Math 566 - Homework 1 SOLUTIONS Prof Arturo Magidin

- 1. Let $(R, +, \cdot)$ be a ring, and define the *opposite ring* $(R^{\text{op}}, +, \circ)$ as follows: the underlying set of R^{op} is R, and addition in R^{op} is the same as addition on R. Multiplication on R^{op} , which we will denote by \circ , is defined by $a \circ b = b \cdot a$, where \cdot is the multiplication in R.
 - (i) Show that $(R^{\text{op}}, +, \circ)$ is a ring.

Proof. That R^{op} is an abelian group follows because we did not change the addition operation.

So we just need to verify the properties of multiplication. We have:

- $a \circ (b \circ c) = (b \circ c)a = (cb)a = c(ba) = (ba) \circ c = (a \circ b) \circ c$, so \circ is associative.
- $a \circ (b+c) = (b+c)a = ba + ca = a \circ b + a \circ c$; so \circ distributes on the left.
- $(b+c) \circ a = a(b+c) = ab + ac = b \circ a + c \circ a$, so \circ distributes on the right.

Thus, R^{op} is a ring. \Box

- (ii) Show that R has an identity if and only if R^{op} has an identity. **Proof.** If 1_R is an identity for R, then $a \circ 1_R = 1_R a = a$ and $1_R \circ a = a 1_R = a$, so 1_R is an identity for R^{op} . Since $(R^{\text{op}})^{\text{op}} = R$, the converse now follows as well. \Box
- (iii) Show that R is a division ring if and only if R^{op} is a division ring. **Proof.** Let $a \in R^{\text{op}}$ be nonzero. If a^{-1} is the multiplicative inverse of a in R, then $a^{-1} \circ a = aa^{-1} = 1_R$ and $a \circ a^{-1} = a^{-1}a = 1_R$, so a^{-1} is also a \circ -inverse for a in R^{op} . Thus, every nonzero element of R^{op} has an inverse, so R^{op} is a division ring. The converse again follows because $(R^{\text{op}})^{\text{op}} = R$. \Box
- 2. Let $(R, +, \cdot)$ be a set, together with two binary operations, and assume that the set and operations satisfy all the axioms of a ring, *except perhaps* for commutativity of addition. That is, (R, +) is a (not necessarily commutative) group, \cdot is associative, and \cdot distributes on both sides over +.
 - (i) Prove that if R has a multiplicative identity, i.e., an element 1_R ∈ R such that a ⋅ 1_R = 1_R ⋅ a = a for all a ∈ R, then x + y = y + x for all x, y ∈ R; that is, commutativity of + is a consequence of the other axioms of a ring, together with the existence of a unity.
 Proof. Let x, y ∈ R. Consider (x + y)(1_R + 1_R) distributed both ways:

$$(x+y)(1_R+1_R) = (x+y)1_R + (x+y)1_R = x+y+x+y$$

(x+y)(1_R+1_R) = x(1_R+1_R) + y(1_R+1_R) = x+x+y+y.

Since these two are equal, we have x + y + x + y = x + x + y + y. Adding -x on the left and -y on the right, we obtain y + x = x + y. Thus, addition is necessarily commutative in this situation. \Box

(ii) Give an example to show that commutativity of + does not follow from the other axioms if R does not have a multiplicative identity, by exhibiting an example of a set R, and binary operations + and \cdot such that (R, +) is a *nonabelian* group, and \cdot is an associative operation that distributes over + on both sides.

Answer. Let G be a nonabelian group (written multiplicatively). Define $(R, +, \cdot)$ by letting R be the same set as G, and defining a + b = ab and $a \cdot b = e_G$. This satisfies all conditions of a ring except for commutativity of +; indeed, we have a group under +, and

$$(a \cdot b) \cdot c = e_G = a \cdot (b \cdot c),$$

$$a \cdot (b + c) = e_G = e_G e_G = (a \cdot b) + (a \cdot c),$$

$$(a + b) \cdot c = e_G = e_G e_G = (a \cdot c) + (b \cdot c). \square$$

3. Cayley's Theorem for Rings. Let $(R, +, \cdot)$ be a ring; for each $r \in R$, let $\lambda_r \colon R \to R$ be the function given by

$$\lambda_r(a) = ra$$

(i) Show that for each $r \in R$, λ_r is an element of End(R, +), the endomorphism group of the abelian group (R, +).

Proof. We just need to show that $\lambda_r(a+b) = \lambda_r(a) + \lambda_r(b)$; but this is just the left distributivity of multiplication: r(a+b) = ra + rb. \Box

(ii) Define $\psi \colon R \to \operatorname{End}(R, +)$ by $\psi(r) = \lambda_r$. Prove that this map is a ring homomorphism (where $\operatorname{End}(R, +)$ is a ring with pointwise addition and composition of functions). Prove that if R has a unity, then ψ is one-to-one.

