Math 566 - Homework 1
SOLUTIONS
Prof Arturo Magidin

1. Let (R,+,-) be a ring, and define the opposite ring (R°P,+,0) as follows: the underlying set of
R°P is R, and addition in R°P is the same as addition on R. Multiplication on R°P, which we will
denote by o, is defined by a o b = b - a, where - is the multiplication in R.

(i)

Show that (R°P,+,0) is a ring.
Proof. That R°P is an abelian group follows because we did not change the addition oper-
ation.
So we just need to verify the properties of multiplication. We have:

e ao(boc)=(boc)a= (ch)a = c(ba) = (ba) oc = (aob)oc, so o is associative.

e ao(b+c)=(b+cla=ba+ca=aob+aoc;so o distributes on the left.

e (b+c)oa=a(b+c)=ab+ac=boa+ coa, so o distributes on the right.
Thus, R°P is a ring. [J
Show that R has an identity if and only if R°P has an identity.
Proof. If 13 is an identity for R, then aolgp = 1lga =a and 1goa =alg = a, so 1g is an
identity for R°P. Since (R°P)°P = R, the converse now follows as well. O
Show that R is a division ring if and only if R°P is a division ring.
Proof. Let a € R°P be nonzero. If a~! is the multiplicative inverse of @ in R, then
aloa=aa!=1gand aoa™! = a'a = 1p, so a~! is also a o-inverse for a in R°P.
Thus, every nonzero element of R°P has an inverse, so R°P is a division ring. The converse
again follows because (R°P)°P = R. J

2. Let (R, +, ) be a set, together with two binary operations, and assume that the set and operations
satisfy all the axioms of a ring, except perhaps for commutativity of addition. That is, (R, +) is
a (not necessarily commutative) group, - is associative, and - distributes on both sides over +.

(i)

Prove that if R has a multiplicative identity, i.e., an element 1 € R such that a -1 =
lp-a=afor all a € R, then x +y =y + « for all z,y € R; that is, commutativity of + is a
consequence of the other axioms of a ring, together with the existence of a unity.

Proof. Let z,y € R. Consider (x + y)(1r + 1r) distributed both ways:

(z+y)Arp+1lg)=(x+y)lg+(x+y)lg=z+y+z+y
(z+y)Ar+1r)=2z(lp+ 1)+ y(lr+1lr)=xz+z+y+y.

Since these two are equal, we have z+y+z+y =2+ x4+ y+y. Adding —z on the left and
—y on the right, we obtain y + = x + y. Thus, addition is necessarily commutative in this
situation. OJ

Give an example to show that commutativity of + does not follow from the other axioms if
R does not have a multiplicative identity, by exhibiting an example of a set R, and binary
operations + and - such that (R, +) is a nonabelian group, and - is an associative operation
that distributes over 4+ on both sides.

Answer. Let G be a nonabelian group (written multiplicatively). Define (R, +,-) by letting
R be the same set as GG, and defining a + b = ab and a - b = eg. This satisfies all conditions
of a ring except for commutativity of +; indeed, we have a group under +, and

(a-b)-c=eg=a-(b-c),
a-(b+c)=eg=egeqg=(a-b)+ (a-c),
(a+b)-c=eg=egeg=(a-c)+(b-c). O



3. Cayley’s Theorem for Rings. Let (R,+,-) be a ring; for each r € R, let A\.: R — R be the
function given by

()

(iid)

Ar(a) =ra

Show that for each r € R, A, is an element of End(R,+), the endomorphism group of the
abelian group (R, +).

Proof. We just need to show that A.(a +b) = A.(a) + A-(b); but this is just the left
distributivity of multiplication: r(a + b) = ra + rb. O

Define ¢: R — End(R,+) by ¥(r) = A.. Prove that this map is a ring homomorphism
(where End(R, +) is a ring with pointwise addition and composition of functions). Prove
that if R has a unity, then v is one-to-one.

Proof. We have that for all ;s € R, and each a € R,

(r+s)(a) = Arys(a) = (r+ s)a=ra+ sa=\(a) + As(a)
= (A +As)(a) = (¥(r) +4(s))(a).

Y(rs)(a) = Ars(a) = (rs)a = r(sa) = r(As(a))

= Ar(As(a)) = (Ar 0 As)(a) = (4(r) 0 9b(s))(a).

