
Math 566 - Homework 3
Solutions

Prof Arturo Magidin

1. Let R and S be rings, and let f : R → S be a ring homomorphism. Prove that if Q is a completely
prime ideal of S that does not contain f(R), then f−1(Q) is a completely prime ideal of R that
contains ker(f).

Proof. Since Q is an ideal of S, f−1(Q) is both an additive subgroup (inverse image of a
subgroup is a subgroup), and a multiplicative subsemigroup (inverse image of a subsemigroup
is a subsemigroup). To verify it is an ideal, let x ∈ f−1(Q) and r ∈ R, Then f(x) ∈ Q, and
f(rx) = f(r)f(x) ∈ Q, since Q is an ideal; therefore, rx ∈ f−1(Q). Similarly for xr ∈ Q. So
f−1(Q) is an ideal. Since Q does not contain f(R), then f−1(Q) ̸= R.

Let a, b ∈ R be such that ab ∈ f−1(Q). We want to show that either a ∈ f−1(Q) or b ∈ f−1(Q).
We have f(a)f(b) = f(ab) ∈ Q; since Q is completely prime in S, this means that f(a) ∈ Q or
f(b) ∈ Q. And in turn this implies that either a ∈ f−1(Q) or b ∈ f−1(Q). This proves that
f−1(Q) is a completely prime ideal of R.

2. Let R1, R2, . . . , Rn be rings with unity, and let I be an ideal of R1 × · · · ×Rn. Prove that there
exist ideals Ji ◁ Ri, i = 1, . . . , n, such that I = J1 × · · · × Jn.

Note: This result is not true for groups and normal subgroups. For example, if G = Z2 × Z2 is
the Klein 4-group, then the subgroup {(0, 0), (1, 1)} is a normal subgroup that is not of the form
M ×N with M,N ◁ Z2.

Proof. Let I be an ideal of R1×· · ·×Rn, and let Jk = πk(I). This is the image of an ideal under
a surjective homomorphism, hence Jk is certainly an ideal of Rk for each k.

Since πk(I) = Jk, it follows that I ⊆ J1 × · · · × Jn.

To prove the reverse inclusion, first note that if a ∈ Jk, then there exists an element (a1, . . . , an) in
I with ak = a. Multiplying by the element that has 1rk in the kth component and zeros elsewhere,
we obtain an element of the form (0, . . . , 0, ak, 0, . . .) ∈ I.

Next, let (a1, . . . , an) ∈ J1 × · · · × Jn. For each k, let mk ∈ I be the element that has ak in the
kth component and 0 elsewhere, constructed as above. Then,

(a1, . . . , an) = m1 + · · ·+mn ∈ I,

which proves that J1 × · · · × Jn ⊆ I, and yields the desired equality. □

3. Let R be a ring, not necessarily commutative, and let n ≥ 1. Then Mn(R), the group of n × n
matrices with coefficients in R, is a ring with the usual matrix multiplication. (You may take this
for granted). Let J be a two-sided ideal of R. Prove that Mn(J) is an ideal of Mn(R).

Proof. If (aij), (bij), and (rij) are matrices, rij ∈ R, aij , bij ∈ J . Then (aij)− (bij) = (aij − bij)
is in Mn(J), so Mn(J) is a subgroup of S.

The (i, j)th entry of (aij)(rij) is ai1r1j + · · · + ainrnj . Each of aikrkj lies in J , because J is an
ideal; hence their sum lies in J . Thus, every entry of (aij)(rij) is an element of J , so the product
lies in Mn(J).

Similarly, the (i, j)th entry of (rij)(aij) is ri1a1j + ri2a2j + · · · + rinanj , which lies in J because
each akj is in J . Thus, (rij)(aij) ∈ Mn(J). We have then shown that Mn(J) is an ideal of S. □

4. Let R be a ring with unity, and let S = Mn(R). Let J be a two-sided ideal of S. We will prove
that J = Mn(I) for some two-sided ideal I of R.
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(i) Let Ers be the matrix that has 1R in the (r, s) entry and 0s elsewhere. Show that ErsA is
the matrix that has the sth row of A in the rth row, and zeros elsewhere. Give a similar
description of AErs and prove that description holds.