Proof. We have that for all $r, s \in R$, and each $a \in R$,

$$\psi(r+s)(a) = \lambda_{r+s}(a) = (r+s)a = ra + sa = \lambda_r(a) + \lambda_s(a)$$
$$= (\lambda_r + \lambda_s)(a) = (\psi(r) + \psi(s))(a).$$
$$\psi(rs)(a) = \lambda_{rs}(a) = (rs)a = r(sa) = r(\lambda_s(a))$$
$$= \lambda_r(\lambda_s(a)) = (\lambda_r \circ \lambda_s)(a) = (\psi(r) \circ \psi(s))(a).$$

Thus, $\psi(r+s) = \psi(r) + \psi(s)$ and $\psi(rs) = \psi(r) \circ \psi(s)$. Thus, ψ is a ring homomorphism. If R has a unity and $r \in \ker(\psi)$, then $\psi(r)$ is the zero map, so $r = r1_R = \psi(r)(1_R) = 0$. Thus, $\ker(\psi) = \{0\}$, proving that ψ is one-to-one.

Alternatively: if R has a unity, and $\psi(r) = \psi(s)$, then

$$r = r1_R = \lambda_r(1_R) = \psi(r)(1_R) = \psi(s)(1_R) = \lambda_s(1_R) = s1_R = s,$$

hence $\psi(r) = \psi(s)$ implies r = s, so ψ is one-to-one, as claimed. \Box

(iii) Use the Dorroh embedding to show that if R is a ring, with or without unity, then there exists an abelian group A and a one-to-one ring homomorphism $\varphi \colon R \to \text{End}(A, +)$. That is: every ring is [isomorphic to] a subring of the endomorphism ring of an abelian group.

Proof. Let R be a ring. If R has a unity, then part (ii) already yields that R embeds into the endomorphism ring of the abelian group (R, +).

If R does not have a unity, then we know that R embeds into the ring with unity S constructed using the Dorroh embedding. Now, the map $\psi: S \to \operatorname{End}(S)$ from part (ii) is a ring embedding. Thus, the composition $\psi \circ h: R \to \operatorname{End}(S)$ gives the desired embedding. \Box

NOTE: In fact, the latter construction can be done to any ring, whether or not it has a unity. If R already has a unity, then this embeds it as a subring into a new ring with a new unity.

4. A Boolean ring is a ring $(R, +, \cdot)$ such that $a^2 = a$ for all $a \in R$. Prove that every Boolean ring is commutative and a = -a for all $a \in R$. Hint: Square (a + a) and (a - b). (An element a of a ring such that $a^2 = a$ is called an *idempotent*.)

Proof. We have

$$(a + a) = (a + a)^2 = a^2 + a^2 + a^2 + a^2 = a + a + a + a$$

 $(a - b) = (a - b)^2 = a^2 - ab - ba + b^2 = a - ab - ba + b.$

From the first equality, cancelling we get a + a = 0, so a = -a. This holds for all $a \in R$, and so in particular we also have ab = -ab for any $a, b \in R$. Thus, in the second equation we have

$$a + b = a - b = a - ab - ba + b = a + ab + ba + b.$$

Cancelling again, we get ab + ba = 0, so ab = -ba = ba. Thus, ab = ba and so the ring is commutative. \Box

5. Let X be a set, and let $\mathcal{P}(X)$ be the power set of X (the set of all subsets of X). Define operations \oplus and \odot on $\mathcal{P}(X)$ by:

$$A \oplus B = (A - B) \cup (B - A)$$
 (symmetric difference)
$$A \odot B = A \cap B$$
 (intersection)

Show that $(\mathcal{P}(X), \oplus, \odot)$ is a Boolean ring with unity.

Proof. The symmetric difference is commutative and associative: $(A \oplus B) \oplus C$ consists exactly of the elements that are in exactly one of A, B, and C, or in all three; the same holds for $A \oplus (B \oplus C)$. The empty set is the additive identity: $A \oplus \emptyset = (A - \emptyset) \cup (\emptyset - A) = A$. Finally, A is the additive inverse of A, since $A \oplus A = (A - A) \cup (A - A) = \emptyset$.

The intersection is associative; the set X is a multiplicative identity. Since intersection distributes over union, we have that

$$A \odot (B \oplus C) = A \cap ((B - C) \cup (C - B)) = (A \cap (B - C)) \cup (A \cap (C - B)).$$

On the other hand,

$$(A \odot B) \oplus (A \odot C) = \left((A \cap B) - (A \cap C) \right) \cup \left((A \cap C) - (A \cap B) \right).$$

Now we simply note that $R \cap (S - T) = (R \cap S) - (R \cap T)$. Indeed, if $a \in R \cap (S - T)$ then $a \in R$, $a \in S$, and $a \notin T$; therefore, $a \in R \cap S$ and $a \notin R \cap T$, so $a \in (R \cap S) - (R \cap T)$. Conversely, if $x \in (R \cap S) - (R \cap T)$, then $x \in R \cap S$ and $x \notin R \cap T$; thus, $x \in R$, $x \in S$, and either $x \notin R$ or $x \notin T$. Since $x \notin R$ is impossible, we get $x \in R$, $x \in S$, and $x \notin T$; that is, $x \in R \cap (S - T)$.

Thus, we get the equality we seek and we have a ring with unity. Finally, $A \odot A = A \cap A = A$, so we have a boolean ring. \Box

6. Give an example of a ring R and a subring S such that R has a unity, S has a unity, but $1_S \neq 1_R$. **Answer.** Let $R = \mathbb{Z} \times \mathbb{Z}$; the unity of R is (1,1). Let $S = \mathbb{Z} \times \{0\}$. This is a subring; and $(1,0) \in S$ is a unity for S. So R is a ring, S is a subring of R, R has a unity, S has a unity, but $1_S = (1,0) \neq (1,1) = 1_R$. \Box