Math 566 - Homework 4
 Solutions
 Prof Arturo Magidin

1. Let R be a ring, and I an ideal of R. Show that if R is a principal ideal ring (a ring in which every ideal is principal), then R / I is a principal ideal ring. Do not assume R is commutative or has a unity.
Proof. Let K be an ideal of R / I; we want to show that K is principal. By the Isomorphism Theorems, we know that K is an ideal of the form J / I, for some ideal J of R that contains I. Since we are assuming that R is a principal ideal ring, we know that there exists $a \in R$ such that $J=(a)$.

We claim that $K=(a+I)$. Indeed, since $a \in J$, then $a+I \in \pi(J)=K$ (where $\pi: R \rightarrow R / I$ is the canonical projection); thus, K contains $(a+I)$, the smallest ideal of R / I that contains $a+I$. Thus, $(a+I) \subseteq K$.
Now let $x \in K$. Then $x=\pi(b)$ for some $b \in J=(a)$. Thus, b can be written as

$$
b=n a+r a+a s+\sum_{i=1}^{m} r_{i} a s_{i}
$$

with $n \in \mathbb{Z}, m \in \mathbb{N}, r, s, r_{i}, s_{i} \in R$. Therefore,

$$
\begin{aligned}
x & =\pi(b)=\pi\left(n a+r a+a s+\sum_{i=1}^{m} r_{i} a s_{i}\right)=n \pi(a)+\pi(r a)+\pi(a s)+\sum_{i=1}^{m} \pi\left(r_{i} a s_{i}\right) \\
& =n(a+I)+(r+I)(a+I)+(a+I)(s+I)+\sum_{i=1}^{m}\left(r_{i}+I\right)(a+I)\left(s_{i}+I\right)
\end{aligned}
$$

Now we observe that each of $n(a+I),(r+I)(a+I),(a+I)(s+I)$, and $\left(r_{i}+I\right)(a+I)\left(s_{i}+I\right)$ lie in $(a+I)$, since it is an ideal; thus, $x \in(a+I)$, proving that $K \subseteq(a+I)$. Thus, K is principal generated by $a+I$, as desired.
2. Let $R=\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\}$. This is a unital subring of \mathbb{C} (you may take this for granted). Define $N: R \rightarrow \mathbb{Z}$ by

$$
N(a+b \sqrt{-5})=(a+b \sqrt{-5})(a-b \sqrt{-5})=a^{2}+5 b^{2}
$$

(i) Show that N is multiplicative: if $x, y \in R$, then $N(x y)=N(x) N(y)$.

Proof. We can note that $N(r)=r \bar{r}$ for each $r \in \mathbb{Z}[\sqrt{-5}]$, where \bar{r} is the complex conjugate of r (since $R \subseteq \mathbb{C}$). Then the properties of complex conjugation give

$$
N(r s)=(r s)(\bar{r} \bar{s})=r \bar{r} s \bar{s}=N(r) N(s)
$$

Or we can verify this directly: let $x=a+b \sqrt{-5}, y=r+t \sqrt{-5}$. Then:

$$
\begin{aligned}
N(x y) & =N((a r-5 b t)+(a t+b r) \sqrt{-5})=(a r-5 b t)^{2}+5(a t+b r)^{2} \\
& =a^{2} r^{2}-10 a b r t+25 b^{2} t^{2}+5 a^{2} t^{2}+10 a b r t+5 b^{2} r^{2} \\
& =a^{2} r^{2}+25 b^{2} t^{2}+5 a^{2} t^{2}+5 b^{2} r^{2} \\
N(x) N(y) & =\left(a^{2}+5 b^{2}\right)\left(r^{2}+5 t^{2}\right)=a^{2} r^{2}+5 a^{2} t^{2}+5 b^{2} r^{2}+25 b^{2} t^{2}
\end{aligned}
$$

So we have equality.
(ii) Show that $N(x) \geq 0$ for all $x \in R$, with equality if and only if $x=0$.

Proof. Since $a, b \in \mathbb{Z}$, we have that $N(a+b \sqrt{-5})=a^{2}+5 b^{2} \geq 0$, and $N(a+b \sqrt{-5})=0$ if and only if $a=b=0$.
(iii) Show that $N(x)=1$ if and only if x is a unit in R. Determine all units of R.