Proof. If the (i, j)th entry of Ers is denoted by eij , then we have eij = 0 unless i = r and
j = s, in which case ers = 1. Thus, the (k, ℓ) entry of ErsA is

ek1a1ℓ + · · ·+ eknanℓ =

{
0 if k ̸= r,
asℓ if k = r.

Thus, every row is 0, except perhaps for the rth row; and that row is (as1, . . . , asn), which
is the sth row of A.

Next, proceeding as above, the (k, ℓ) entry of AErs is

ak1e1ℓ + · · ·+ aknenℓ =

{
0 if ℓ ̸= s,
akr if ℓ = s.

.

Thus, the ℓth column is 0, except perhaps when ℓ = s, in which case we get (a1r, . . . , anr)
t,

the rth column of A. That is, AErs has the rth column of A in the sth column, and 0s
elsewhere. □

(ii) Let I be the subset of all elements of R that appear as an entry of some element of J . Show
that I is an ideal of R.

Proof. The set I is nonempty, since the zero matrix lies in J and so 0 ∈ I.

Let a, b ∈ I. Then there exists a matrixMa ∈ J that has a in some entry, say the (i, j)th entry.
Multiplying on the left by E1i and on the right by Ej1, we get the matrix E1iMaEj1 ∈ J . The
matrix E1iMa has the ith row of Ma in the first row and zeros elsewhere, and (E1iMa)Ej1

has the jth column of E1iMa (which has aij in the top entry and zeros elsewhere) in the
first column. that is, E1iMaEj1 is a matrix that as aij = a in the (1, 1) entry, and zeros
elsewhere.

Similarly, there is a matrix Mb ∈ J with b in some entry, say (r, s); then E1rMbEs1 ∈ J has
b in the (1, 1) entry, and zeros elsewhere.

Now, (E1iMaEj1)− (E1rMbEs1) is an element of J , which has a− b in the (1, 1) entry; that
means that a− b ∈ I. Thus, I is nonempty and closed under differences, so I is a subgroup
of R.

If r ∈ R and M ∈ J , then (rI)M is obtained from M by multiplying every entry by r on the
left; and M(rI) is the matrix that is obtained from M by multiplying every entry by r on
the right. They both lie in J , since J is an ideal and M ∈ J ; hence if a ∈ I, then ra, ar ∈ I.
Thus, I is a two-sided ideal, as claimed. □

(iii) Show that a ∈ I if and only if there exists a matrix M in J such that a is the (1, 1) entry of
M , and all other entries of M are 0.

Proof. We proved above, inter alia (“among other things”) that if a ∈ I, and Ma is a
matrix in J that has a in the (i, j)th entry, then E1iMaEj1 has a in the (1, 1) entry and
zeros elsewhere, and lies in J . The converse comes from the definition of I. □

(iv) Prove that J = Mn(I).

Proof. Clearly J ⊆ Mn(I), since every entry of a matrix in J lies in I by definition.

Conversely, let M = (mij) ∈ Mn(I). Then for each (i, j), mij ∈ I, so from (iii) we know that
there is a matrix Mmij

∈ J that has mij in the (1, 1) coordinate. Then A(i, j) = Ei1Mmij
E1j

has mij in the (i, j)th coordinate, 0s elsewhere. and lies in J . Therefore,

M = A(1, 1) +A(1, 2) + · · ·+A(n, n) ∈ J,

proving that Mn(I) ⊆ J and establishing the desired result. □
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5. Show that if R is a division ring, n ≥ 1, and S = Mn(R), then the zero ideal of S is a prime ideal.
Show that if n > 1, then the zero ideal is not completely prime.

Proof. If R is a division ring, then the only ideals of R (two-sided or one-sided) are (0) and R
itself: because if I is an ideal an a ̸= 0, a ∈ I, then 1R = aa−1 = a−1a ∈ I.

From Problem 4 we conclude that the only ideals of S are the zero ideal, and S = Mn(R). Thus,
the only possible products of ideals are (0)(0) = (0), (0)S = (0), S(0) = (0), and SS = S.

Hence, if A and B are ideals of S such that AB ⊆ (0), then either A = (0) or B = (0). This
proves that (0) is a prime ideal of S. Alternatively, (0) is a maximal ideal of S, and since S2 = S,
it follows that (0) is a prime ideal.

