
Math 566 - Homework 2
Solutions

Prof Arturo Magidin

1. Let (R,+, ·) be a ring, and let (Rop,+, ◦) be the opposite ring, as in Homework 1, Problem 1. Let
I be a subset of R. Show that I is a left (resp. right) ideal of (R,+, ·) if and only if I is a right
(resp. left) ideal of (Rop,+, ◦)
Proof. Note that I is a subgroup of (R,+) if and only if it is a subgroup of (Rop,+). So we may
restrict our attention to subsets that are subgroups of R.

Assume that I is a left ideal of R. It is a subgroup of Rop because the additive structure has not
changed. Now if x ∈ I and r ∈ R, then x ◦ r = rx ∈ I, because I is a left ideal of R. Therefore, I
is a right ideal of Rop. Conversely, if I is a right ideal of Rop, x ∈ I, and r ∈ R, then rx = x◦r ∈ I
because I is a right ideal of Rop, so I is a left ideal of R.

Since (Rop)op = R, the statement about right ideals of R now follows. □

2. Let R be a ring, and let X be a set. Let RX be the set of all functions f : X → R. Define addition
and multiplication in RX by

(f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x)

where the operations on the right hand side are the operations of R.

(i) Prove that RX with these operations is a ring.

Proof. The ring R has underlying set that can be thought of as the product
∏

x∈X R, which
is the set of all functions from X to R. This is an abelian group under coordinate-wise
addition, which corresponds to pointwise addition; and is a semigroup under coordinatewise
multiplication, which corresponds to pointwise multiplication. So the only thing that we
need to check is that the product distributes over the sum.

Indeed, given f, g, h ∈ RX , and x ∈ X, we have(
f(g + h)

)
(x) = f(x)(g + h)(x) = f(x)(g(x) + h(x)) = f(x)g(x) + f(x)h(x)

= (fg)(x) + (fh)(x) =
(
fg + fh

)
(x),(

(g + h)f
)
(x) = (g + h)(x)f(x) = (g(x) + h(x))f(x) = g(x)f(x) + h(x)f(x)

= (gf)(x) + (hf)(x) =
(
gf + hf

)
(x).

Thus, we have a ring. □

(ax)
(
(bx) + (cx)

)
= (ax)(bx + cx) =

(
ax(bx + cx)

)
=

(
axbx + axcx

)
= (ax)(bx) + (ax)(cx),

and similarly for (ax + bx)(cx) = (ax)(cx) + (bx)(cx). □

(ii) Prove that RX is commutative if and only if R is commutative or X is empty.

Proof. If X is empty, then RX = {∅} is the one element ring, which is commutative. If
X ̸= ∅ and R is commutative, then given f, g ∈ RX we have that for all x ∈ X,

(fg)(x) = f(x)g(x) = g(x)f(x) = (gf)(x),

and therefore that fg = gf . Thus, RX is commutative.

Conversely, if X is nonempty and RX is commutative, let a, b ∈ R. The constant functions
a,b : X → R given by a(x) = a and b(x) = b lie in RX . Let x ∈ X; then

ab = a(x)b(x) = (ab)(x) = (ba)(x) = b(x)a(x) = ba,

so ab = ba and hence R is commutative. □
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(iii) Prove that RX has a unity if and only if R has a unity or X is empty.

Proof. If X is empty then RX is the one element ring, which has unity equal to the additive
identity. So assume X ̸= ∅.

If R has a unity, let 1 ∈ RX be the constant function 1(x) = 1R. Then for all f ∈ RX and
all x ∈ X, we have

f(x) = f(x)1R = f(x)1(x) = (f1)(x),

so f = f1; symmetrically,

f(x) = 1Rf(x) = 1(x)f(x) = (1f)(x),

so f = f1 = 1f , proving that 1 is the unity of RX .

Conversely, let 1 be the unity of RX , and let x ∈ X. I claim that 1(x) ∈ R is the unity of R.
Indeed, let a ∈ R and let a be the constant function with value a. Then

a = a(x) = a1(x) = a(x)1(x) = a1(x),

and
a = a(x) = 1a(x) = 1(x)a(x) = 1(x)a,

so 1(x) is the unity of RX , as claimed. □

3. Let R and S be rings with unity, and let f : R → S be a ring homomorphism; recall that we do
not require ring homomorphisms to be unital unless we specify that they are.

(i) Show that if 1S ∈ Im(f), then f(1R) = 1S .

Proof. Let r ∈ R be such that f(r) = 1S . Then

1S = f(r) = f(r1R) = f(r)f(1R) = 1Sf(1R) = f(1R). □

(ii) Prove that if there exists u ∈ R such that f(u) is a unit in S, then f(1R) = 1S .

Proof. Let v ∈ S be such that vf(u) = f(u)v = 1S . If s ∈ S, then

f(u)1S = f(u) = f(u1R) = f(u)f(1R).

Now multiplying on the left by v we have vf(u)1S = vf(u)f(1R). Since vf(u) = 1S , we
deduce 1S = f(1R), as claimed. □

4. Let p be a prime number.

(i) Prove that if 1 ≤ k ≤ p− 1, then
(
p
k

)
is a multiple of p.

Proof. Note that
(
p
k

)
= p!

k!(p−k)! . Since k ≤ p−1, all factors of k! are strictly smaller than p;

and since k ≥ 1, all factors of (p − k)! are strictly smaller than p. Thus, the factor of p in

the numerator does not cancel, so
(
p
k

)
= p!

k!(p−k)! = p
(

(p−1)!
k!(p−k)!

)
, with both factors integers.

Thus,
(
p
k

)
is divisible by p. □

(ii) The Freshman’s Dream. Let R be a commutative ring with identity such that we have
char(R) = p. Prove that for all a, b ∈ R and positive integers n, (a+ b)p

n

= ap
n

+ bp
n

.

