Math 566 - Homework 10 SOLUTIONS Prof Arturo Magidin

1. Let K be an extension of F, and let $u \in K$. Show that if u is the root of a monic polynomial $x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in K[x]$, and each a_i is algebraic over F, then u is algebraic over F.

Proof. Let $F_{-1} = F$, $F_0 = F(a_0)$, $F_1 = F(a_0, a_1)$, ..., $F_n = F(a_0, \ldots, a_n)$. Since each a_i is algebraic over F, they are algebraic over F_{i-1} . And since $F_i = F_{i-1}(a_i)$, with a_i algebraic over F_{i-1} , then $[F_i : F_{i-1}]$ is finite for $i = 0, \ldots, n$.

Moreover, u is algebraic over F_n , so $[F_n(u) : F_n]$ is finite.

Thus, we have that

$$[F_n(u):F] = [F_n(u):F_n][F_n:F_{n-1}]\cdots[F_0:F] < \infty.$$

Thus, $F_n(u)$ is finite dimensional over F, and therefore algebraic over F. That means that every element of $F_n(u)$, and in particular u, is algebraic over F. \Box

- 2. Let K be an extension of F, and let L and M be intermediate extensions (so $F \subseteq L \subseteq K$ and $F \subseteq M \subseteq K$).
 - (i) Prove that $[LM:M] \leq [L:L \cap M]$.

Proof. Let $\mathcal{B} = \{\ell_i\}_{i \in I}$ be a basis for L over $L \cap M$. Note that $\mathcal{B} \subseteq L \subseteq LM$.

We prove that this set spans LM over M; this will prove that this collection contains a basis for LM over M, and therefore that the dimension of LM over M is at most the dimension of L over $L \cap M$.

First, let $u \in L$. Then we know that u is in the $(L \cap M)$ -span of \mathcal{B} . Thus, there exist $i_1, \ldots, i_m \in I$, and $a_1, \ldots, a_m \in L \cap M$ such that

$$u = a_1 \ell_{i_1} + \dots + a_m \ell_{i_m}.$$

Since the a_i also lie in M, we have that u lies in the M-span of \mathcal{B} .

This proves that $L \subseteq \operatorname{span}_M(\mathcal{B})$. In particular, 1 lies in the span, and hence so does the span of 1 over M, which is M. Thus, $M, L \subseteq \operatorname{span}_M(\mathcal{B})$.

Look at LM as LM = M(L). If every element of L is algebraic over M, then this is equal M[L], and since we can obtain any element of L and every element of M as M-linear combinations of \mathcal{B} , we can also obtain any power of elements of L and products of elements of L. Thus, any polynomial expression $p(\ell_1, \ldots, \ell_k)$ with coefficients in M and $\ell_i \in L$ is expressible as an M-linear combination of elements of \mathcal{B} .

If there are element of L, x_1, \ldots, x_n that are transcendental over M, then they are also transcendental over $M \cap L$. So any rational expression with coefficients in M can be expressed as an M-linear combination of rational expressions with coefficients in $L \cap M$, which were already expressible in terms of \mathcal{B} . Thus, the M-span of \mathcal{B} will yield every element of M(L). Thus, $ML \subseteq \operatorname{span}_M(\mathcal{B})$. On the other hand, every element of \mathcal{B} lies in L, so $\operatorname{span}_M(\mathcal{B}) \subseteq$ M(L). Hence we have equality.

Therefore, $[LM:M] \leq |\mathcal{B}| = [L:L \cap M]$, proving the desired inequality. \Box

(ii) Conclude that $[LM:M] \leq [L:F]$.

Proof. Note that $F \subseteq L \cap M$. Thus, $[L \cap M : F] \ge 1$, so

$$[LM:M] \le [L:L \cap M] \le [L:L \cap M][L \cap M:F] = [L:F],$$

as desired. \Box

- 3. Let K be an extension of F, and let $u, v \in K$ be algebraic over F with [F(u) : F] = n and [F(v) : F] = m.
 - (i) Prove that $[F(u, v) : F] \le nm$. **Proof.** Note that

$$[F(u, v) : F] = [F(u, v) : F(u)][F(u) : F].$$

We know that [F(u):F] = n. Let L = F(v) and M = F(u). Then Problem 2(ii) says that $[F(u,v):F(u)] \leq [F(v):F] = m$. So we have

$$[F(u,v):F] = [F(u,v):F(u)][F(u):F] \le [F(v):F][F(u):F] = nm,$$

as desired. \Box

(ii) Show that if gcd(m, n) = 1, then [F(u, v) : F] = nm. **Proof.** We have

$$[F(u,v):F] = [F(u,v):F(u)][F(u):F] = n[F(u,v):F(u)],$$

so $n \mid [F(u,v):F]$. Symmetrically, we have $m \mid [F(u,v):F]$. Therefore, we know that $lcm(m,n) \mid [F(u,v):F]$.

