
Math 566 - Homework 4
Solutions

Prof Arturo Magidin

1. Let R be a ring, and I an ideal of R. Show that if R is a principal ideal ring (a ring in which
every ideal is principal), then R/I is a principal ideal ring. Do not assume R is commutative or
has a unity.

Proof. Let K be an ideal of R/I; we want to show that K is principal. By the Isomorphism
Theorems, we know that K is an ideal of the form J/I, for some ideal J of R that contains I.
Since we are assuming that R is a principal ideal ring, we know that there exists a ∈ R such that
J = (a).

We claim that K = (a + I). Indeed, since a ∈ J , then a + I ∈ π(J) = K (where π : R → R/I is
the canonical projection); thus, K contains (a+ I), the smallest ideal of R/I that contains a+ I.
Thus, (a+ I) ⊆ K.

Now let x ∈ K. Then x = π(b) for some b ∈ J = (a). Thus, b can be written as

b = na+ ra+ as+

m∑
i=1

riasi,

with n ∈ Z, m ∈ N, r, s, ri, si ∈ R. Therefore,

x = π(b) = π

(
na+ ra+ as+

m∑
i=1

riasi

)
= nπ(a) + π(ra) + π(as) +

m∑
i=1

π(riasi)

= n(a+ I) + (r + I)(a+ I) + (a+ I)(s+ I) +

m∑
i=1

(ri + I)(a+ I)(si + I).

Now we observe that each of n(a+ I), (r+ I)(a+ I), (a+ I)(s+ I), and (ri + I)(a+ I)(si + I) lie
in (a+ I), since it is an ideal; thus, x ∈ (a+ I), proving that K ⊆ (a+ I). Thus, K is principal
generated by a+ I, as desired. □

2. Let R = Z[
√
−5] =

{
a + b

√
−5

∣∣ a, b ∈ Z
}
. This is a unital subring of C (you may take this for

granted). Define N : R → Z by

N
(
a+ b

√
−5
)
=
(
a+ b

√
−5
) (

a− b
√
−5
)
= a2 + 5b2.

(i) Show that N is multiplicative: if x, y ∈ R, then N(xy) = N(x)N(y).

Proof. We can note that N(r) = rr for each r ∈ Z[
√
−5], where r is the complex conjugate

of r (since R ⊆ C). Then the properties of complex conjugation give

N(rs) = (rs)(rs) = rrss = N(r)N(s).

Or we can verify this directly: let x = a+ b
√
−5, y = r + t

√
−5. Then:

N(xy) = N
(
(ar − 5bt) + (at+ br)

√
−5
)
= (ar − 5bt)2 + 5(at+ br)2

= a2r2 − 10abrt+ 25b2t2 + 5a2t2 + 10abrt+ 5b2r2

= a2r2 + 25b2t2 + 5a2t2 + 5b2r2.

N(x)N(y) = (a2 + 5b2)(r2 + 5t2) = a2r2 + 5a2t2 + 5b2r2 + 25b2t2.

So we have equality. □
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(ii) Show that N(x) ≥ 0 for all x ∈ R, with equality if and only if x = 0.

Proof. Since a, b ∈ Z, we have that N(a+ b
√
−5) = a2 + 5b2 ≥ 0, and N(a+ b

√
−5) = 0 if

and only if a = b = 0. □

(iii) Show that N(x) = 1 if and only if x is a unit in R. Determine all units of R.

Proof. If N(x) = 1, then (a + b
√
−5)(a − b

√
−5) = 1, so a + b

√
−5 has a − b

√
−5 as a

multiplicative inverse.

Conversely, if x is a unit, then there exists y such that xy = 1. Using (i), we have

1 = N(1) = N(xy) = N(x)N(y).

Since N(x) and N(y) are nonnegative integers, this implies that N(x) = 1.

So now suppose that a+ b
√
−5 is a unit in R. Then a2 + 5b2 = 1, and since a, b are integers

this forces b = 0. Thus, a2 = 1, and hence the only units in R are 1 and −1. □

(iv) Show that if a, b ∈ R and a | b in R, then N(a) | N(b) in Z.
Proof. Suppose that a, b ∈ R and a | b. Then there exists x ∈ R such that ax = b, hence

N(b) = N(ax) = N(a)N(x).

Since N(a), N(x), and N(b) are all integers, this shows that N(a) | N(b) in Z.
(v) Show that 2, 3, 1 +

√
−5, and 1−

√
−5 are irreducible in R.

Proof. Note that N(2) = 4, N(3) = 9, and N(1 ±
√
−5) = 6. So none of them are units.

They are certainly not zero.