Proof. If $N(x)=1$, then $(a+b \sqrt{-5})(a-b \sqrt{-5})=1$, so $a+b \sqrt{-5}$ has $a-b \sqrt{-5}$ as a multiplicative inverse.
Conversely, if x is a unit, then there exists y such that $x y=1$. Using (i), we have

$$
1=N(1)=N(x y)=N(x) N(y)
$$

Since $N(x)$ and $N(y)$ are nonnegative integers, this implies that $N(x)=1$.
So now suppose that $a+b \sqrt{-5}$ is a unit in R. Then $a^{2}+5 b^{2}=1$, and since a, b are integers this forces $b=0$. Thus, $a^{2}=1$, and hence the only units in R are 1 and -1 .
(iv) Show that if $a, b \in R$ and $a \mid b$ in R, then $N(a) \mid N(b)$ in \mathbb{Z}.

Proof. Suppose that $a, b \in R$ and $a \mid b$. Then there exists $x \in R$ such that $a x=b$, hence

$$
N(b)=N(a x)=N(a) N(x) .
$$

Since $N(a), N(x)$, and $N(b)$ are all integers, this shows that $N(a) \mid N(b)$ in \mathbb{Z}.
(v) Show that $2,3,1+\sqrt{-5}$, and $1-\sqrt{-5}$ are irreducible in R.

Proof. Note that $N(2)=4, N(3)=9$, and $N(1 \pm \sqrt{-5})=6$. So none of them are units. They are certainly not zero.
If $2=x y$ in R, then $N(x) \mid N(2)=4$. If $N(x)=1$, then x is a unit and we are done. Since $a^{2}+5 b^{2}=2$ has no solutions with a and b integers, we cannot have $N(x)=2$. And if $N(x)=4$, then $N(y)=1$, so y is a unit. Thus, if $2=x y$, then either x is a unit or y is a unit, proving that 2 is irreducible.
Similarly, since $a^{2}+5 b^{2}=3$ has no solutions with a and b integers, if $3=x y$ holds in R, then $9=N(x) N(y)$, so either $N(x)=1$ (so x is a unit), or $N(x)=9$ and then $N(y)=1$ (so y is a unit). Thus, 3 is irreducible.
If $1+\sqrt{-5}=x y$ and $N(x) \neq 1$, then it must equal 6 (since it cannot equal 2 or 3 , but $N(1+\sqrt{-5})=6$); so then $N(y)=1$. Thus, either x or y are units, and hence $1+\sqrt{-5}$ is irreducible. The exact same argument shows that $1-\sqrt{-5}$ is also irreducible.
(vi) Show that none of $2,3,1+\sqrt{-5}$, and $1-\sqrt{-5}$ are prime.

Proof. Note that $(2)(3)=6=(1+\sqrt{-5})(1-\sqrt{-5})$.
However, 2 cannot divide either $1+\sqrt{-5}$ or $1-\sqrt{-5}$, since $N(2)=4$ does not divide $6=N(1 \pm \sqrt{-5})$. Similarly, 3 cannot divide either, since $N(3)=9$ does not divide 6 . So both 2 and 3 divide a product but do not divide either factor, showing they are not prime. Likewise, neither $1+\sqrt{-5}$ nor $1-\sqrt{-5}$ can divide 2 or 3 , since $N(1 \pm \sqrt{-5})=6$ does not divide either $N(2)=4$ nor $N(3)=9$. So they both divide a product without dividing either factor, proving that they are not prime.
3. A complex number z is an algebraic integer if and only if there is a monic polynomial $p(x)$ with integer coefficients,

$$
p(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, \quad a_{i} \in \mathbb{Z}
$$

such that $p(z)=0$. The set \mathbb{A} of all algebraic integers forms a subring of \mathbb{C} (you may take this for granted).
(i) Prove that the only rational numbers that are algebraic integers are the integers.

Proof. Let a and b be integers, $b>0, \operatorname{gcd}(a, b)=1$, and assume that $\frac{a}{b}$ is an algebraic integer. Then there exists a monic polynomial with integer coefficients,

$$
p(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

such that $p\left(\frac{a}{b}\right)=0$. By the Rational Root Test, we know that $a \mid a_{0}$ and $b \mid 1$. Thus, $b=1$, so $\frac{a}{b}=a \in \mathbb{Z}$. Hence, any rational number that is an algebraic integer must in fact be an integer.
Finally, if $a \in \mathbb{Z}$, then a is a root of $x-a$, so every integer is an algebraic integer.
(ii) Prove that \mathbb{A} is not a field, but has no irreducible elements and no primes.

