbb{Z}$ maps to $4+3 \mathbb{Z}=1+4 \mathbb{Z}$, which is a unit. In fact, each of them is its own inverse.
This suggests defining $f: S^{-1} R \rightarrow \mathbb{Z}_{3}$ by

$$
\phi\left(\frac{r}{s}\right)=\psi(r) \psi(s)^{-1}=\psi(r) \psi(s)=\psi(r s)=r s+3 \mathbb{Z}
$$

We just need to verify this works.
First, we check that this is well-defined. Recall that if $s \in S$, then $s^{2}+3 \mathbb{Z}=1+3 \mathbb{Z}$, and that $s+3 \mathbb{Z}$ is not a zero divisor in \mathbb{Z}_{3}, so it can be cancelled.
If $\frac{r}{s}=\frac{u}{t}$, then there exists $w \in S$ such that $w(r t-u s)=0$. Therefore $w r t=u s w$ in \mathbb{Z}_{6}. But this means that $\psi(w r t)=\psi(u s w)$, and hence that $\psi(w) \psi(r s)=\psi(w) \psi(u s)$. As $\psi(w)$ is not a zero divisor, then $\psi(r s)=\psi(u s)$. Thus, $\phi\left(\frac{r}{s}\right)=\phi\left(\frac{u}{t}\right)$.
Next, we have:

$$
\begin{aligned}
\phi\left(\frac{r}{s}+\frac{u}{t}\right) & =\phi\left(\frac{r t+u s}{s t}\right)=(r t+u s)(s t)+3 \mathbb{Z} \\
& =\left(r s t^{2}+u t s^{2}\right)+3 \mathbb{Z}=(r s+u t)+3 \mathbb{Z} \\
& =(r s+3 \mathbb{Z})+(u t+3 \mathbb{Z})=\phi\left(\frac{r}{s}\right)+\phi\left(\frac{u}{t}\right) \\
\phi\left(\left(\frac{r}{s} \cdot \frac{u}{t}\right)\right. & =\phi\left(\frac{r u}{s t}\right) \\
& =\psi(r u s t)=r u s t+3 \mathbb{Z} \\
& =(r s+3 \mathbb{Z})(u t+3 \mathbb{Z})=\phi\left(\frac{r}{s}\right) \phi\left(\frac{u}{t}\right)
\end{aligned}
$$

Thus, we have a ring homomorphism. It is surjective, as $\frac{0}{2}, \frac{2}{2}$, and $\frac{4}{2}$ map to $0+3 \mathbb{Z}, 4+3 \mathbb{Z}=1+3 \mathbb{Z}$, and $8+3 \mathbb{Z}=2+3 \mathbb{Z}$, respectively.
Finally, suppose that $\frac{r}{s}$ maps to $0+3 \mathbb{Z}$. That means that $r s+3 \mathbb{Z}=0+3 \mathbb{Z}$, so $3 \mid r s$. Since $s \in\{2,4\}$, then s is relatively prime to 3 , so $3 \mid r$. Thus, either $r+6 \mathbb{Z}=0+6 \mathbb{Z}$, or else $r+6 \mathbb{Z}=3+6 \mathbb{Z}$. But in the latter case, we have that $\frac{3}{s}=\frac{2(3)}{2 s}=\frac{6}{2 s}=\frac{0}{2 s}$, so in either case we get $\frac{r}{s}=0_{S^{-1} R}$. Thus, ϕ is one-to-one, and hence an isomorphism.
Alternative solution. Under the homomorphism $\phi(a+6 \mathbb{Z})=a+3 \mathbb{Z}$ from \mathbb{Z}_{6} to $\mathbb{Z}_{3}, \phi(2+6 \mathbb{Z})=$ $2+3 \mathbb{Z}$ is a unit in \mathbb{Z}_{3}, and $\phi(4+6 \mathbb{Z})=4+3 \mathbb{Z}=1+\mathbb{Z}$ is a unit in \mathbb{Z}_{3}. By the universal property of the ring of fractions, there is a homomorphism $\varphi: S^{-1} R \rightarrow \mathbb{Z}_{3}$ induced by ϕ. This map will be given by $\varphi\left(\frac{r}{s}\right)=\phi(r) \phi(s)^{-1}$. Since the inverse of $2+3 \mathbb{Z}$ is $2+3 \mathbb{Z}$ and the inverse of $4+3 \mathbb{Z}$ is $4+3 \mathbb{Z}$, in fact our homomorphism will be given by $\varphi\left(\frac{r}{s}\right)=\phi(r) \phi(s)=\phi(r s)=r s+3 \mathbb{Z}$.
At this point, we can proceed as above; the universal property guarantees that this is indeed a ring homomorphism that is well-defined, so we can save ourselves the work of verifying these properties.
2. Let $S=\left\{ \pm 1001^{k} \mid k\right.$ a positive integer $\}$. Let $\varphi: \mathbb{Z} \rightarrow S^{-1} \mathbb{Z}$ be the canonical map, $\varphi(a)=\frac{1001 a}{1001}$. Describe the prime factorization of all $a \in \mathbb{Z}$ such that $\varphi(a)$ is a unit in $S^{-1} \mathbb{Z}$.
Proof. We claim that an integer $a \in \mathbb{Z}$ is mapped to a unit in $S^{-1} \mathbb{Z}$ if and only if a is of the form $a= \pm 7^{r} 11^{s} 13^{t}$, for nonnegative integers r, s, and t. (This is related to the fact that $1001=7 \times 11 \times 13$).
Indeed, first let us note that such an integer is indeed a unit in $S^{-1} \mathbb{Z}$: let $a= \pm 7^{r} 11^{s} 13^{t}$, and set $u=r+s+t$. If let $b= \pm 7^{u-r} 11^{u-s} 13^{u-t}$, then $a b=1001^{u}$, so

