Math 566 - Homework 10
SOLUTIONS
Prof Arturo Magidin

1. Let K be an extension of F, and let u € K. Show that if u is the root of a monic polynomial
2"+ ap,_12" L+ -+ +ap € Kx], and each a; is algebraic over F, then u is algebraic over F.
Proof. Let F_y = F, Fy = F(ap), F1 = F(ag,a1), ..., Fr, = Flag,...,a,). Since each a; is
algebraic over F', they are algebraic over F;_;. And since F; = F;_1(a;), with a; algebraic over
F;_q, then [F; : F;_1] is finite for i = 0,...,n.

Moreover, u is algebraic over F,,, so [F,,(u) : Fy,] is finite.

Thus, we have that
[Fr(u) : F] = [Fn(u) : Fp][Fy : Fre1] -+ [Fo: F] < o0.

Thus, F,,(u) is finite dimensional over F', and therefore algebraic over F'. That means that every
element of F,(u), and in particular u, is algebraic over F. OJ

2. Let K be an extension of F, and let L and M be intermediate extensions (so F C L C K and
FCMCK).

(i) Prove that [LM : M] <[L: LN M)].
Proof. Let B = {{;};c; be a basis for L over LN M. Note that B C L C LM.
We prove that this set spans LM over M; this will prove that this collection contains a basis
for LM over M, and therefore that the dimension of LM over M is at most the dimension
of L over LN M.
First, let w € L. Then we know that u is in the (L N M)-span of B. Thus, there exist
i1,...,0m € I, and aq,...,a, € LN M such that

u=arly, +--+anl

tm*

Since the a; also lie in M, we have that u lies in the M-span of B.

This proves that L C span,;(B). In particular, 1 lies in the span, and hence so does the span
of 1 over M, which is M. Thus, M, L C span,;(B).

Look at LM as LM = M(L). If every element of L is algebraic over M, then this is
equal M[L], and since we can obtain any element of L and every element of M as M-linear
combinations of B, we can also obtain any power of elements of L and products of elements
of L. Thus, any polynomial expression p({y,...,¢;) with coeflicients in M and ¢; € L is
expressible as an M-linear combination of elements of .

If there are element of L, x1,...,z, that are transcendental over M, then they are also
transcendental over M NL. So any rational expression with coefficients in M can be expressed
as an M-linear combination of rational expressions with coefficients in L N M, which were
already expressible in terms of B. Thus, the M-span of B will yield every element of M (L).

Thus, ML C span,,;(B). On the other hand, every element of B lies in L, so span,;(B) C
M(L). Hence we have equality.

Therefore, [LM : M] < |B| = [L : L N M], proving the desired inequality. O
(ii) Conclude that [LM : M] < [L: F].
Proof. Note that ¥ C LN M. Thus, [LNM : F] > 1, so

[LM:M]<[L:LNM]<[L:LNM|J[LNM:F]=[L:F),

as desired. J



3. Let K be an extension of F, and let u,v € K be algebraic over F with [F(u) : F] = n and
[F(v): F] =m.

(i)

Prove that [F(u,v) : F] < nm.
Proof. Note that
[F(u,v): F] = [F(u,v) : F(w)][F(u) : F].
We know that [F(u) : F] =n. Let L = F(v) and M = F(u). Then Problem 2(ii) says that
[F(u,v) : F(u)] < [F(v): F] =m. So we have

[F(u,v) : F] = [F(u,v) : F@)][F(u) : F] < [F(v) : FI[F(u) : F] = nm,

as desired. O
Show that if ged(m,n) = 1, then [F(u,v) : F] = nm.
Proof. We have
[F(u,v) - F] = [F(u,0) : F@)[F(u) : F] = n[F(u,v) : F(u)],
so n | [F(u,v) : F]. Symmetrically, we have m | [F(u,v) : F]. Therefore, we know that
lem(m,n) | [F(u,v) : F].
Since ged(m,n) = 1, we have lem(m,n) = mn. So we know that mn divides [F'(u,v) : F]. On

the other hand, part (i) shows that [F'(u,v) : F] is at most mn. Hence, [F(u,v) : F] = mn,
as claimed. O

4. Let K be a finite dimensional extension of F' and let L and M be intermediate extensions.

(i)

(i)

(iii)

Show that if [LM : F|=[L: F|[M : F], then LN M = F.
Proof. Proceeding as in Problem 2, we have

[LM :F|=[LM: M|[M:F] < [L: L M]|[M: F]
[L:LOM|[LNM: F|[M:F)

[L:F|[M:F]=[LM:F].

<
<

Since we have equality, that means that [L: LN M| =[L: LN M][LNM : F], and therefore
we have [LN M : F] = 1. That means that LN M = F. O

Show that if [L: F]=2or [M : F] =2, and LN M = F, then we will have [LM : F| =[L:
Proof. Assume first that [L : F] = 2. Since [LM : M| < [L: LNM] = [L: F] = 2, it follows
that either [LM : M]=1or [LM : M]=[L: F]=2.