Proof. To show that \mathbb{A} is not a field, not that $2 \in \mathbb{A}$, but $\frac{1}{2} \notin \mathbb{A}$, by part (i). Thus, not every nonzero element of \mathbb{A} has a multiplicative inverse, and thus \mathbb{A} is not a field.
To show it has no irreducibles, we note that if α is an algebraic integer, and β is a complex number such that $\beta^{2}=\alpha$, then β is an algebraic integer; that is, both complex square roots of an algebraic integer are algebraic integers.
Indeed, if α satisfies the polynomial

$$
p(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

with $a_{i} \in \mathbb{Z}$, and $\beta^{2}=\alpha$, then β satisfies the polynomial

$$
p\left(x^{2}\right)=x^{2 n}+a_{n-1} x^{2(n-1)}+\cdots+a_{1} x^{2}+a_{0}
$$

which is a monic polynomial with integer coefficients. So β is an algebraic integer.
Now let $\alpha \in \mathbb{A}$ be a nonzero nonunit. If α is not a unit, and $\beta^{2}=\alpha$, then β is not a unit: for if $\beta \gamma=1$, then $\alpha \gamma^{2}=1$. And since such a β exists (because the complex numbers contain square roots of each complex number) it follows that α is not irreducible. Hence, \mathbb{A} has no irreducibles.
Since prime elements are always irreducible in a domain, it follows that \mathbb{A} has no prime elements either.
4. A proper ideal I of a commutative ring with unity R is said to be a primary ideal if and only if for all $a, b \in R$, if $a b \in I$, then either $a \in I$ or $b^{n} \in I$ for some $n \geq 1$. Determine the primary ideals of \mathbb{Z}.
Answer. Let (r) be an ideal of \mathbb{Z}, and suppose that (r) is primary. That means that if $r \mid a b$, then either $r \mid a$ or $r \mid b^{n}$ for some $n \geq 1$. This suggests that r must be the power of prime or 0 .
Indeed: let p be a prime, and consider $\left(p^{m}\right), m \geq 1$. If $p^{m} \mid a b$, let $k \geq 0$ be the largest integer such that $p^{k} \mid a$. If $k \geq m$, then $a \in\left(p^{m}\right)$. If $k<m$, then $p \mid b$, and therefore $p^{m} \mid b^{m}$, proving that $b^{m} \in\left(p^{m}\right)$. Thus, $\left(p^{m}\right)$ is primary. And (0) is a prime ideal of \mathbb{Z}, and hence is primary.
Conversely, if r is not a prime power and not 0 . If r is a unit, then $(r)=\mathbb{Z}$ is not a proper ideal. If r is not zero, not a unit, and not a prime power, then there exist two primes, $p \neq q$, such that $p \mid r$ and $q \mid r$. Write $r=p^{i} q^{j} s$, where $i \geq 1, j \geq 1$, and s is an integer such that $p \nmid s$ and $q \nmid s$. Let $a=p^{i}, b=q^{j} s$. Then $a \notin(r)$ (since $q \mid r$ but $\left.q \nmid a\right)$; and $b^{n} \notin(r)$ for all $n \geq 1$ since $p \nmid b^{n}$. Thus, (r) is not a primary ideal.
5. Let R be a commutative ring with unity, and let X be a nonempty subset of R. We say that d is a greatest common divisor of X if and only if
(i) For every $x \in X, d \mid x$; and
(ii) If $c \in R$ is such that $c \mid x$ for all $x \in X$, then $c \mid d$.