$$
\varphi(a)\left(\frac{b}{1001^{u}}\right)=\left(\frac{1001 a}{1001}\right)\left(\frac{b}{1001^{u}}\right)=\frac{1001(a b)}{1001^{u+1}}=\frac{1001(1001)^{u}}{1001^{u+1}}=\frac{1001}{1001}=1_{S^{-1} \mathbb{Z}}
$$

Thus, $\varphi(a)$ is a unit in $S^{-1} \mathbb{Z}$.
Conversely, suppose that $\varphi(a)$ is a unit, and let $\frac{x}{v 1001^{k}}$ be the multiplicative inverse of x, with k a positive integer, $x \in \mathbb{Z}$, and $v= \pm 1$; by changing the sign of x if necessary, we may assume that $v=1$. Then

$$
\varphi(a)\left(\frac{x}{1001^{k}}\right)=\frac{1001 a x}{1001^{k+1}}=1_{S^{-1} R}=\frac{1001}{1001}
$$

That means that $1001^{2}(a x)=1001^{k+2}$, hence $a x=1001^{k}$. Thus, a divides $1001^{k}=7^{k} 11^{k} 13^{k}$, and therefore $a= \pm 7^{r} 11^{s} 13^{t}$ for some nonnegative integers r, s, and t less than or equal to k. This proves the claim.
3. Let P be a nonzero prime ideal of \mathbb{Z}, and let \mathbb{Z}_{P} be the localization of \mathbb{Z} at P; that is, $\mathbb{Z}_{P}=$ $(\mathbb{Z}-P)^{-1} \mathbb{Z}$. Show that we can identify \mathbb{Z}_{P} with the subring of \mathbb{Q} consisting of the rationals that can be written as $\frac{a}{b}$ with $a, b \in \mathbb{Z}$ and $b \notin P$.
Proof. Take an element $\frac{a}{b} \in \mathbb{Z}_{P}$; then $b \notin P$ by construction of \mathbb{Z}_{P}, showing that all such elements lie in \mathbb{Z}_{P}. Conversely, let $q \in \mathbb{Q}$, and assume that $q \in \mathbb{Z}_{P}$. Then we can write $q=\frac{a}{b}$ with $a, b \in \mathbb{Z}, b \neq 0, \operatorname{gcd}(a, b)=1 ;$ and we have $q=\frac{r}{s}$ with $r \in \mathbb{Z}$ and $s \notin P$ because $q \in \mathbb{Z}_{P}$. Thus, $\frac{a}{b}=\frac{r}{s}$, so $s a=r b$. Since $b \mid a s$ and $\operatorname{gcd}(a, b)=1$, then $b \mid s$, and hence $b \notin P($ since $s \notin P)$, proving that when we write q in lowest terms, $q=\frac{a}{b}$, then $b \notin P$.
4. Show that if we view \mathbb{Z}_{P} as a subring of \mathbb{Q} as in Problem 3, then

