
Math 566 - Homework 5
Solutions

Prof Arturo Magidin

1. The Hilbert numbers are the positive integers of the form 4n+ 1, with n ≥ 0,

H = 1 + 4N.

A Hilbert prime is a Hilbert number greater than 1 that is not divisible by any smaller Hilbert
number except 1.

(i) Let a, b ∈ H . Show that a | b in Z if and only if there exists c ∈ H such that b = ac. Thus,
divisibility in H coincides with divisibily in Z.
Proof. Suppose that a, b ∈ H , and there exists an integer c such that b = ac. Since a and
b are both positive, so is c. And since a ≡ 1 (mod 4) and b ≡ 1 (mod 4), looking at the
equation modulo 4 we obtain 1 ≡ 1(c) (mod 4). Thus, c ≡ 1 (mod 4), and hence c ∈ H .
The converse (if a divides b in H then a divides b in Z) is clear. This shows divisibility in
H coincides with divisibility in Z. □

(ii) Prove that a Hilbert number is a Hilbert prime if and only if it is either an integer prime of
the form 4n+1 (such as 5, 13, 17, etc), or an integer of the form (4a+3)(4b+3) where both
4a+ 3 and 4b+ 3 are integer primes (for example, 21 = (3)(7)).

Proof. If p is a prime integer of the form 4n + 1, then it is in H and is not divisible by
any integer greater than 1 and smaller than p, hence is not divisible by any Hilbert integer
greater than 1 and smaller than p; thus, p is a Hilbert prime.

If p = (4a+ 3)(4b+ 3), then p ≡ 1 (mod 4) (since 9 ≡ 1 (mod 4)) and thus lies in H . The
only positive integer divisors of p are 1, p, 4a + 3, and 4b + 3, and thus the only Hilbert
numbers that divide p are 1 and p. Thus, p is a Hilbert prime. This completes the proof of
sufficiency.

To prove necessity, let m ∈ H , m > 1 be an integer that is not a prime of the form 4a+ 1,
and not of the form (4a + 3)(4b + 3) with 4a + 3 and 4b + 3 both positive integer primes.
If m is not an integer prime and is divisible by a prime p ≡ 1 (mod 4), then 1 < p < m,
and p ∈ H also divides m in H So m is not a Hilbert prime. If all prime factors of m are
congruent to 3 modulo 4, but is not a product of exactly two of them, then it is a product
of an even number of such primes, and at least 4. Let p1 and p2 be two such primes with
p1p2 | m. (We are not assuming p1 ̸= p2). Since m ̸= p1p2, then 1 < p1p2 < m, and p1p2 ≡ 1
(mod 4), so p1p2 ∈ H . Thus, m is not a Hilbert prime. □

(iii) Let a be a Hilbert number greater than 1. Prove that a can be written as a product of
Hilbert primes using strong induction: if a is a Hilbert prime, then we can write a = a.
Otherwise, show there is a smallest Hilbert prime b such that b | a, and writing a = bc, apply
the induction hypothesis to c.

Proof. Assume all Hilbert numbers m greater than 1 and smaller than k ∈ H can be
written as a product of Hilbert primes, m = p1p2 · · · pr with p1 ≤ p2 ≤ · · · ≤ pr, and where
pi is the smallest Hilbert prime that divides pipi+1 · · · pr.
We prove that k can be written as a product of Hilbert primes in the same way. If k is a
Hilbert prime, we write k = k and we are done. If k is not a Hilbert prime, then there exist
Hilbert numbers m, 1 < m < k, such that m divides k. Let p be the smallest such Hilbert
integer. I claim that p is a Hilbert prime.

Indeed, if p is not a Hilbert prime, then there exist a Hilbert number q, 1 < q < p, such that
q | p. But since p | k, it follows that q | k, contradicting the minimality of p. Thus, p is a
Hilbert prime.
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Since p divides k, we can write k = pq with q a Hilbert number, 1 < q < k. Applying the
induction hypothesis to q, we can write q as a product of Hilbert primes, q = q1q2 · · · qs, with
q1 ≤ q2 ≤ · · · ≤ qs, and where qi is the smallest Hilbert prime that divides qiqi+1 · · · qs.
Then k = pq1 · · · qs; p is the smallest Hilbert prime that divides k = pq1 · · · qs, each qi is
the smallest Hilbert prime that divides qiqi+1 · · · qs. This proves k has a factorization as
described, and we are done. □

(iv) Using the above algorithm, factor 441 into Hilbert primes.

