
Math 566 - Homework 10
Solutions

Prof Arturo Magidin

1. Let K be an extension of F , and let u ∈ K. Show that if u is the root of a monic polynomial
xn + an−1x

n−1 + · · ·+ a0 ∈ K[x], and each ai is algebraic over F , then u is algebraic over F .

Proof. Let F−1 = F , F0 = F (a0), F1 = F (a0, a1), . . ., Fn = F (a0, . . . , an). Since each ai is
algebraic over F , they are algebraic over Fi−1. And since Fi = Fi−1(ai), with ai algebraic over
Fi−1, then [Fi : Fi−1] is finite for i = 0, . . . , n.

Moreover, u is algebraic over Fn, so [Fn(u) : Fn] is finite.

Thus, we have that

[Fn(u) : F ] = [Fn(u) : Fn][Fn : Fn−1] · · · [F0 : F ] < ∞.

Thus, Fn(u) is finite dimensional over F , and therefore algebraic over F . That means that every
element of Fn(u), and in particular u, is algebraic over F . □

2. Let K be an extension of F , and let L and M be intermediate extensions (so F ⊆ L ⊆ K and
F ⊆ M ⊆ K).

(i) Prove that [LM : M ] ≤ [L : L ∩M ].

Proof. Let B = {ℓi}i∈I be a basis for L over L ∩M . Note that B ⊆ L ⊆ LM .

We prove that this set spans LM over M ; this will prove that this collection contains a basis
for LM over M , and therefore that the dimension of LM over M is at most the dimension
of L over L ∩M .

First, let u ∈ L. Then we know that u is in the (L ∩ M)-span of B. Thus, there exist
i1, . . . , im ∈ I, and a1, . . . , am ∈ L ∩M such that

u = a1ℓi1 + · · ·+ amℓim .

Since the ai also lie in M , we have that u lies in the M -span of B.
This proves that L ⊆ spanM (B). In particular, 1 lies in the span, and hence so does the span
of 1 over M , which is M . Thus, M,L ⊆ spanM (B).
Look at LM as LM = M(L). If every element of L is algebraic over M , then this is
equal M [L], and since we can obtain any element of L and every element of M as M -linear
combinations of B, we can also obtain any power of elements of L and products of elements
of L. Thus, any polynomial expression p(ℓ1, . . . , ℓk) with coefficients in M and ℓi ∈ L is
expressible as an M -linear combination of elements of B.
If there are element of L, x1, . . . , xn that are transcendental over M , then they are also
transcendental overM∩L. So any rational expression with coefficients inM can be expressed
as an M -linear combination of rational expressions with coefficients in L ∩ M , which were
already expressible in terms of B. Thus, the M -span of B will yield every element of M(L).

Thus, ML ⊆ spanM (B). On the other hand, every element of B lies in L, so spanM (B) ⊆
M(L). Hence we have equality.

Therefore, [LM : M ] ≤ |B| = [L : L ∩M ], proving the desired inequality. □

(ii) Conclude that [LM : M ] ≤ [L : F ].

Proof. Note that F ⊆ L ∩M . Thus, [L ∩M : F ] ≥ 1, so

[LM : M ] ≤ [L : L ∩M ] ≤ [L : L ∩M ][L ∩M : F ] = [L : F ],

as desired. □
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3. Let K be an extension of F , and let u, v ∈ K be algebraic over F with [F (u) : F ] = n and
[F (v) : F ] = m.

(i) Prove that [F (u, v) : F ] ≤ nm.

Proof. Note that
[F (u, v) : F ] = [F (u, v) : F (u)][F (u) : F ].

We know that [F (u) : F ] = n. Let L = F (v) and M = F (u). Then Problem 2(ii) says that
[F (u, v) : F (u)] ≤ [F (v) : F ] = m. So we have

[F (u, v) : F ] = [F (u, v) : F (u)][F (u) : F ] ≤ [F (v) : F ][F (u) : F ] = nm,

as desired. □

(ii) Show that if gcd(m,n) = 1, then [F (u, v) : F ] = nm.

Proof. We have

[F (u, v) : F ] = [F (u, v) : F (u)][F (u) : F ] = n[F (u, v) : F (u)],

so n | [F (u, v) : F ]. Symmetrically, we have m | [F (u, v) : F ]. Therefore, we know that
lcm(m,n) | [F (u, v) : F ].

Since gcd(m,n) = 1, we have lcm(m,n) = mn. So we know that mn divides [F (u, v) : F ]. On
the other hand, part (i) shows that [F (u, v) : F ] is at most mn. Hence, [F (u, v) : F ] = mn,
as claimed. □

4. Let K be a finite dimensional extension of F and let L and M be intermediate extensions.

(i) Show that if [LM : F ] = [L : F ][M : F ], then L ∩M = F .

Proof. Proceeding as in Problem 2, we have

[LM : F ] = [LM : M ][M : F ] ≤ [L : L ∩M ][M : F ]

≤ [L : L ∩M ][L ∩M : F ][M : F ]

= [L : F ][M : F ] = [LM : F ].

Since we have equality, that means that [L : L∩M ] = [L : L∩M ][L∩M : F ], and therefore
we have [L ∩M : F ] = 1. That means that L ∩M = F . □

(ii) Show that if [L : F ] = 2 or [M : F ] = 2, and L ∩M = F , then we will have [LM : F ] = [L :
F ][M : F ].

Proof. Assume first that [L : F ] = 2. Since [LM : M ] ≤ [L : L∩M ] = [L : F ] = 2, it follows
that either [LM : M ] = 1 or [LM : M ] = [L : F ] = 2.