$$
\bigcap_{P} \mathbb{Z}_{P}=\mathbb{Z}
$$

where the intersection runs over all nonzero prime ideals of \mathbb{Z}.
Proof. Since \mathbb{Z} is a domain and $\mathbb{Z}-P$ does not contain $0, \mathbb{Z}$ is always identified with a subring of \mathbb{Z}_{P}. That means that \mathbb{Z} is contained in the intersection.
Conversely, suppose that $q \in \mathbb{Q}$ lies in the intersection. Write q in lowest terms, $q=\frac{a}{b}$ with a and b integers, $b>0$, and $\operatorname{gcd}(a, b)=1$. If we can also write q as $q=\frac{r}{s}$, then $\frac{r}{s}=\frac{a}{b}$, so $b r=a s$. That is, $b \mid a s$, and since $\operatorname{gcd}(a, b)=1$, then $b \mid s$. Thus, every expression of q as a quotient of integers has denominator that is a multiple of b. Thus, $q \in \mathbb{Z}_{P}$ if and only if $b \notin P$; if $P=(0)$, this does not put any restrictions on b; if $P=(p)$ with $p>0$ a prime, then b is not divisible by p. Thus, if q lies in the intersection, then when we express it as a quotient $\frac{a}{b}$ in lowest terms with $b>0$, we have that b is not divisible by any primes. Thus, $b=1$, so $q \in \mathbb{Z}$. This proves the intersection is equal to \mathbb{Z}.
5. Fractions of quotients. Let R be a commutative ring, I be an ideal of R, and let $\pi: R \rightarrow R / I$ be the canonical projection onto the quotient.
(i) Show that if S is a multiplicative subset of R, then $\pi S=\{\pi(s) \mid s \in S\}$ is a multiplicative subset of R / I.
Proof. If $s, t \in S$, then $\pi(s) \pi(t)=\pi(s t) \in \pi(S)$ (since S is multiplicative).
(ii) Show that $\theta: S^{-1} R \rightarrow(\pi S)^{-1}(R / I)$ given by $\theta\left(\frac{r}{s}\right)=\frac{\pi(r)}{\pi(s)}$ is a well-defined surjective ring homomorphism.
Proof. Suppose that $\frac{r}{s}=\frac{a}{t}$. Then there exists $u \in S$ such that $u(r t-a s)=0$. Applying π we obtain $\pi(u)(\pi(r) \pi(t)-\pi(a) \pi(s))=0$, and since $\pi(u), \pi(s), \pi(t) \in \pi(S)$, then $\frac{\pi(r)}{\pi(s)}=\frac{\pi(a)}{\pi(t)}$ in $(\pi S)^{-1}(R / I)$. So θ is well-defined.
We then have

$$
\begin{aligned}
\theta\left(\frac{r}{s}\right)+\theta\left(\frac{a}{t}\right) & =\frac{\pi(r)}{\pi(s)}+\frac{\pi(a)}{\pi(t)}=\frac{\pi(r) \pi(t)+\pi(a) \pi(s)}{\pi(s) \pi(t)}=\frac{\pi(r t+a s)}{\pi(s t)} \\
& =\theta\left(\frac{r t+a s}{s t}\right)=\theta\left(\frac{r}{s}+\frac{a}{t}\right) . \\
\theta\left(\frac{r}{s}\right) \cdot \theta\left(\frac{a}{t}\right) & =\frac{\pi(r)}{\pi(s)} \cdot \frac{\pi(a)}{\pi(t)}=\frac{\pi(r) \pi(a)}{\pi(s) \pi(t)} \\
& =\frac{\pi(r a)}{\pi(s t)}=\theta\left(\frac{r a}{s t}\right)=\theta\left(\frac{r}{s} \cdot \frac{a}{t}\right) .
\end{aligned}
$$

Thus, θ is a well-defined homomorphism. Finally, if $\frac{a+I}{\pi(s)} \in(\pi S)^{-1}(R / I)$, then $\theta\left(\frac{a}{s}\right)=\frac{\pi(a)}{\pi(s)}=$ $\frac{a+I}{\pi(s)}$, so θ is surjective.
(iii) Recall that $S^{-1} I \triangleleft S^{-1} R$. Prove that $\left(S^{-1} R\right) / S^{-1} I \cong(\pi S)^{-1}(R / I)$.