To show the ideal is not completely prime when n > 1, consider E12E12 (using the same notation
as in Problem 4). The product is 0, the (i, j)th entry is ei1e1j + · · ·+ einenj , and at least one of
the factors in each summand is 0. Thus, the product is 0 and so lies in the zero ideal, even though
E12 does not lie in the ideal. Therefore, the zero ideal is not completely prime. □

6. Let R = 2Z, the ring of even integers. Show that 4Z is a maximal ideal of R that is not a prime
ideal, and show that 6Z is both maximal and prime in R.

Proof. Note 4Z is maximal subgroup of 2Z: it has prime index, [2Z : 4Z] = 2; thus, it cannot
be properly contained in a proper ideal (which would be a subgroup). And since 4Z is an ideal
of Z contained in 2Z, it is also an ideal of 2Z. Thus, it is a maximal ideal of 2Z.
On the other hand, (2)(2) ∈ 4Z but 2 /∈ 4Z, so this ideal is not completely prime. As the ring is
commutative, being prime is equivalent to being completely prime, so this established the result.

For 6Z, it is an ideal of Z contained in R, so it is also an ideal of R, Since the index [2Z : 6Z] = 3,
it is a maximal subgroup, and hence is also a maximal ideal. Finally, it is a prime ideal because
if (2m)(2n) ∈ 6Z, then 3|4mn, and hence one of m and n is a multiple of 3; thus, at least one of
2m and 2n lie in 6Z. □
Note: If the ideal I is a maximal subgroup of the ring R, then I must be a maximal ideal as
well. However, it is possible for an ideal to be maximal and yet for the underlying subgroup to
not be maximal. For example, the trivial ideal in M2(R) is maximal by Problem 4, but the set of
all matrices with zero second row is a strictly larger proper additive subgroup.

7. Let R be a ring, not necessarily commutative, not necessarily with unity. Let f, g : Q → R be ring
homomorphisms. Prove that if f(n) = g(n) for all n ∈ Z, then f = g.

Proof. Let x
y ∈ Q, with x, y ∈ Z, y ̸= 0. We have:
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Therefore, f = g, as claimed. □

Remark: Note that we did not even use all the properties of homomorphisms, we only used the
fact that f and g are multiplicative homomorphisms; so this claim is also true for the semigroup
morphism Z ↪→ Q and any semigroup homomorphisms f, g : (Q, ·) → S that agree on Z.
This establishes that the inclusion Z ↪→ Q is right-cancellable when workign with rings and ring
homomorphisms; that is, it is an epimorphism even though it is not surjective. Which is one
reason why I don’t like to use “epimorphism” as a synonym for “surjective”.

Note: The argument above is called a “Zigzag argument”.

8. Let R be a ring, not necessarily commutative, not necessarily with unity. Prove that the following
are equivalent:

(a) Every left ideal ofR is finitely generated: if I is a left ideal ofR, then there exist a1, . . . , an ∈ I
such that I = (a1, . . . , an).

(b) R satisfies ACC (the Ascending Chain Condition) on left ideals: that is, if we have I1 ⊆ I2 ⊆
· · · ⊆ In ⊆ · · · an ascending chain of left ideals of R, then there exists n such that In = In+j

for all j ≥ 0.

(c) Every nonempty collection S of left ideals of R has maximal elements: if S is a nonempty
collection of left ideals of R, then there exists a left ideal M ∈ S such that for all left ideals
I ∈ S, if M ⊆ I then M = I.

Proof. One can prove this in the traditional “cyclic” fashion (say, prove that (a) implies (b), (b)
implies (c), and (c) implies (a)). However, some of the implications require the Axiom of Choice,
and I want to highlight which ones do, so I’m going to directly prove each of the six implications.

(a) =⇒ (b) (Does not require the Axiom of Choice) Let I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · be a chain of left
ideals, and let I = ∪∞

n=1In. We proved in class that I is a left ideal (when we proved that
maximal ideals exist, we showed that the union of a chain of left/right/2-sided ideals is a
left/right/2-sided ideal), and so by (i) there exist a1, . . . , ak ∈ I such that I = (a1, . . . , ak)ℓ.