Answer. The positive integer divisors of 441 are 1, 3, 7, 9, 21, 49, 63, 147, and 441. The
ones that are Hilbert numbers are 1, 9, 21, 49, and 441. From (ii), we know that the primes
among them are 9 = (3)(3), 21 = (3)(7), and 49 = (7)(7). The smallest is 9, and we write
441 = (9)(49). These are both Hilbert primes, so we are done. □

(v) Find a different factorization of 441 into Hilbert primes. Conclude that the Hilbert numbers
do not satisfy unique factorization.

Answer. We can also factor 441 = (21)(21), and 21 is a Hilbert prime, as noted above.
Thus, even though there is an algorithm that produces a unique factorization for every
Hilbert integer, H do not satisfy unique factorization. □

2. Let R be a Euclidean domain with Euclidean function φ.

(i) Prove that for all r ̸= 0, φ(1R) ≤ φ(r).

Proof. Let r ∈ R, r ̸= 0. Then 1Rr ̸= 0, so by the properties of the Euclidean function,

φ(1R) ≤ φ(1Rr) = φ(r). □

(ii) Prove that u ∈ R is a unit if and only if φ(u) = φ(1R).

Proof. If u is a unit, then there exists v ∈ R such that uv = 1. Then φ(1R) ≤ φ(u) ≤
φ(uv) = φ(1R), so we have φ(u) = φ(1R).

Conversely, if φ(u) = φ(1R), then applying the second part of the definition of Euclidean
function to divide 1R by u, we know there exists q, r ∈ R such that 1R = qu+r, and r = 0 or
φ(r) < φ(u) = φ(1R). But by (i), we know that if r ̸= 0, then φ(r) ≥ φ(1R), so we conclude
that r = 0. Therefore, 1 = qu, so u is a unit. □

Definition. Let R be a commutative ring with unity. A function N : R → N is a Dedekind-Hasse
norm if N(a) ≥ 0 for all a, with equality if and only if a = 0; and for every nonzero a, b ∈ R, either
a ∈ (b) or there exists a nonzero element c ∈ (a, b) with norm strictly smaller than that of b (that is,
either b divides a, or there exist s, t ∈ R such that 0 < N(sa− tb) < N(b).

3. Let R be an integral domain. Prove that if there is a Dedekind-Hasse norm N on R, then R is a
PID. Hint: Given an nonzero ideal I, let b be a nonzero element of I with N(b) minimal.

Proof. Let I ◁R. If I = (0), we are done. If I ̸= (0), then let b ∈ I be an element such that N(b)
is minimal among nonzero elements of I. The claim is that I = (b). We certainly have (b) ⊆ I.

Let a ∈ I; if a = 0, then a ∈ (b). If a ̸= 0, then, since N is a Dedekind-Hasse norm, either a ∈ (b),
or there exists s, t ∈ R such that 0 < N(sa − tb) < N(b). However, (a, b) ⊆ I, so sa − tb ∈ I for
any s, t ∈ R. Thus, by the minimality of N(b), either sa− tb = 0 or N(sa− tb) ≥ N(b). Thus, we
must have that a ∈ (b). This proves that I ⊆ (b), as required. □

Definition. Let R be an integral domain. A nonzero nonunit u ∈ R is said to be a universal side
divisor if for every x ∈ R there is a z ∈ R such that z is either 0 or a unit, and u divides x− z; that is,
there is a weak version of the division algorithm for u: every x can be written as x = qu+ z, where z
is either 0 or a unit.

2



4. Show that if R is a Euclidean domain that is not a field, then there are universal side divisors
in R.

Proof. Assume that R is a Euclidean domain that is not a field. Then the set of nonzero nonunits
is not empty, so there is a nonzero nonunit u ∈ R such that φ(u) is minimal among the values of
the Euclidean function φ on nonzero nonunits. We claim that u is a universal side divisor.

Indeed, let x ∈ R. Since R is a Euclidean domain, there exist q and r in R such that x = qu+ r
and either r = 0 or φ(r) < φ(u). By the minimality of φ(u), r must be either 0 or a unit, so there
exists z such that u divides x− z and z is either 0 or a unit (namely z = r). This shows that u is
a universal side divisor, as claimed. □

5. Let α = 1+
√
−19
2 , and let R = Z[α] = {a + bα | a, b ∈ Z}, which is a subring of C. Define

N : R → Z by
N(a+ bα) = (a+ bα)(a+ bα) = a2 + ab+ 5b2,

where α is the complex conjugate of α.

(i) Show that N is multiplicative: if x, y ∈ R, then N(xy) = N(x)N(y).