Proof. We have a map from $S^{-1} R$ to $(\pi S)^{-1}(R / I)$, given by θ. So this suggests verifying that the kernel of this map is exactly $S^{-1} I=\left\{\left.\frac{a}{s} \right\rvert\, a \in I\right\}$.
If $\frac{a}{s} \in S^{-1} I$, with $a \in I$, then $\theta\left(\frac{a}{s}\right)=\frac{\pi(a)}{\pi(s)}=\frac{\overline{0}}{\pi(s)}=0$, so $S^{-1} I$ is certainly contained in the kernel.
Now assume that $\frac{r}{s} \in \operatorname{ker}(\theta)$. Then $\frac{\pi(r)}{\pi(s)}=\frac{0}{\pi(s)}$. Therefore, there exists $\pi(t) \in \pi S$ such that $\pi(t)(\pi(r) \pi(s))=0+I$. That means that $r s t \in I$. But then we have that

$$
\frac{r}{s}=\frac{r s t}{s s t} \in S^{-1} I,
$$

which shows that $\operatorname{ker}(\theta) \subseteq S^{-1} I$.
This proves that $\operatorname{ker}(\theta)=S^{-1} I$, and the First Isomorphism Theorem yields $S^{-1} R / S^{-1} I \cong$ $(\pi S)^{-1}(R / I)$.
6. Fractions of fractions. Let R be a commutative ring, and S a multiplicative subset of R. Let T be the a multiplicative subset of $S^{-1} R$, and let

$$
S_{*}=\left\{r \in R \left\lvert\, \frac{r}{s} \in T\right. \text { for some } s \in S\right\}
$$

(i) Show that S_{*} is a multiplicative subset of R.

Proof. First, since T is a multiplicative subset of $S^{-1} R$, there is some element $\frac{r}{s} \in T$, and therefore there is some $r \in S_{*}$; thus, S_{*} is nonempty.
Let $a, b \in S_{*}$. We need to show that $a b \in S_{*}$. Since $a \in S_{*}$, there exists $s \in S$ such that $\frac{a}{s} \in T$; likewise, there exists $t \in S$ with $\frac{b}{t} \in T$. Since T is a multiplicative subset, $\frac{a}{s} \cdot \frac{b}{t} \stackrel{a b}{s t} \in T$. Since $s t \in S$, it follows that $a b \in S_{*}$, as required. Thus, S_{*} is indeed a multiplicative subset.
(ii) Prove that if $t \in S_{*}$ and $s \in S$, then $s r \in S_{*}$.

Proof. Since $t \in S_{*}$, there exists $u \in S$ such that $\frac{t}{u} \in T$. Since $s \in S$, we know that $\frac{s t}{s u}=\frac{t}{u} \in T$, and therefore there is an element $v \in S$ (namely $v=s u$) such that $\frac{s t}{v} \in T$; by definition of S_{*}, this means that st $\in S_{*}$, as claimed.
(iii) Define $f: T^{-1}\left(S^{-1} R\right) \rightarrow S_{*}^{-1} R$ by $f\left(\frac{a / t}{b / u}\right)=\frac{a u}{b t}$. Show that this is a well-defined ring homomorphism.
Proof. Apologies for the coming change of notation; the choice above is less than optimal, because we would be inclined to think that the element t lies in T, when in fact it lies in S. So I will switch to a denominator of the form $\frac{t}{u}$ as an element of T.
What is the intuition behind the isomorphism of $T^{-1}\left(S^{-1} R\right)$ and $S_{*}^{-1} R$ that we will establish in part (iv)? The first is a fraction ring of a fraction ring, so its elements will be "fractions of fractions." If we have a "fraction of fractions", then this ought to be expressible as a regular fraction (i.e., an element of $S_{*}^{-1} R$); so what we hope is that the usual identity

$$
\frac{\frac{a}{s}}{\frac{t}{u}}=\frac{a u}{s t}
$$

will hold, where $a \in R, s \in S$, and $\frac{t}{u} \in T$ (hence $t \in S_{*}$). Note that this makes sense, because $s t \in S_{*}$ by part (ii).
Let $f: T^{-1}\left(S^{-1} R\right) \rightarrow S_{*}^{-1} R$ be given by