For each j, there exists nj such that aj ∈ Inj
, since I is the union of the In and aj ∈ I. Let

n = max{n1, . . . , nk}; then Inj
⊆ In for all j, so aj ∈ In for j = 1, . . . k. Therefore,

I = (a1, . . . , ak)ℓ ⊆ In ⊆ ∪∞
j=1Ij = I.

So for every j ≥ 0, I = In ⊆ In+j ⊆ I; and hence In = In+j . □

(b) =⇒ (a) (Uses the Axiom of Choice) We prove this implication by contrapositive. Assume that I
is not finitely generated. Then for every finite subset X ⊆ I, the left ideal (X)ℓ does not
equal I, and hence the set I − (X)ℓ is nonempty. Using the Axiom of Choice, there is a
function f whose domain is the family of finite subsets of I, with the property that for every
finite subset X of I, f(X) ∈ I − (X)ℓ.
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We define an infinite strictly increasing chain of ideals as follows: let a1 = f(∅). Then let
a2 = f({a1}). Assuming we have defined a1, . . . , ak, let ak+1 = f({a1, . . . , ak}).
Now let Im = (a1, . . . , am)ℓ. By construction am+1 /∈ (a1, . . . , am)ℓ, so Im ⊊ Im+1. Thus, we
have an infinite strictly increasing chain of left ideals

I1 ⊊ I2 ⊊ · · · ⊊ Im ⊊ · · ·

which is what we needed to show. □

Remark. In fact, this only requires a weak form of the Axiom of Choice, known as the
Axiom of Dependent Choice:

Let X be a nonempty set, and let R be a binary relation on X with the property
that for all a ∈ X there exists a b ∈ X with aRb. Then there is a sequence {xn}∞n=1

of elements of X such that xnRxn+1 for all n ∈ N.
(c) =⇒ (a) (Does not require the Axiom of Choice) Let I be a left ideal, and let S be the collection

of all finitely generated left ideals that are contained in I. Since (0) ∈ S, the collection is
not empty. Thus, S has a maximal element M ; this is a finitely generated left ideal that is
contained in M . In particular, there exist a1, . . . , an ∈ M such that M = (a1, . . . , an)ℓ.

For every x ∈ I, the ideal (a1, . . . , an, x)ℓ is a finitely generated ideal contained in I,
so (a1, . . . , an, x)ℓ ∈ S. Since M ⊆ (a1, . . . , an, x), the maximality of M implies that
(a1, . . . , an, x)ℓ = M . Thus, x ∈ M .

Therefore, I ⊆ M ⊆ I, hence I = M , and so I is finitely generated, as claimed. □

(a) =⇒ (c) (Uses the Axiom of Choice) Let C be a chain in S. Then ∪C is a left ideal, as we proved in
class, and so is finitely generated: ∪C = (a1, . . . , an)ℓ. Arguing as we did in the proof that
(i) implies (ii), it follows that there exists I ∈ C such that (a1, . . . , an)ℓ = I, so (a1, . . . , an)ℓ
is in C ⊆ S. That means that the chain C has an upper bound (namely (a1, . . . , an)ℓ) which
is in S.

By Zorn’s Lemma, it follows that S has maximal elements, as claimed. □

(b) =⇒ (c) (Uses the Axiom of (Dependent) Choice) Assume that there is a nonempty collection S of
left ideals that does not have maximal elements. Let I1 ∈ S. Then I1 is not maximal in S,
so there exists I2 ∈ S such that I1 ⊊ I2. Assuming we have constructed I1 ⊊ I2 ⊊ · · · ⊊ In,
since In is not maximal in S there exists In+1 ∈ S such that In ⊊ In+1. Inductively, we
construct an infinite ascending chain of left ideals, so R does not satisfy the ACC. □

(c) =⇒ (b) (Does not require the Axiom of Choice). Let I1 ⊆ · · · ⊆ In ⊆ · · · be an ascending chain of
left ideals. Let S = {Ik | k ≥ 1}. This is a nonempty collection of left ideals, hence it has a
maximal element IN . If j ≥ 0, then IN ⊆ IN+j , so by maximality of IN we have IN = IN+j ,
as desired. □
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