Math 566 - Homework 10
 Solutions
 Prof Arturo Magidin

1. Let K be an extension of F, and let $u \in K$. Show that if u is the root of a monic polynomial $x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in K[x]$, and each a_{i} is algebraic over F, then u is algebraic over F.
Proof. Let $F_{-1}=F, F_{0}=F\left(a_{0}\right), F_{1}=F\left(a_{0}, a_{1}\right), \ldots, F_{n}=F\left(a_{0}, \ldots, a_{n}\right)$. Since each a_{i} is algebraic over F, they are algebraic over F_{i-1}. And since $F_{i}=F_{i-1}\left(a_{i}\right)$, with a_{i} algebraic over F_{i-1}, then $\left[F_{i}: F_{i-1}\right]$ is finite for $i=0, \ldots, n$.

Moreover, u is algebraic over F_{n}, so $\left[F_{n}(u): F_{n}\right]$ is finite.
Thus, we have that

$$
\left[F_{n}(u): F\right]=\left[F_{n}(u): F_{n}\right]\left[F_{n}: F_{n-1}\right] \cdots\left[F_{0}: F\right]<\infty .
$$

Thus, $F_{n}(u)$ is finite dimensional over F, and therefore algebraic over F. That means that every element of $F_{n}(u)$, and in particular u, is algebraic over F.
2. Let K be an extension of F, and let L and M be intermediate extensions (so $F \subseteq L \subseteq K$ and $F \subseteq M \subseteq K)$.
(i) Prove that $[L M: M] \leq[L: L \cap M]$.

Proof. Let $\mathcal{B}=\left\{\ell_{i}\right\}_{i \in I}$ be a basis for L over $L \cap M$. Note that $\mathcal{B} \subseteq L \subseteq L M$.
We prove that this set spans $L M$ over M; this will prove that this collection contains a basis for $L M$ over M, and therefore that the dimension of $L M$ over M is at most the dimension of L over $L \cap M$.
First, let $u \in L$. Then we know that u is in the $(L \cap M)$-span of \mathcal{B}. Thus, there exist $i_{1}, \ldots, i_{m} \in I$, and $a_{1}, \ldots, a_{m} \in L \cap M$ such that

$$
u=a_{1} \ell_{i_{1}}+\cdots+a_{m} \ell_{i_{m}}
$$

Since the a_{i} also lie in M, we have that u lies in the M-span of \mathcal{B}.
This proves that $L \subseteq \operatorname{span}_{M}(\mathcal{B})$. In particular, 1 lies in the span, and hence so does the span of 1 over M, which is M. Thus, $M, L \subseteq \operatorname{span}_{M}(\mathcal{B})$.
Look at $L M$ as $L M=M(L)$. If every element of L is algebraic over M, then this is equal $M[L]$, and since we can obtain any element of L and every element of M as M-linear combinations of \mathcal{B}, we can also obtain any power of elements of L and products of elements of L. Thus, any polynomial expression $p\left(\ell_{1}, \ldots, \ell_{k}\right)$ with coefficients in M and $\ell_{i} \in L$ is expressible as an M-linear combination of elements of \mathcal{B}.
If there are element of L, x_{1}, \ldots, x_{n} that are transcendental over M, then they are also transcendental over $M \cap L$. So any rational expression with coefficients in M can be expressed as an M-linear combination of rational expressions with coefficients in $L \cap M$, which were already expressible in terms of \mathcal{B}. Thus, the M-span of \mathcal{B} will yield every element of $M(L)$. Thus, $M L \subseteq \operatorname{span}_{M}(\mathcal{B})$. On the other hand, every element of \mathcal{B} lies in L, so $\operatorname{span}_{M}(\mathcal{B}) \subseteq$ $M(L)$. Hence we have equality.
Therefore, $[L M: M] \leq|\mathcal{B}|=[L: L \cap M]$, proving the desired inequality.
(ii) Conclude that $[L M: M] \leq[L: F]$.

Proof. Note that $F \subseteq L \cap M$. Thus, $[L \cap M: F] \geq 1$, so

$$
[L M: M] \leq[L: L \cap M] \leq[L: L \cap M][L \cap M: F]=[L: F]
$$

as desired.
3. Let K be an extension of F, and let $u, v \in K$ be algebraic over F with $[F(u): F]=n$ and $[F(v): F]=m$.
(i) Prove that $[F(u, v): F] \leq n m$.

Proof. Note that

$$
[F(u, v): F]=[F(u, v): F(u)][F(u): F] .
$$

We know that $[F(u): F]=n$. Let $L=F(v)$ and $M=F(u)$. Then Problem 2(ii) says that $[F(u, v): F(u)] \leq[F(v): F]=m$. So we have

$$
[F(u, v): F]=[F(u, v): F(u)][F(u): F] \leq[F(v): F][F(u): F]=n m
$$

as desired.
(ii) Show that if $\operatorname{gcd}(m, n)=1$, then $[F(u, v): F]=n m$.