Proof. Induction on n. If n = 1, we have

(a+ b)p = ap +

p−1∑
k=1

(
p

k

)
akbp−k + bp.
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Since char(R) = p, px = 0 for all x ∈ R. Therefore
(
p
k

)
akbp−k = 0 if 1 ≤ k ≤ p − 1, and we

get (a+ b)p = ap + bp, as claimed.

Assuming the result holds for n, we have

(a+ b)p
n+1

=
(
(a+ b)p

n
)p

= (ap
n

+ bp
n

)p = (ap
n

)p + (bp
n

)p = ap
n+1

+ bp
n+1

,

as claimed. □

5. Let R be a ring. An element r ∈ R is nilpotent if and only if there exists a positive integer n such
that rn = 0.

(i) Show that if R is commutative, then the set of all nilpotent elements of R is an ideal of R.

Proof. Let N be the set of all nilpotent elements. It is nonempty, since 0 ∈ N . If a, b ∈ N ,
let n > 0 be such that an = 0, and let m > 0 be such that bm = 0. Then

(a− b)n+m = an+m +

n+m−1∑
k=1

(
n+m

k

)
(−1)kan+m−kbk + (−1)n+mbn+m.

The first and last term are equal to 0, because the exponents of a and b are larger than n
and m, respectively. If 1 ≤ k ≤ m, then an+m−k = 0; if m < k ≤ n+m, then bk = 0. Thus,
each term in the sum is equal to 0 as well. So (a− b)n+m = 0, proving that N is a subgroup
of R.

Finally, if a ∈ N and r ∈ R, let n > 0 be such that an = 0. Then

(ra)n = rnan = rn0 = 0.

Thus, N is an ideal, as claimed. (We only need to check one side because R is commuta-
tive.) □

(ii) Give an example of a ring R and elements a and b of R such that each of a and b are nilpotent,
but neither ab nor a+ b are nilpotent. Hint: Try 2× 2 matrices.

Proof. Of course there are many possible examples. Here is one. Let R = M2(R) be the
ring of 2× 2 matrices with coefficients in R, and let

a =

(
0 1
0 0

)
and b =

(
0 0
1 0

)
.

Then a2 = b2 = 0. However, we have that

a+ b =

(
0 1
1 0

)
and ab =

(
1 0
0 0

)
.

Note that a + b is invertible, hence cannot be nilpotent (in fact, (a + b)2 = I2). As for ab,
ab ̸= 0, but (ab)2 = ab, so ab cannot be nilpotent either. Thus, the set of nilpotent matrices
in R is not an ideal, subring, or even a subgroup. □

6. Given a function f : R → R, the support of f is the set

supp(f) = {r ∈ R | f(r) ̸= 0}.

We say f has compact support if and only if there exists N > 0 such that supp(f) ⊆ [−N,N ].

Let R be the ring of all functions f : R → R with pointwise addition and multiplication.
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(i) Let S be the set of all elements of R that are continuous and have compact support. Prove
that S is a subring of R.

Proof. Note that S is nonempty, since the function f(x) = 0 for all x lies in S.

We know that the sum, difference, and product of continuous functions is continuous. We
just need to verify that the property of having compact support is also respected. Let f
and g be continuous with compact support. Let N,M > 0 be such that supp(f) ⊆ [−N,N ]
and supp(g) ⊆ [−M,M ]. Let K = max{N,M}. For x ∈ R, if |x| > K then f(x) = g(x) = 0.
Thus, supp(f − g), supp(fg) ⊆ [−K,K], proving that both the difference and product of
elements of S is in S. Thus, S is a subring of R. □

(ii) Prove that S does not have an identity, but nonetheless S2 = S.

Proof. Careful; it is not enough to show that the unity of R does not lie in S, since we know
that a subring could have a unity different from the unity of R.

So, first, let us prove that S does not have a unity. To that end, we show that if f ∈ S and
f ̸= 0, then there exists g ∈ S such that g ̸= 0 but fg = 0. This will show that f cannot be
a unity of S.

Let f ∈ S, f ̸= 0. There exists N such that supp(f) ⊆ [−N,N ].

Now let g be the function given by

g(x) =


0 if x ≤ N + 1
x− (N + 1) if N + 1 ≤ x ≤ N + 2
N + 3− x if N + 2 ≤ x ≤ N + 3
0 if x ≥ N + 3.

Then g ̸= 0, but fg = 0 since supp(f) ∩ supp(g) = ∅.

On the other hand, let h ∈ S be given by

h(x) =


0 if x ≤ −(N + 1)
x+N + 1 if − (N + 1) ≤ x ≤ −N
1 if −N ≤ x ≤ N
N + 1− x if N ≤ x ≤ N + 1
0 if N + 1 ≤ x.

Then h(x) = 1 for all x ∈ [−N,N ], so hf = f . In particular, since hf ∈ S2, it follows that
f ∈ S2.

Since f was nonzero and arbitrary, we have that S ⊆ S2, and hence that S2 = S even though
S does not have a unity. □

(iii) Prove that S is not an ideal of R.

Proof. The problem here is not the compact support, but the continuity. For example, let

f(x) =

{
1− |x| if − 1 ≤ x ≤ 1,
0 otherwise.

This function lies in S. Now let g(x) = 1 if x ≥ 0 and g(x) = −1 if x < 0; this function lies
in R. Then

(fg)(x) =


0 if x < −1,
−1− x if − 1 ≤ x < 0
1− x if 0 ≤ x ≤ 1
0 if 1 < x.

In particular, (fg)(0) = 1, but as we approach 0 from the left the limit equals −1; that is,
fg is not continuous at 0, and so is not an element of S. □
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