
Math 566 - Homework 1
Solutions

Prof Arturo Magidin

1. Let (R,+, ·) be a ring, and define the opposite ring (Rop,+, ◦) as follows: the underlying set of
Rop is R, and addition in Rop is the same as addition on R. Multiplication on Rop, which we will
denote by ◦, is defined by a ◦ b = b · a, where · is the multiplication in R.

(i) Show that (Rop,+, ◦) is a ring.

Proof. That Rop is an abelian group follows because we did not change the addition oper-
ation.

So we just need to verify the properties of multiplication. We have:

• a ◦ (b ◦ c) = (b ◦ c)a = (cb)a = c(ba) = (ba) ◦ c = (a ◦ b) ◦ c, so ◦ is associative.

• a ◦ (b+ c) = (b+ c)a = ba+ ca = a ◦ b+ a ◦ c; so ◦ distributes on the left.

• (b+ c) ◦ a = a(b+ c) = ab+ ac = b ◦ a+ c ◦ a, so ◦ distributes on the right.

Thus, Rop is a ring. □

(ii) Show that R has an identity if and only if Rop has an identity.

Proof. If 1R is an identity for R, then a ◦ 1R = 1Ra = a and 1R ◦ a = a1R = a, so 1R is an
identity for Rop. Since (Rop)op = R, the converse now follows as well. □

(iii) Show that R is a division ring if and only if Rop is a division ring.

Proof. Let a ∈ Rop be nonzero. If a−1 is the multiplicative inverse of a in R, then
a−1 ◦ a = aa−1 = 1R and a ◦ a−1 = a−1a = 1R, so a

−1 is also a ◦-inverse for a in Rop.
Thus, every nonzero element of Rop has an inverse, so Rop is a division ring. The converse
again follows because (Rop)op = R. □

2. Let (R,+, ·) be a set, together with two binary operations, and assume that the set and operations
satisfy all the axioms of a ring, except perhaps for commutativity of addition. That is, (R,+) is
a (not necessarily commutative) group, · is associative, and · distributes on both sides over +.

(i) Prove that if R has a multiplicative identity, i.e., an element 1R ∈ R such that a · 1R =
1R · a = a for all a ∈ R, then x+ y = y + x for all x, y ∈ R; that is, commutativity of + is a
consequence of the other axioms of a ring, together with the existence of a unity.

Proof. Let x, y ∈ R. Consider (x+ y)(1R + 1R) distributed both ways:

(x+ y)(1R + 1R) = (x+ y)1R + (x+ y)1R = x+ y + x+ y

(x+ y)(1R + 1R) = x(1R + 1R) + y(1R + 1R) = x+ x+ y + y.

Since these two are equal, we have x+ y+ x+ y = x+ x+ y+ y. Adding −x on the left and
−y on the right, we obtain y + x = x+ y. Thus, addition is necessarily commutative in this
situation. □

(ii) Give an example to show that commutativity of + does not follow from the other axioms if
R does not have a multiplicative identity, by exhibiting an example of a set R, and binary
operations + and · such that (R,+) is a nonabelian group, and · is an associative operation
that distributes over + on both sides.

Answer. Let G be a nonabelian group (written multiplicatively). Define (R,+, ·) by letting
R be the same set as G, and defining a+ b = ab and a · b = eG. This satisfies all conditions
of a ring except for commutativity of +; indeed, we have a group under +, and

(a · b) · c = eG = a · (b · c),
a · (b+ c) = eG = eGeG = (a · b) + (a · c),
(a+ b) · c = eG = eGeG = (a · c) + (b · c). □

1



3. Cayley’s Theorem for Rings. Let (R,+, ·) be a ring; for each r ∈ R, let λr : R → R be the
function given by

λr(a) = ra

(i) Show that for each r ∈ R, λr is an element of End(R,+), the endomorphism group of the
abelian group (R,+).

Proof. We just need to show that λr(a + b) = λr(a) + λr(b); but this is just the left
distributivity of multiplication: r(a+ b) = ra+ rb. □

(ii) Define ψ : R → End(R,+) by ψ(r) = λr. Prove that this map is a ring homomorphism
(where End(R,+) is a ring with pointwise addition and composition of functions). Prove
that if R has a unity, then ψ is one-to-one.

Proof. We have that for all r, s ∈ R, and each a ∈ R,

ψ(r + s)(a) = λr+s(a) = (r + s)a = ra+ sa = λr(a) + λs(a)

= (λr + λs)(a) = (ψ(r) + ψ(s))(a).

ψ(rs)(a) = λrs(a) = (rs)a = r(sa) = r(λs(a))

= λr(λs(a)) = (λr ◦ λs)(a) = (ψ(r) ◦ ψ(s))(a).