Proof. We have

$$
[F(u, v): F]=[F(u, v): F(u)][F(u): F]=n[F(u, v): F(u)]
$$

so $n \mid[F(u, v): F]$. Symmetrically, we have $m \mid[F(u, v): F]$. Therefore, we know that $\operatorname{lcm}(m, n) \mid[F(u, v): F]$.
Since $\operatorname{gcd}(m, n)=1$, we have $\operatorname{lcm}(m, n)=m n$. So we know that $m n \operatorname{divides}[F(u, v): F]$. On the other hand, part (i) shows that $[F(u, v): F]$ is at most $m n$. Hence, $[F(u, v): F]=m n$, as claimed.
4. Let K be a finite dimensional extension of F and let L and M be intermediate extensions.
(i) Show that if $[L M: F]=[L: F][M: F]$, then $L \cap M=F$.

Proof. Proceeding as in Problem 2, we have

$$
\begin{aligned}
{[L M: F]=[L M: M][M: F] } & \leq[L: L \cap M][M: F] \\
& \leq[L: L \cap M][L \cap M: F][M: F] \\
& =[L: F][M: F]=[L M: F]
\end{aligned}
$$

Since we have equality, that means that $[L: L \cap M]=[L: L \cap M][L \cap M: F]$, and therefore we have $[L \cap M: F]=1$. That means that $L \cap M=F$.
(ii) Show that if $[L: F]=2$ or $[M: F]=2$, and $L \cap M=F$, then we will have $[L M: F]=[L$: $F][M: F]$.
Proof. Assume first that $[L: F]=2$. Since $[L M: M] \leq[L: L \cap M]=[L: F]=2$, it follows that either $[L M: M]=1$ or $[L M: M]=[L: F]=2$.
But $[L M: M]=1$ implies that $L M=M$, so $L \subseteq M$. Therefore, $F=L \cap M=L$, which is impossible since $[L: F]=2$. Therefore, $[L M: M]=[L: F]=2$. So

$$
[L: F][M: F]=[L M: M][M: F]=[L M: F]
$$

as desired. The case where $[M: F]=2$ follows symmetrically.
(iii) Use a real and a nonreal cube root of 2 to give an example of a finite dimensional extension K of \mathbb{Q}, and intermediate fields L and M, such that $L \cap M=\mathbb{Q}$ and $[L: \mathbb{Q}]=[M: \mathbb{Q}]=3$, but $[L M: \mathbb{Q}]<9$.
Proof. Let $L=\mathbb{Q}[\sqrt[3]{2}]$; let ω be a (complex) primitive cubic root of unity, and let $M=\mathbb{Q}[\omega \sqrt[3]{2}]$. Since both $\sqrt[3]{2}$ and $\omega \sqrt[3]{2}$ are roots of the irreducible polynomial $x^{3}-2$, there is an isomorphism $\phi: L \rightarrow M$ that restricts to the identity on \mathbb{Q} and maps $\sqrt[3]{2}$ to $\omega \sqrt[3]{2}$;
in particular, $[L: \mathbb{Q}]=[M: \mathbb{Q}]=3$. Since $L \neq M$, and $\mathbb{Q} \subseteq L \cap M \subseteq M$ with $[M: \mathbb{Q}]=3$ a prime number, we must have $L \cap M=\mathbb{Q}$.
But $L M=\mathbb{Q}(\sqrt[3]{2}, \omega)$. Note that ω is a root of $x^{2}+x+1$, as it is a root of the polynomial $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$ but is not 1 . So letting $K=\mathbb{Q}(\omega)$, we have $[L: \mathbb{Q}]=3,[K: \mathbb{Q}]=2$, and hence by Problem 3(ii), $[K L: \mathbb{Q}]=6$. Since $K L=L M$, we have $[L M: \mathbb{Q}]=6<9$.
5. Prove that $\mathbb{Q}(\sqrt{2})$ is not isomorphic to $\mathbb{Q}(\sqrt{3})$. Note: We know there is no isomorphism from $\mathbb{Q}(\sqrt{2})$ to $\mathbb{Q}(\sqrt{3})$ that sends $\sqrt{2}$ to $\sqrt{3}$; but this, in and of itself, does not preclude the possibility of an isomorphism where $\sqrt{2}$ is mapped to some other element of $\mathbb{Q}(\sqrt{3})$.
Proof. It is enough to show that $\mathbb{Q}(\sqrt{2})$ does not have an element α with $\alpha^{2}=3$. This, because any putative isomorphism $\varphi: \mathbb{Q}(\sqrt{3}) \rightarrow \mathbb{Q}(\sqrt{2})$ must send each rational to itself, so $(\varphi(\sqrt{3}))^{2}=\varphi\left(\sqrt{3}^{2}\right)=\varphi(3)=3$ would hold.
But this fact was proven in Homework 9 Problem $5(\mathrm{i})$, where we showed that $x^{2}-3$ is irreducible over $\mathbb{Q}(\sqrt{2})$.
Thus $\mathbb{Q}(\sqrt{2})$ cannot be isomorphic to $\mathbb{Q}(\sqrt{3})$.
6. Let K be an extension of F, where $\operatorname{char}(F) \neq 2$. Prove that $[K: F]=2$ if and only if $K=F(\sqrt{d})$ for some $d \in F$ that is not a square in F.
Proof. If d is not a square, then \sqrt{d} is a root of the monic irreducible polynomial $x^{2}-d$, so $[F(\sqrt{d}): F]=2$, as desired.
Conversely, suppose that $[K: F]=2$, a prime. Then $K \neq F$, so there exists $u \in K$ such that $u \notin F$. Since $F \subseteq F(u) \subseteq K$ and $u \notin F$, we must have $F(u)=K$.
Since $[F(u): F]=2$, then $1, u, u^{2}$ are linearly dependent over F, but $1, u$ are linearly independent (because $u \notin F)$. So there exist $a, b, c \in F$ such that