If 2 = xy in R, then N(x) | N(2) = 4. If N(x) = 1, then x is a unit and we are done.
Since a2 + 5b2 = 2 has no solutions with a and b integers, we cannot have N(x) = 2. And
if N(x) = 4, then N(y) = 1, so y is a unit. Thus, if 2 = xy, then either x is a unit or y is
a unit, proving that 2 is irreducible.

Similarly, since a2 + 5b2 = 3 has no solutions with a and b integers, if 3 = xy holds in R,
then 9 = N(x)N(y), so either N(x) = 1 (so x is a unit), or N(x) = 9 and then N(y) = 1 (so
y is a unit). Thus, 3 is irreducible.

If 1 +
√
−5 = xy and N(x) ̸= 1, then it must equal 6 (since it cannot equal 2 or 3, but

N(1 +
√
−5) = 6); so then N(y) = 1. Thus, either x or y are units, and hence 1 +

√
−5 is

irreducible. The exact same argument shows that 1−
√
−5 is also irreducible. □

(vi) Show that none of 2, 3, 1 +
√
−5, and 1−

√
−5 are prime.

Proof. Note that (2)(3) = 6 = (1 +
√
−5)(1−

√
−5).

However, 2 cannot divide either 1 +
√
−5 or 1 −

√
−5, since N(2) = 4 does not divide

6 = N(1 ±
√
−5). Similarly, 3 cannot divide either, since N(3) = 9 does not divide 6. So

both 2 and 3 divide a product but do not divide either factor, showing they are not prime.

Likewise, neither 1 +
√
−5 nor 1 −

√
−5 can divide 2 or 3, since N(1 ±

√
−5) = 6 does not

divide either N(2) = 4 nor N(3) = 9. So they both divide a product without dividing either
factor, proving that they are not prime. □

3. A complex number z is an algebraic integer if and only if there is a monic polynomial p(x) with
integer coefficients,

p(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0, ai ∈ Z

such that p(z) = 0. The set A of all algebraic integers forms a subring of C (you may take this
for granted).
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(i) Prove that the only rational numbers that are algebraic integers are the integers.

Proof. Let a and b be integers, b > 0, gcd(a, b) = 1, and assume that a
b is an algebraic

integer. Then there exists a monic polynomial with integer coefficients,

p(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0,

such that p(ab ) = 0. By the Rational Root Test, we know that a | a0 and b | 1. Thus, b = 1,
so a

b = a ∈ Z. Hence, any rational number that is an algebraic integer must in fact be an
integer.

Finally, if a ∈ Z, then a is a root of x− a, so every integer is an algebraic integer. □

(ii) Prove that A is not a field, but has no irreducible elements and no primes.

Proof. To show that A is not a field, not that 2 ∈ A, but 1
2 /∈ A, by part (i). Thus, not

every nonzero element of A has a multiplicative inverse, and thus A is not a field.

To show it has no irreducibles, we note that if α is an algebraic integer, and β is a complex
number such that β2 = α, then β is an algebraic integer; that is, both complex square roots
of an algebraic integer are algebraic integers.

Indeed, if α satisfies the polynomial

p(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

with ai ∈ Z, and β2 = α, then β satisfies the polynomial

p(x2) = x2n + an−1x
2(n−1) + · · ·+ a1x

2 + a0,

which is a monic polynomial with integer coefficients. So β is an algebraic integer.

Now let α ∈ A be a nonzero nonunit. If α is not a unit, and β2 = α, then β is not a unit: for
if βγ = 1, then αγ2 = 1. And since such a β exists (because the complex numbers contain
square roots of each complex number) it follows that α is not irreducible. Hence, A has no
irreducibles.

Since prime elements are always irreducible in a domain, it follows that A has no prime
elements either. □

4. A proper ideal I of a commutative ring with unity R is said to be a primary ideal if and only if
for all a, b ∈ R, if ab ∈ I, then either a ∈ I or bn ∈ I for some n ≥ 1. Determine the primary
ideals of Z.
Answer. Let (r) be an ideal of Z, and suppose that (r) is primary. That means that if r | ab,
then either r | a or r | bn for some n ≥ 1. This suggests that r must be the power of prime or 0.

Indeed: let p be a prime, and consider (pm), m ≥ 1. If pm | ab, let k ≥ 0 be the largest integer
such that pk | a. If k ≥ m, then a ∈ (pm). If k < m, then p | b, and therefore pm | bm, proving
that bm ∈ (pm). Thus, (pm) is primary. And (0) is a prime ideal of Z, and hence is primary.