$$
f\left(\frac{\frac{a}{s}}{\frac{t}{u}}\right)=\frac{a u}{s t}
$$

where $a \in R, s, u \in S$, and $\frac{t}{u} \in T$. By part (ii), this at least makes some sense as $s t \in S_{*}$, so $\frac{a u}{s t}$ is indeed an element of $S_{*}^{-1} R$. We do need to show that this is well-defined.
To show this is well defined we are going to have to unwind a couple of definitions. Suppose that

$$
\frac{\frac{a}{s}}{\frac{t}{u}}=\frac{\frac{b}{r}}{\frac{v}{w}} \text { in } T^{-1}\left(S^{-1} R\right)
$$

we want to show that $\frac{a u}{s t}=\frac{b w}{r v}$ in $S_{*}^{-1} R$.
To say that

$$
\frac{\frac{a}{s}}{\frac{t}{u}}=\frac{\frac{b}{r}}{\frac{v}{w}} \text { in } T^{-1}\left(S^{-1} R\right)
$$

means that there exists $\frac{q}{z} \in T$ such that $\frac{q}{z}\left(\frac{a v}{s w}-\frac{b t}{r u}\right)=0_{S^{-1} R}$. Doing the operations, we obtain that $\frac{q a v r u-q b t s w}{z s w b t}=0_{S^{-1} R}$. Thus, there exists $s^{\prime} \in S$ such that $s^{\prime}(q a v r u-q b t s w)=0$, or $s^{\prime} q(a v r u-b t s w)=0$. Now, note that since $\frac{q}{z} \in T$, we have $q \in S_{*}$, and therefore $s^{\prime} q \in S_{*}$. Thus, $s^{\prime} q(a v r u-b t s w)=0$ is exactly the condition we need for $\frac{a u}{s t}=\frac{b w}{r v}$ to hold in $S_{*}^{-1} R$, so the the map is indeed well defined.
To show f is a ring homomorphism, we have:

$$
\begin{aligned}
f\left(\frac{\frac{a}{s}}{\frac{t}{u}}+\frac{\frac{b}{r}}{\frac{v}{w}}\right) & =f\left(\frac{\frac{a v}{s w}+\frac{b t}{r u}}{\frac{t v}{u w}}\right)=f\left(\frac{\frac{a v r u+b t s w}{s w r u}}{\frac{t v}{u w}}\right)=\frac{(a v r u+b t s w)(u w)}{(s w r u)(t v)} . \\
f\left(\frac{\frac{a}{s}}{\frac{t}{u}}\right)+f\left(\frac{\frac{b}{r}}{\frac{v}{w}}\right) & =\frac{a u}{s t}+\frac{b w}{r v}=\frac{a u r v+b w s t}{s t r v} .
\end{aligned}
$$

Note that the two answers are equal, since the crossproducts are equal:

$$
(a v r u+b t s w)(u w)(s t r v)=(s w r u)(t v)(a u r v+b w s t)
$$

Thus, f is additive. To show f is multiplicative, we have:

$$
\begin{aligned}
f\left(\frac{\frac{a}{s}}{\frac{t}{u}} \cdot \frac{\frac{b}{r}}{\frac{v}{w}}\right) & =f\left(\frac{\frac{a b}{s r}}{\frac{t v}{u w}}\right)=\frac{a b u w}{s r t v} . \\
f\left(\frac{\frac{a}{s}}{\frac{t}{u}}\right) \cdot f\left(\frac{\frac{b}{r}}{\frac{v}{w}}\right) & =\frac{a u}{s t} \cdot \frac{b w}{r v}=\frac{a u b w}{s t r v} .
\end{aligned}
$$

Thus, f is also multiplicative, and so is a ring homomorphism.
(iv) Prove that $T^{-1}\left(S^{-1} R\right) \cong S_{*}^{-1} R$.

Proof. We show that the map f from part (iii) is in fact an isomorphism. To show that f is one-to-one, suppose that

$$
f\left(\frac{\frac{a}{s}}{\frac{t}{u}}\right)=\frac{a u}{s t}=\frac{0}{t}
$$

(we can use $\frac{0}{t}$, since $t \in S_{*}$), which means that there exists $v \in S_{*}$ such that vaut $=0$. We want to show that $\frac{(a / s)}{(t / u)}$ is the zero element of $T^{-1}\left(S^{-1} R\right)$. Indeed, since $v t \in S_{*}$, there exists $z \in S$ such that $\frac{v t}{z} \in T$. Then $\frac{v t}{z}\left(\frac{a}{s}\right)=\frac{v a t}{z s}=0_{S^{-1} R}$, because $u \in S$ satisfies uvat $=0$. Thus, there is an element of T which, multiplied by $\frac{a}{s}$, is equal to zero, so the element $\frac{a / s}{t / u}$ is the zero element of $T^{-1}\left(S^{-1} R\right)$, as claimed. Thus f is indeed one-to-one
Finally, to show f is onto, let $\frac{a}{t} \in S_{*}^{-1} R$. That means that there exists $s \in S$ such that $\frac{t}{s} \in T$. Then we can look at