$$
c+b u+a u^{2}=0, \quad a \neq 0
$$

Let $d=b^{2}-4 a c$. If $d=r^{2}$ for some $r \in F$, then since $\operatorname{char}(F) \neq 2$, we have

$$
a\left(u-\frac{-b+r}{2 a}\right)\left(u-\frac{-b-r}{2 a}\right)=a\left(u^{2}-\frac{-2 b}{2 a} u+\frac{b^{2}-r^{2}}{4 a^{2}}\right)=a u^{2}+b u+c=0
$$

Since $a \neq 0$, either $u=\frac{-b+r}{2 a}$ or $u=\frac{-b-r}{2 a}$, contradicting that $u \notin F$. That means that d is not a square in F. In particular, $[F(\sqrt{d}): F]=2$.
We claim that $K=F(\sqrt{d})$. Indeed, the calculation we just did, with \sqrt{d} replacing r, shows that $u \in F(\sqrt{d})$, so $K=F(u) \subseteq F(\sqrt{d})$. On the other hand, we have

$$
2=[F(\sqrt{d}): F]=[F(\sqrt{d}): F(u)][F(u): F]=2[F(\sqrt{d}): F(u)] .
$$

Therefore, $F(u)=F(\sqrt{d})$, as required.
7. Let K be an extension of F where $\operatorname{char}(F) \neq 2$. Prove that if $[K: F]=2$, then K is Galois over F.
Proof. From Problem 6 we know that there exists $d \in F, d$ not a square, such that $K=F(\sqrt{d})$. The elements of K can be written uniquely as $a+b \sqrt{d}$ with $a, b \in F$.
Since char $(F) \neq 2$, the two roots of $x^{2}-d$ are \sqrt{d} and $-\sqrt{d}$, which are distinct from each other. And there is an isomorphism $\sigma: F(\sqrt{d}) \rightarrow F(-\sqrt{d})$ such that $\sigma(a)=a$ for all $a \in F$, and $\sigma(\sqrt{d})=-\sqrt{d}$. And since $F(\sqrt{d})=F(-\sqrt{d})$, we have $\sigma \in \operatorname{Aut}_{F}(K)$.
Let $u=a+b \sqrt{d} \in K$. If $\sigma(u)=u$, then

$$
a+b \sqrt{d}=u=\sigma(u)=a-b \sqrt{d}
$$

Therefore, $b=-b$. Since $\operatorname{char}(F) \neq 2$, this means that $b=0$, so $u \in F$.
Thus, the fixed field of σ is F. Therefore, $F \subseteq\left(\operatorname{Aut}_{F}(K)\right)^{\prime} \subseteq\langle\sigma\rangle^{\prime}=F$, so F is the fixed field of Aut $_{F}(K)$. This proves that K is Galois over F, as claimed.
8. Let K be a finite dimensional Galois extension of F, and let L and M be intermediate fields. Use the Fundamental Theorem of Galois Theory to prove the following:
(i) $\operatorname{Aut}_{L M}(K)=\operatorname{Aut}_{L}(K) \cap \operatorname{Aut}_{M}(K)$.

Proof. Note that $L M$ is the smallest field that contains L and M. By the correspondence clause of the Fundamental Theorem, that means that $\operatorname{Aut}_{L M}(K)$ is the largest subgroup that is contained in $\operatorname{Aut}_{L}(K)$ and in $\operatorname{Aut}_{M}(K)$. This is their intersection.
(ii) $\operatorname{Aut}_{L \cap M}(K)=\left\langle\operatorname{Aut}_{L}(K), \operatorname{Aut}_{M}(K)\right\rangle$.

Proof. Since $L \cap M$ is the largest intermediate field contained in both L and M, then $\operatorname{Aut}_{L \cap M}(K)$ is the smallest subgroup that contains both $\operatorname{Aut}_{L}(K)$ and $\operatorname{Aut}_{M}(K)$. This is the subgroup they generate.