Conversely, if r is not a prime power and not 0. If r is a unit, then (r) = Z is not a proper ideal.
If r is not zero, not a unit, and not a prime power, then there exist two primes, p ̸= q, such that
p | r and q | r. Write r = piqjs, where i ≥ 1, j ≥ 1, and s is an integer such that p ∤ s and q ∤ s.
Let a = pi, b = qjs. Then a /∈ (r) (since q | r but q ∤ a); and bn /∈ (r) for all n ≥ 1 since p ∤ bn.
Thus, (r) is not a primary ideal. □

5. Let R be a commutative ring with unity, and let X be a nonempty subset of R. We say that d is
a greatest common divisor of X if and only if

(i) For every x ∈ X, d | x; and
(ii) If c ∈ R is such that c | x for all x ∈ X, then c | d.
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Prove that if R is a commutative principal ideal ring with unity, then every nonempty (possibly
infinite) set of elements of R has a greatest common divisor.

Proof. Let X be a nonempty subset of R, and let (X) be the ideal generated by X. Since R is a
principal ideal ring, then there exists d ∈ R such that (X) = (d) = Rd (the last equality because
R is commutative with unity).

We prove that d is a greatest common divisor of X. If x ∈ X, then x ∈ X ⊆ (X) = (d) = Rd, so
there exists a ∈ R such that x = ad. Thus, d | x.
Now let c ∈ R be such that c | x for all x ∈ X. Then x ∈ (c) for all x ∈ X, then X ⊆ (c), and
thus (d) = (X) ⊆ (c). Since (d) ⊆ (c), we have c | d, as required.
Thus, d is a greatest common divisor of X, as desired. □

6. Let R be a commutative ring with unity. Show that if x ∈ R is nilpotent, then 1R −x and 1R +x
are both units.

Proof. Let x be nilpotent, and let n ≥ 1 be such that xn = 0. If n = 1, then x = 0, so 1R−x = 1R
is a unit. If n > 1, then

(1R−x)(1R+x+x2+ · · ·+xn−1) = (1R+x+x2+ · · ·+xn−1)−(x+x2+ · · ·+xn) = 1R−xn = 1R,

so 1R − x is a unit. To finish, note that if x is nilpotent then so is −x, and therefore by what we
have just shown it follows that 1R − (−x) = 1R + x is a unit. □

7. Let R be a commutative ring, and let A ⊆ R. Let

√
A = {r ∈ R | there exists n > 0 such that rn ∈ A}.

Prove that if I is an ideal of R, then
√
I is an ideal of R that contains I. The ideal

√
I is called

the radical of I.

Proof. Note that
√
I is nonempty, since I ⊆

√
I.

Let a, b ∈
√
I. Then there exists n,m > 0 such that an ∈ I and bm ∈ I. Then

(a− b)n+m = an+m + (−1)n+mbn+m +

n+m−1∑
j=1

(
n+m

j

)
ajbn+m−j .

Since n,m > 0 and I is an ideal, then an+m = anam ∈ I, and bn+m = bnbm ∈ I. If j ≤ n, then
n+m− j ≥ m, so bn+m−j ∈ I, and if j > n then aj ∈ I. Hence, every summand in the expression
lies in I.

Thus, (a− b)n+m ∈ I, which proves that a− b ∈
√
I. Thus,

√
I is a subgroup of R.

Now let a ∈
√
I and r ∈ R. We need to show that ra ∈

√
I. Since a ∈

√
I, there exists n > 0

such that an ∈ I. Then (ra)n = rnan ∈ I (since I is an ideal), so ra ∈
√
I. This proves that

√
I

is an ideal. □

8. Let R be a commutative ring with unity. Show that
√
(0) is the ideal of all nilpotent elements of R

(we proved the set of all nilpotent elements is an ideal in Homework 3) and that it is contained
in every prime ideal of R.

Proof. If a is nilpotent, then an = 0 for some n ≥ 1, so by definition we have a ∈
√
(0).

Conversely, if a ∈
√
(0), then there exists n ≥ 1 such that an ∈ (0) = {0}, so a is nilpotent. Thus,√

(0) is the ideal of all nilpotent elements of R.

To prove it is contained in every prime ideal of R, note that if P is a (completely) prime ideal
in a (not necessarily commutative) ring R, and an ∈ P for some n ≥ 1, then a ∈ P . Indeed,
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inductively, if n = 1 then a ∈ P ; and if ak ∈ P implies a ∈ P , and ak+1 ∈ P , then aak ∈ P , so
either a ∈ P or ak ∈ P and hence a ∈ P .

Now let a be a nilpotent element of R and P a prime ideal of R. Since R is commutative, P is
completely prime. Since a is nilpotent, then an = 0 for some n ≥ 1; thus, an ∈ P , hence a ∈ P .
This shows every nilpotent element is contained in every prime ideal of R, so

√
(0) ⊆ P for all

prime ideals P . □
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