Since gcd(m, n) = 1, we have lcm(m, n) = mn. So we know that mn divides [F(u, v) : F]. On the other hand, part (i) shows that [F(u, v) : F] is at most mn. Hence, [F(u, v) : F] = mn, as claimed. \Box

- 4. Let K be a finite dimensional extension of F and let L and M be intermediate extensions.
 - (i) Show that if [LM : F] = [L : F][M : F], then $L \cap M = F$. **Proof.** Proceeding as in Problem 2, we have

$$\begin{split} [LM:F] &= [LM:M][M:F] \leq [L:L \cap M][M:F] \\ &\leq [L:L \cap M][L \cap M:F][M:F] \\ &= [L:F][M:F] = [LM:F]. \end{split}$$

Since we have equality, that means that $[L: L \cap M] = [L: L \cap M][L \cap M: F]$, and therefore we have $[L \cap M: F] = 1$. That means that $L \cap M = F$. \Box

(ii) Show that if [L:F] = 2 or [M:F] = 2, and $L \cap M = F$, then we will have [LM:F] = [L:F][M:F].

Proof. Assume first that [L:F] = 2. Since $[LM:M] \le [L:L \cap M] = [L:F] = 2$, it follows that either [LM:M] = 1 or [LM:M] = [L:F] = 2.

But [LM:M] = 1 implies that LM = M, so $L \subseteq M$. Therefore, $F = L \cap M = L$, which is impossible since [L:F] = 2. Therefore, [LM:M] = [L:F] = 2. So

$$[L:F][M:F] = [LM:M][M:F] = [LM:F],$$

as desired. The case where [M:F] = 2 follows symmetrically. \Box

(iii) Use a real and a nonreal cube root of 2 to give an example of a finite dimensional extension K of \mathbb{Q} , and intermediate fields L and M, such that $L \cap M = \mathbb{Q}$ and $[L : \mathbb{Q}] = [M : \mathbb{Q}] = 3$, but $[LM : \mathbb{Q}] < 9$.

Proof. Let $L = \mathbb{Q}[\sqrt[3]{2}]$; let ω be a (complex) primitive cubic root of unity, and let $M = \mathbb{Q}[\omega\sqrt[3]{2}]$. Since both $\sqrt[3]{2}$ and $\omega\sqrt[3]{2}$ are roots of the irreducible polynomial $x^3 - 2$, there is an isomorphism $\phi: L \to M$ that restricts to the identity on \mathbb{Q} and maps $\sqrt[3]{2}$ to $\omega\sqrt[3]{2}$;

in particular, $[L:\mathbb{Q}] = [M:\mathbb{Q}] = 3$. Since $L \neq M$, and $\mathbb{Q} \subseteq L \cap M \subseteq M$ with $[M:\mathbb{Q}] = 3$ a prime number, we must have $L \cap M = \mathbb{Q}$.

But $LM = \mathbb{Q}(\sqrt[3]{2}, \omega)$. Note that ω is a root of $x^2 + x + 1$, as it is a root of the polynomial $x^3 - 1 = (x - 1)(x^2 + x + 1)$ but is not 1. So letting $K = \mathbb{Q}(\omega)$, we have $[L : \mathbb{Q}] = 3$, $[K : \mathbb{Q}] = 2$, and hence by Problem 3(ii), $[KL : \mathbb{Q}] = 6$. Since KL = LM, we have $[LM : \mathbb{Q}] = 6 < 9$. \Box

5. Prove that $\mathbb{Q}(\sqrt{2})$ is not isomorphic to $\mathbb{Q}(\sqrt{3})$. NOTE: We know there is no isomorphism from $\mathbb{Q}(\sqrt{2})$ to $\mathbb{Q}(\sqrt{3})$ that sends $\sqrt{2}$ to $\sqrt{3}$; but this, in and of itself, does not preclude the possibility of an isomorphism where $\sqrt{2}$ is mapped to some other element of $\mathbb{Q}(\sqrt{3})$.

Proof. It is enough to show that $\mathbb{Q}(\sqrt{2})$ does not have an element α with $\alpha^2 = 3$. This, because any putative isomorphism $\varphi : \mathbb{Q}(\sqrt{3}) \to \mathbb{Q}(\sqrt{2})$ must send each rational to itself, so $(\varphi(\sqrt{3}))^2 = \varphi(\sqrt{3}^2) = \varphi(3) = 3$ would hold.

But this fact was proven in Homework 9 Problem 5(i), where we showed that $x^2 - 3$ is irreducible over $\mathbb{Q}(\sqrt{2})$.