Thus, ¥ (r + s) = ¥(r) + ¥(s) and ¥(rs) = ¥(r) o 1(s). Thus, ¢ is a ring homomorphism.
If R has a unity and r € ker(¢), then v (r) is the zero map, so r = rlg = ¥(r)(1g) = 0.
Thus, ker(¢) = {0}, proving that v is one-to-one.

Alternatively: if R has a unity, and ¢ (r) = 9(s), then

r= ’I“lR = )\r(lR) = w<7‘)(13) = ’(/}(S)(lR) = )\s(lR) = SlR =S,

hence ¢(r) = 1(s) implies r = s, so ¢ is one-to-one, as claimed. [J

Use the Dorroh embedding to show that if R is a ring, with or without unity, then there
exists an abelian group A an a one-to-one ring homomorphism ¢: R — End(A, +). That is:
every ring is [isomorphic to] a subring of the endomorphism ring of an abelian group.
Proof. Let R be a ring. If R has a unity, then part (ii) already yields that R embeds into
the endomorphism ring of the abelian group (R, +).

If R does not have a unity, then we know that R embeds into the ring with unity S con-
structed using the Dorroh embedding. Now, the map v : S — End(S) from part (ii) is a ring
embedding. Thus, the composition 1) o h: R — End(S) gives the desired embedding. O
NoOTE: In fact, the latter construction can be done to any ring, whether or not it has a unity.
If R already has a unity, then this embeds it as a subring into a new ring with a new unity.

4. A Boolean ring is a ring (R, +,-) such that a® = a for all a € R. Prove that every Boolean ring
is commutative and a = —a for all @ € R. Hint: Square (a + a) and (a —b). (An element a of a
ring such that a? = a is called an idempotent.)

Proof. We have

(a4+a)=(a+a)=d*+ad*+d*+a*=a+a+tata
(a—b)=(a—b?*=a*—ab—ba+b*>=a—ab—ba+b.

From the first equality, cancelling we get a + a = 0, so a = —a. This holds for all « € R, and so
in particular we also have ab = —ab for any a,b € R. Thus, in the second equation we have

a+b=a—-b=a—ab—ba+b=a+ab+ ba+b.

Cancelling again, we get ab + ba = 0, so ab = —ba = ba. Thus, ab = ba and so the ring is
commutative. O



5. Let X be a set, and let P(X) be the power set of X (the set of all subsets of X). Define operations
@ and @ on P(X) by:
A®B=(A-B)U(B-A) (symmetric difference)
A©GB=ANB (intersection)

Show that (P(X),®,®) is a Boolean ring with unity.

Proof. The symmetric difference is commutative and associative: (A® B)® C consists exactly of
the elements that are in exactly one of A, B, and C, or in all three; the same holds for A® (B&®C).
The empty set is the additive identity: A @ = (A—@)U (@ — A) = A. Finally, A is the additive
inverse of A, since AGA=(A-—A)U(A-A)=0.

The intersection is associative; the set X is a multiplicative identity. Since intersection distributes
over union, we have that

AOB&C)=AN((B—-C)U(C—B))=(AN(B—C))U(AN(C - B)).
On the other hand,
(AOB)& (A6 C) = ((AmB)—(AmC))u((AmC)—(AmB)).

Now we simply note that RN (S—T) = (RNS)—(RNT). Indeed, ifa € RN(S—T) thena € R,
a € S, and a ¢ T; therefore, a € RNSanda¢ RNT,soa € (RNS)— (RNT). Conversely, if
xe€(RNS)—(RNT), thenz € RNS and x ¢ RNT; thus, x € R, z € S, and either x ¢ R or
x ¢ T. Since x ¢ R is impossible, we get x € R, x € S, and x ¢ T; that is, z € RN (S —T).
Thus, we get the equality we seek and we have a ring with unity. Finally, A A=ANA= A, so
we have a boolean ring. [J

6. Give an example of a ring R and a subring .S such that R has a unity, S has a unity, but 15 # 15.

Answer. Let R = Z X Z; the unity of R is (1,1). Let S = Z x {0}. This is a subring; and
(1,0) € S is a unity for S. So R is a ring, S is a subring of R, R has a unity, S has a unity, but

1g=(1,0) # (1,1) = 1. O