Thus, ψ(r + s) = ψ(r) + ψ(s) and ψ(rs) = ψ(r) ◦ ψ(s). Thus, ψ is a ring homomorphism.

If R has a unity and r ∈ ker(ψ), then ψ(r) is the zero map, so r = r1R = ψ(r)(1R) = 0.
Thus, ker(ψ) = {0}, proving that ψ is one-to-one.

Alternatively: if R has a unity, and ψ(r) = ψ(s), then

r = r1R = λr(1R) = ψ(r)(1R) = ψ(s)(1R) = λs(1R) = s1R = s,

hence ψ(r) = ψ(s) implies r = s, so ψ is one-to-one, as claimed. □

(iii) Use the Dorroh embedding to show that if R is a ring, with or without unity, then there
exists an abelian group A an a one-to-one ring homomorphism φ : R→ End(A,+). That is:
every ring is [isomorphic to] a subring of the endomorphism ring of an abelian group.

Proof. Let R be a ring. If R has a unity, then part (ii) already yields that R embeds into
the endomorphism ring of the abelian group (R,+).

If R does not have a unity, then we know that R embeds into the ring with unity S con-
structed using the Dorroh embedding. Now, the map ψ : S → End(S) from part (ii) is a ring
embedding. Thus, the composition ψ ◦ h : R→ End(S) gives the desired embedding. □
Note: In fact, the latter construction can be done to any ring, whether or not it has a unity.
If R already has a unity, then this embeds it as a subring into a new ring with a new unity.

4. A Boolean ring is a ring (R,+, ·) such that a2 = a for all a ∈ R. Prove that every Boolean ring
is commutative and a = −a for all a ∈ R. Hint: Square (a+ a) and (a− b). (An element a of a
ring such that a2 = a is called an idempotent.)

Proof. We have

(a+ a) = (a+ a)2 = a2 + a2 + a2 + a2 = a+ a+ a+ a

(a− b) = (a− b)2 = a2 − ab− ba+ b2 = a− ab− ba+ b.

From the first equality, cancelling we get a + a = 0, so a = −a. This holds for all a ∈ R, and so
in particular we also have ab = −ab for any a, b ∈ R. Thus, in the second equation we have

a+ b = a− b = a− ab− ba+ b = a+ ab+ ba+ b.

Cancelling again, we get ab + ba = 0, so ab = −ba = ba. Thus, ab = ba and so the ring is
commutative. □
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5. Let X be a set, and let P(X) be the power set of X (the set of all subsets of X). Define operations
⊕ and ⊙ on P(X) by:

A⊕B = (A−B) ∪ (B −A) (symmetric difference)

A⊙B = A ∩B (intersection)

Show that (P(X),⊕,⊙) is a Boolean ring with unity.

Proof. The symmetric difference is commutative and associative: (A⊕B)⊕C consists exactly of
the elements that are in exactly one of A, B, and C, or in all three; the same holds for A⊕(B⊕C).
The empty set is the additive identity: A⊕∅ = (A−∅)∪ (∅−A) = A. Finally, A is the additive
inverse of A, since A⊕A = (A−A) ∪ (A−A) = ∅.

The intersection is associative; the set X is a multiplicative identity. Since intersection distributes
over union, we have that

A⊙ (B ⊕ C) = A ∩ ((B − C) ∪ (C −B)) = (A ∩ (B − C)) ∪ (A ∩ (C −B)).

On the other hand,

(A⊙B)⊕ (A⊙ C) =
(
(A ∩B)− (A ∩ C)

)
∪
(
(A ∩ C)− (A ∩B)

)
.

Now we simply note that R∩ (S−T ) = (R∩S)− (R∩T ). Indeed, if a ∈ R∩ (S−T ) then a ∈ R,
a ∈ S, and a /∈ T ; therefore, a ∈ R ∩ S and a /∈ R ∩ T , so a ∈ (R ∩ S) − (R ∩ T ). Conversely, if
x ∈ (R ∩ S) − (R ∩ T ), then x ∈ R ∩ S and x /∈ R ∩ T ; thus, x ∈ R, x ∈ S, and either x /∈ R or
x /∈ T . Since x /∈ R is impossible, we get x ∈ R, x ∈ S, and x /∈ T ; that is, x ∈ R ∩ (S − T ).

Thus, we get the equality we seek and we have a ring with unity. Finally, A⊙A = A∩A = A, so
we have a boolean ring. □

6. Give an example of a ring R and a subring S such that R has a unity, S has a unity, but 1S ̸= 1R.

Answer. Let R = Z × Z; the unity of R is (1, 1). Let S = Z × {0}. This is a subring; and
(1, 0) ∈ S is a unity for S. So R is a ring, S is a subring of R, R has a unity, S has a unity, but
1S = (1, 0) ̸= (1, 1) = 1R. □

3