Thus $\mathbb{Q}(\sqrt{2})$ cannot be isomorphic to $\mathbb{Q}(\sqrt{3})$. \Box

6. Let K be an extension of F, where char(F) $\neq 2$. Prove that [K : F] = 2 if and only if $K = F(\sqrt{d})$ for some $d \in F$ that is not a square in F.

Proof. If d is not a square, then \sqrt{d} is a root of the monic irreducible polynomial $x^2 - d$, so $[F(\sqrt{d}):F] = 2$, as desired.

Conversely, suppose that [K : F] = 2, a prime. Then $K \neq F$, so there exists $u \in K$ such that $u \notin F$. Since $F \subseteq F(u) \subseteq K$ and $u \notin F$, we must have F(u) = K.

Since [F(u): F] = 2, then $1, u, u^2$ are linearly dependent over F, but 1, u are linearly independent (because $u \notin F$). So there exist $a, b, c \in F$ such that

$$c + bu + au^2 = 0, \qquad a \neq 0$$

Let $d = b^2 - 4ac$. If $d = r^2$ for some $r \in F$, then since $char(F) \neq 2$, we have

$$a\left(u - \frac{-b+r}{2a}\right)\left(u - \frac{-b-r}{2a}\right) = a\left(u^2 - \frac{-2b}{2a}u + \frac{b^2 - r^2}{4a^2}\right) = au^2 + bu + c = 0.$$

Since $a \neq 0$, either $u = \frac{-b+r}{2a}$ or $u = \frac{-b-r}{2a}$, contradicting that $u \notin F$. That means that d is not a square in F. In particular, $[F(\sqrt{d}):F] = 2$.

We claim that $K = F(\sqrt{d})$. Indeed, the calculation we just did, with \sqrt{d} replacing r, shows that $u \in F(\sqrt{d})$, so $K = F(u) \subseteq F(\sqrt{d})$. On the other hand, we have

$$2 = [F(\sqrt{d}) : F] = [F(\sqrt{d}) : F(u)][F(u) : F] = 2[F(\sqrt{d}) : F(u)].$$

Therefore, $F(u) = F(\sqrt{d})$, as required. \Box

7. Let K be an extension of F where $char(F) \neq 2$. Prove that if [K : F] = 2, then K is Galois over F.

Proof. From Problem 6 we know that there exists $d \in F$, d not a square, such that $K = F(\sqrt{d})$. The elements of K can be written uniquely as $a + b\sqrt{d}$ with $a, b \in F$.

Since $\operatorname{char}(F) \neq 2$, the two roots of $x^2 - d$ are \sqrt{d} and $-\sqrt{d}$, which are distinct from each other. And there is an isomorphism $\sigma \colon F(\sqrt{d}) \to F(-\sqrt{d})$ such that $\sigma(a) = a$ for all $a \in F$, and $\sigma(\sqrt{d}) = -\sqrt{d}$. And since $F(\sqrt{d}) = F(-\sqrt{d})$, we have $\sigma \in \operatorname{Aut}_F(K)$.

Let $u = a + b\sqrt{d} \in K$. If $\sigma(u) = u$, then

$$a + b\sqrt{d} = u = \sigma(u) = a - b\sqrt{d}$$

Therefore, b = -b. Since $\operatorname{char}(F) \neq 2$, this means that b = 0, so $u \in F$. Thus, the fixed field of σ is F. Therefore, $F \subseteq (\operatorname{Aut}_F(K))' \subseteq \langle \sigma \rangle' = F$, so F is the fixed field of $\operatorname{Aut}_F(K)$. This proves that K is Galois over F, as claimed. \Box

- 8. Let K be a finite dimensional Galois extension of F, and let L and M be intermediate fields. Use the Fundamental Theorem of Galois Theory to prove the following:
 - (i) $\operatorname{Aut}_{LM}(K) = \operatorname{Aut}_{L}(K) \cap \operatorname{Aut}_{M}(K)$. **Proof.** Note that LM is the smallest field that contains L and M. By the correspondence clause of the Fundamental Theorem, that means that $\operatorname{Aut}_{LM}(K)$ is the *largest* subgroup that is *contained* in $\operatorname{Aut}_{L}(K)$ and in $\operatorname{Aut}_{M}(K)$. This is their intersection. \Box
 - (ii) $\operatorname{Aut}_{L\cap M}(K) = \langle \operatorname{Aut}_{L}(K), \operatorname{Aut}_{M}(K) \rangle$. **Proof.** Since $L \cap M$ is the largest intermediate field contained in both L and M, then $\operatorname{Aut}_{L\cap M}(K)$ is the smallest subgroup that contains both $\operatorname{Aut}_{L}(K)$ and $\operatorname{Aut}_{M}(K)$. This is the subgroup they generate. \Box