But [LM : M] =1 implies that LM = M, so L C M. Therefore, F = LN M = L, which is
impossible since [L : F] = 2. Therefore, [LM : M] = [L: F]=2. So

[L:F)[M:F|=[LM:M]M:F)=[LM : F],

as desired. The case where [M : F] = 2 follows symmetrically. O

Use a real and a nonreal cube root of 2 to give an example of a finite dimensional extension
K of Q, and intermediate fields L and M, such that LN M = Q and [L: Q] = [M : Q] = 3,
but [LM : Q] < 9.

Proof. Let L = Q[v/2]; let w be a (complex) primitive cubic root of unity, and let
M = Q[w\?/?]. Since both /2 and w+/2 are roots of the irreducible polynomial z3 — 2,
there is an isomorphism ¢: L — M that restricts to the identity on Q and maps /2 to w+/2;



in particular, [L: Q] =[M : Q] =3. Since L# M,and Q C LNM C M with [M : Q] =3 a
prime number, we must have LN M = Q.

But LM = Q(?/ﬁ, w). Note that w is a root of 2% + z + 1, as it is a root of the polynomial
23—1 = (z—1)(22+2+1) but is not 1. So letting K = Q(w), we have [L : Q] = 3, [K : Q] = 2,
and hence by Problem 3(ii), [KL : Q] = 6. Since KL = LM, we have [LM : Q] =6 < 9. 0O

5. Prove that Q(v/2) is not isomorphic to Q(v/3). NOTE: We know there is no isomorphism from
Q(v/2) to Q(v/3) that sends v/2 to v/3; but this, in and of itself, does not preclude the possibility
of an isomorphism where v/2 is mapped to some other element of Q(v/3).

Proof. It is enough to show that Q(v/2) does not have an element o with a?> = 3. This,
because any putative isomorphism ¢: Q(v/3) — Q(+/2) must send each rational to itself, so

(2(vV3))? = p(v/3) = (3) = 3 would hold.
But this fact was proven in Homework 9 Problem 5(i), where we showed that 22 — 3 is irreducible
over Q(v/2).
Thus Q(v/2) cannot be isomorphic to Q(v/3). O

6. Let K be an extension of F, where char(F) # 2. Prove that [K : F] = 2 if and only if K = F(\/d)
for some d € F' that is not a square in F.

Proof. If d is not a square, then v/d is a root of the monic irreducible polynomial z2 — d, so
[F(Vd) : F] = 2, as desired.

Conversely, suppose that [K : F] = 2, a prime. Then K # F, so there exists u € K such that
u¢ F. Since F C F(u) C K and u ¢ F, we must have F(u) = K.

Since [F(u) : F] = 2, then 1,u, u? are linearly dependent over F, but 1,u are linearly independent
(because u ¢ F'). So there exist a,b,c € F such that

c+bu+au® =0, a # 0.

Let d = b? — dac. If d = r? for some r € F, then since char(F) # 2, we have

—b b —2b b2 — 12
a(u— 22—7“) (u— 2ar):a<u2—2au+4a2r>=au2+bu+c=0.

Since a # 0, either u = ’gj’" or u = %, contradicting that u ¢ F. That means that d is not a

square in F. In particular, [F(V/d) : F] = 2.

We claim that K = F(v/d). Indeed, the calculation we just did, with v/d replacing , shows that
u € F(Vd), so K = F(u) C F(v/d). On the other hand, we have

2= [F(Vd): F] = [F(Vd) : F(uw)][F(u): F] = 2[F(Vd) : F(u)].
Therefore, F(u) = F(v/d), as required. (]
7. Let K be an extension of F' where char(F) # 2. Prove that if [K : F] = 2, then K is Galois

over F'.

Proof. From Problem 6 we know that there exists d € F, d not a square, such that K = F(v/d).
The elements of K can be written uniquely as a + bv/d with a,b € F.

Since char(F) # 2, the two roots of 22 — d are v/d and —+/d, which are distinct from each other.
And there is an isomorphism o: F(v/d) — F(—+/d) such that ¢(a) = a for all @ € F, and
o(v/d) = —Vd. And since F(Vd) = F(—+/d), we have ¢ € Autp(K).

Let u=a+bVd € K. If 0(u) = u, then
a+bVd=u=o(u)=a—b/d



Therefore, b = —b. Since char(F') # 2, this means that b= 0, so u € F.

Thus, the fixed field of o is F. Therefore, F' C (Autr(K)) C (o)’ = F, so F is the fixed field of
Autp(K). This proves that K is Galois over F, as claimed. O

8. Let K be a finite dimensional Galois extension of F', and let L and M be intermediate fields. Use
the Fundamental Theorem of Galois Theory to prove the following:

(i)

AutLM(K) = AutL(K) N Aut]\/[(K).

Proof. Note that LM is the smallest field that contains L and M. By the correspondence
clause of the Fundamental Theorem, that means that Autyy(K) is the largest subgroup
that is contained in Auty, (K) and in Auty (K). This is their intersection. [J

AuthM(K) = <AutL(K),AutM(K)>.

Proof. Since L N M is the largest intermediate field contained in both L and M, then
Autpnp (K) is the smallest subgroup that contains both Auty(K) and Autas(K). This is
the subgroup they generate. [J