Proof. Note that N(α) = αα = |α|2, where α is the complex conjugate of α and |α| is the
complex norm of α. Thus,

N(αβ) = |αβ|2 = (|α| |β|)2 = |α|2|β|2 = N(α)N(β). □

(ii) Show that N(x) ≥ 0 for all x ∈ R, and N(x) = 0 if and only if x = 0.

Proof. Since |α| = 0 if and only if α = 0, and |α| ≥ 0, these conditions also hold for N . □

(iii) Show that x is a unit in R if and only if N(x) = 1.

Proof. If α is a unit, then 1 = N(1) = N(αα−1) = N(α)N(α−1), and since N(α) is a
positive integer, we must have N(α) = 1. Conversely, if N(α) = 1, then 1 = αα, so α = α−1.
Now we just notice that α ∈ R, since

α = a+ b

(
1−

√
−19

2

)
= (a+ b)− b

(
1 +

√
−19

2

)
.

It follows that α is a unit in R. □

(iv) Show that the only units of R are 1 and −1.

Proof. Clearly, both 1 and −1 are units.

For the converse, assume that α = a + b
(

1+
√
−19
2

)
is a unit in R, a, b ∈ Z. Note that if

a, b ∈ Z, then

N

(
a+ b

(
1 +

√
−19

2

))
=

(
a+

b

2

)2

+
19

4
b2.

This is a sum of two squares. Therefore, in order for N(α) to be 1, we must have b = 0
(otherwse N(α) ≥ 19

4 > 4), and hence a2 = 1. Thus, α = 1 or α = −1, as claimed. □

(v) Show that if a, b ∈ Z, and b ̸= 0, then N(a + bα) ≥ 5. Conclude that the smallest nonzero
values of N are 1 and 4, and determine all x ∈ R with N(x) = 4.

Proof. From the formula above, if b ̸= 0, then N(α) ≥ 19
4 b2 ≥ 19

4 > 4. Since N(α) must be
an integer, it follows that N(α) ≥ 5.

On the other hand, when b = 0, we get N(a) = a2. This can take values 1 and 4, which are
smaller than the values the norm can take when b ̸= 0. So the smallest values that N takes
are 1 (when |a| = 1 and b = 0; i.e., at 1 and −1), and 4. The latter occurs when |a| = 2 and
b = 0, i.e., at 2 and −2. □
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(vi) Show that both 2 and 3 are irreducible in R.

Proof. If 2 = xy in R, then N(2) = N(x)N(y). Thus, 4 = N(x)N(y). Since there is no
r ∈ R with N(r) = 2, this means that one of N(x) and N(y) is 1, and the other is 4. If
N(x) = 1, then x is a unit; if N(y) = 1, then y is a unit. Thus, if 2 = xy, then either x is a
unit or y is a unit. Hence 2 is irreducible in R.

Similarly, if 3 = xy, then 9 = N(3) = N(x)N(y); since there are no r ∈ R with N(r) = 3,
one of N(x) or N(y) is equal to 1, and therefore one of x or y is a unit. Thus, 3 is irreducible
in R □

(vii) Show that if u ∈ R is a universal side divisor, then u = ±2 or u = ±3.

Proof. Suppose that u is a universal side divisor. Taking x = 2, it follows that u must
divide either 2, 2− 1, or 2 + 1 (since the only possible values for z are 0, 1, and −1). Since
u is not a unit, then u must divide either 2 or 3; and as the only nonunit elements of R
that divide 2 or divide 3 are ±2 and ±3, it follows that u would have to be one of 2, −2, 3,
or −3. □

(viii) Show that none of α, α+ 1, and α− 1 are divisible by ±2 or by ±3.

Proof. Note that a+ bα is divisible by 2 (or −2) in R if and only if a and b are both even.
In particular, neither α, 1 + α, nor −1 + α are multiples of 2 or −2. Similarly, a + bα is
divisible by 3 or by −3 in R if and only if a and b are both multiples of 3, so none of α, 1+α,
nor −1 + α are divisible by 3 or −3. □

(ix) Conclude that R does not have universal side divisors, and hence is not a Euclidean domain.

Answer. Suppose u is a universal side divisor. If we take x = α, then u must divide either
α, α − 1, or α + 1, and we just saw that none of ±2 nor ±3 divide α, α − 1, or α + 1. As
these are the only possible values for universal side divisors by part (vii), it follows that R
does not have universal side divisors. Since Euclidean domains always have universal side
divisors, we conclude that R is not a Euclidean domain. □

Note. One can show that N is a Dedekind-Hasse norm on R, so that R is a PID that is not a
Euclidean domain.
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