But [LM : M ] = 1 implies that LM = M , so L ⊆ M . Therefore, F = L ∩M = L, which is
impossible since [L : F ] = 2. Therefore, [LM : M ] = [L : F ] = 2. So

[L : F ][M : F ] = [LM : M ][M : F ] = [LM : F ],

as desired. The case where [M : F ] = 2 follows symmetrically. □

(iii) Use a real and a nonreal cube root of 2 to give an example of a finite dimensional extension
K of Q, and intermediate fields L and M , such that L ∩M = Q and [L : Q] = [M : Q] = 3,
but [LM : Q] < 9.

Proof. Let L = Q[ 3
√
2]; let ω be a (complex) primitive cubic root of unity, and let

M = Q[ω 3
√
2]. Since both 3

√
2 and ω 3

√
2 are roots of the irreducible polynomial x3 − 2,

there is an isomorphism ϕ : L → M that restricts to the identity on Q and maps 3
√
2 to ω 3

√
2;
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in particular, [L : Q] = [M : Q] = 3. Since L ̸= M , and Q ⊆ L ∩M ⊆ M with [M : Q] = 3 a
prime number, we must have L ∩M = Q.

But LM = Q( 3
√
2, ω). Note that ω is a root of x2 + x + 1, as it is a root of the polynomial

x3−1 = (x−1)(x2+x+1) but is not 1. So lettingK = Q(ω), we have [L : Q] = 3, [K : Q] = 2,
and hence by Problem 3(ii), [KL : Q] = 6. Since KL = LM , we have [LM : Q] = 6 < 9. □

5. Prove that Q(
√
2) is not isomorphic to Q(

√
3). Note: We know there is no isomorphism from

Q(
√
2) to Q(

√
3) that sends

√
2 to

√
3; but this, in and of itself, does not preclude the possibility

of an isomorphism where
√
2 is mapped to some other element of Q(

√
3).

Proof. It is enough to show that Q(
√
2) does not have an element α with α2 = 3. This,

because any putative isomorphism φ : Q(
√
3) → Q(

√
2) must send each rational to itself, so

(φ(
√
3))2 = φ(

√
3
2
) = φ(3) = 3 would hold.

But this fact was proven in Homework 9 Problem 5(i), where we showed that x2− 3 is irreducible
over Q(

√
2).

Thus Q(
√
2) cannot be isomorphic to Q(

√
3). □

6. Let K be an extension of F , where char(F ) ̸= 2. Prove that [K : F ] = 2 if and only if K = F (
√
d)

for some d ∈ F that is not a square in F .

Proof. If d is not a square, then
√
d is a root of the monic irreducible polynomial x2 − d, so

[F (
√
d) : F ] = 2, as desired.

Conversely, suppose that [K : F ] = 2, a prime. Then K ̸= F , so there exists u ∈ K such that
u /∈ F . Since F ⊆ F (u) ⊆ K and u /∈ F , we must have F (u) = K.

Since [F (u) : F ] = 2, then 1, u, u2 are linearly dependent over F , but 1, u are linearly independent
(because u /∈ F ). So there exist a, b, c ∈ F such that

c+ bu+ au2 = 0, a ̸= 0.

Let d = b2 − 4ac. If d = r2 for some r ∈ F , then since char(F ) ̸= 2, we have

a

(
u− −b+ r

2a

)(
u− −b− r

2a

)
= a

(
u2 − −2b

2a
u+

b2 − r2

4a2

)
= au2 + bu+ c = 0.

Since a ̸= 0, either u = −b+r
2a or u = −b−r

2a , contradicting that u /∈ F . That means that d is not a

square in F . In particular, [F (
√
d) : F ] = 2.

We claim that K = F (
√
d). Indeed, the calculation we just did, with

√
d replacing r, shows that

u ∈ F (
√
d), so K = F (u) ⊆ F (

√
d). On the other hand, we have

2 = [F (
√
d) : F ] = [F (

√
d) : F (u)][F (u) : F ] = 2[F (

√
d) : F (u)].

Therefore, F (u) = F (
√
d), as required. □

7. Let K be an extension of F where char(F ) ̸= 2. Prove that if [K : F ] = 2, then K is Galois
over F .

Proof. From Problem 6 we know that there exists d ∈ F , d not a square, such that K = F (
√
d).

The elements of K can be written uniquely as a+ b
√
d with a, b ∈ F .

Since char(F ) ̸= 2, the two roots of x2 − d are
√
d and −

√
d, which are distinct from each other.

And there is an isomorphism σ : F (
√
d) → F (−

√
d) such that σ(a) = a for all a ∈ F , and

σ(
√
d) = −

√
d. And since F (

√
d) = F (−

√
d), we have σ ∈ AutF (K).

Let u = a+ b
√
d ∈ K. If σ(u) = u, then

a+ b
√
d = u = σ(u) = a− b

√
d.
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Therefore, b = −b. Since char(F ) ̸= 2, this means that b = 0, so u ∈ F .

Thus, the fixed field of σ is F . Therefore, F ⊆ (AutF (K))′ ⊆ ⟨σ⟩′ = F , so F is the fixed field of
AutF (K). This proves that K is Galois over F , as claimed. □

8. Let K be a finite dimensional Galois extension of F , and let L and M be intermediate fields. Use
the Fundamental Theorem of Galois Theory to prove the following:

(i) AutLM (K) = AutL(K) ∩AutM (K).

Proof. Note that LM is the smallest field that contains L and M . By the correspondence
clause of the Fundamental Theorem, that means that AutLM (K) is the largest subgroup
that is contained in AutL(K) and in AutM (K). This is their intersection. □

(ii) AutL∩M (K) =
〈
AutL(K),AutM (K)

〉
.

Proof. Since L ∩ M is the largest intermediate field contained in both L and M , then
AutL∩M (K) is the smallest subgroup that contains both AutL(K) and AutM (K). This is
the subgroup they generate. □
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