Prove that if R is a commutative principal ideal ring with unity, then every nonempty (possibly infinite) set of elements of R has a greatest common divisor.
Proof. Let X be a nonempty subset of R, and let (X) be the ideal generated by X. Since R is a principal ideal ring, then there exists $d \in R$ such that $(X)=(d)=R d$ (the last equality because R is commutative with unity).
We prove that d is a greatest common divisor of X. If $x \in X$, then $x \in X \subseteq(X)=(d)=R d$, so there exists $a \in R$ such that $x=a d$. Thus, $d \mid x$.
Now let $c \in R$ be such that $c \mid x$ for all $x \in X$. Then $x \in(c)$ for all $x \in X$, then $X \subseteq(c)$, and thus $(d)=(X) \subseteq(c)$. Since $(d) \subseteq(c)$, we have $c \mid d$, as required.
Thus, d is a greatest common divisor of X, as desired.
6. Let R be a commutative ring with unity. Show that if $x \in R$ is nilpotent, then $1_{R}-x$ and $1_{R}+x$ are both units.
Proof. Let x be nilpotent, and let $n \geq 1$ be such that $x^{n}=0$. If $n=1$, then $x=0$, so $1_{R}-x=1_{R}$ is a unit. If $n>1$, then
$\left(1_{R}-x\right)\left(1_{R}+x+x^{2}+\cdots+x^{n-1}\right)=\left(1_{R}+x+x^{2}+\cdots+x^{n-1}\right)-\left(x+x^{2}+\cdots+x^{n}\right)=1_{R}-x^{n}=1_{R}$,
so $1_{R}-x$ is a unit. To finish, note that if x is nilpotent then so is $-x$, and therefore by what we have just shown it follows that $1_{R}-(-x)=1_{R}+x$ is a unit.
7. Let R be a commutative ring, and let $A \subseteq R$. Let

$$
\sqrt{A}=\left\{r \in R \mid \text { there exists } n>0 \text { such that } r^{n} \in A\right\} .
$$

Prove that if I is an ideal of R, then \sqrt{I} is an ideal of R that contains I. The ideal \sqrt{I} is called the radical of I.
Proof. Note that \sqrt{I} is nonempty, since $I \subseteq \sqrt{I}$.
Let $a, b \in \sqrt{I}$. Then there exists $n, m>0$ such that $a^{n} \in I$ and $b^{m} \in I$. Then

$$
(a-b)^{n+m}=a^{n+m}+(-1)^{n+m} b^{n+m}+\sum_{j=1}^{n+m-1}\binom{n+m}{j} a^{j} b^{n+m-j}
$$

Since $n, m>0$ and I is an ideal, then $a^{n+m}=a^{n} a^{m} \in I$, and $b^{n+m}=b^{n} b^{m} \in I$. If $j \leq n$, then $n+m-j \geq m$, so $b^{n+m-j} \in I$, and if $j>n$ then $a^{j} \in I$. Hence, every summand in the expression lies in I.
Thus, $(a-b)^{n+m} \in I$, which proves that $a-b \in \sqrt{I}$. Thus, \sqrt{I} is a subgroup of R.
Now let $a \in \sqrt{I}$ and $r \in R$. We need to show that $r a \in \sqrt{I}$. Since $a \in \sqrt{I}$, there exists $n>0$ such that $a^{n} \in I$. Then $(r a)^{n}=r^{n} a^{n} \in I$ (since I is an ideal), so $r a \in \sqrt{I}$. This proves that \sqrt{I} is an ideal.
8. Let R be a commutative ring with unity. Show that $\sqrt{(0)}$ is the ideal of all nilpotent elements of R (we proved the set of all nilpotent elements is an ideal in Homework 3) and that it is contained in every prime ideal of R.
Proof. If a is nilpotent, then $a^{n}=0$ for some $n \geq 1$, so by definition we have $a \in \sqrt{(0)}$. Conversely, if $a \in \sqrt{(0)}$, then there exists $n \geq 1$ such that $a^{n} \in(0)=\{0\}$, so a is nilpotent. Thus, $\sqrt{(0)}$ is the ideal of all nilpotent elements of R.
To prove it is contained in every prime ideal of R, note that if P is a (completely) prime ideal in a (not necessarily commutative) ring R, and $a^{n} \in P$ for some $n \geq 1$, then $a \in P$. Indeed,
inductively, if $n=1$ then $a \in P$; and if $a^{k} \in P$ implies $a \in P$, and $a^{k+1} \in P$, then $a a^{k} \in P$, so either $a \in P$ or $a^{k} \in P$ and hence $a \in P$.
Now let a be a nilpotent element of R and P a prime ideal of R. Since R is commutative, P is completely prime. Since a is nilpotent, then $a^{n}=0$ for some $n \geq 1$; thus, $a^{n} \in P$, hence $a \in P$. This shows every nilpotent element is contained in every prime ideal of R, so $\sqrt{(0)} \subseteq P$ for all prime ideals P.