$$
f\left(\frac{\frac{a}{s}}{\frac{t}{s}}\right)=\frac{a s}{t s}=\frac{a}{t}
$$

Thus, f is a ring isomorphism, as desired.
Note: This means that one can realize a ring of quotients of a ring of quotients of R as a ring of quotients of R; this is analogous to the fact that a quotient of a quotient of R can be realized as a quotient of R (the Third Isomorphism Theorem).
Remark: In fact, there is a "fancy proof" that $S_{*}^{-1} R \cong T^{-1}\left(S^{-1} R\right)$, using the universal property of the ring of fractions.
We have the maps $\varphi_{S}: R \rightarrow S^{-1} R$ and $\varphi_{T}: S^{-1} R \rightarrow T^{-1}\left(S^{-1} R\right)$. Composing them, we get a map $f: R \rightarrow T^{-1}\left(S^{-1} R\right)$. It is now straightforward to check that if $t \in S_{*}$, then $f(t)$ is a unit in $T^{-1}\left(S^{-1} R\right)$: there exists $s \in S$ such that $\frac{t}{s} \in T$, and so $\varphi_{S}(t)=\frac{t s}{s}=\frac{t}{s} \frac{s s}{s}$ is an element of T times a unit of $S^{-1} R$. Since φ_{T} maps units to units, and elements of T to units, $f(t)=\varphi_{T}\left(\varphi_{S}(t)\right)$ is a unit in $T^{-1}\left(S^{-1} R\right)$. By the universal property of the ring of fractions, there is a unique homomorphism $\psi: S_{*}^{-1} R \rightarrow T^{-1}\left(S^{-1} R\right)$ such that $\psi(r)=f(r)$ for all $r \in R$. Now let $t \in S_{*}$, and define the map $g: S^{-1} R \rightarrow S_{*}^{-1} R$ by mapping $\frac{a}{s}$ to $\frac{a t}{s t}$; this makes sense, since st $\in S_{*}$. It is a ring homomorphism:

$$
\begin{aligned}
g\left(\frac{a}{s}+\frac{b}{s^{\prime}}\right) & =g\left(\frac{a s^{\prime}+b s}{s s^{\prime}}\right)=\frac{\left(a s^{\prime}+b s\right) t}{s s^{\prime} t} \\
g\left(\frac{a}{s}\right)+g\left(\frac{b}{s^{\prime}}\right) & =\frac{a t}{s t}+\frac{b t}{s^{\prime} t}=\frac{a s^{\prime} t t+b s t t}{s s^{\prime} t t}=\frac{a s^{\prime} t+b s t}{s s^{\prime} t} \\
g\left(\frac{a}{s} \cdot \frac{b}{s^{\prime}}\right) & =\frac{a b t}{s s^{\prime} t}=\frac{a b t t}{s s^{\prime} t t}=\frac{a t}{s t} \cdot \frac{b t}{s^{\prime} t}=g\left(\frac{a}{s}\right) g\left(\frac{b}{s^{\prime}}\right) .
\end{aligned}
$$

And if $\frac{u}{s} \in T$, then $g\left(\frac{u}{s}\right)=\frac{u s t}{s t}$ is a unit in $S_{*}^{-1} R$, because $u, t \in S_{*}$ and $s \in S$, so ust $\in S_{*}$. Thus, g is a ring homomorphism from $S^{-1} R$ to $S_{*}^{-1} R$ that sends every element of T into a unit. This induces a homomorphism $\phi: T^{-1}\left(S^{-1} R\right) \rightarrow S_{*}^{-1} R$ such that $\phi\left(\frac{r}{s}\right)=\frac{r t}{s t}$ for all $\frac{r}{s} \in S^{-1} R$.
It is now an easy computation to show that ψ and ϕ are inverses of each other, so they are isomorphisms.

