Math 566 - Homework 1
 Solutions
 Prof Arturo Magidin

1. Let $(R,+, \cdot)$ be a ring, and define the opposite ring $\left(R^{\mathrm{op}},+, \circ\right)$ as follows: the underlying set of R^{op} is R, and addition in R^{op} is the same as addition on R. Multiplication on R^{op}, which we will denote by \circ, is defined by $a \circ b=b \cdot a$, where \cdot is the multiplication in R.
(i) Show that $\left(R^{\mathrm{op}},+, \circ\right)$ is a ring.

Proof. That R^{op} is an abelian group follows because we did not change the addition operation.
So we just need to verify the properties of multiplication. We have:

- $a \circ(b \circ c)=(b \circ c) a=(c b) a=c(b a)=(b a) \circ c=(a \circ b) \circ c$, so \circ is associative.
- $a \circ(b+c)=(b+c) a=b a+c a=a \circ b+a \circ c$; so \circ distributes on the left.
- $(b+c) \circ a=a(b+c)=a b+a c=b \circ a+c \circ a$, so \circ distributes on the right.

Thus, R^{op} is a ring.
(ii) Show that R has an identity if and only if $R^{\text {op }}$ has an identity.

Proof. If 1_{R} is an identity for R, then $a \circ 1_{R}=1_{R} a=a$ and $1_{R} \circ a=a 1_{R}=a$, so 1_{R} is an identity for R^{op}. Since $\left(R^{\mathrm{op}}\right)^{\mathrm{op}}=R$, the converse now follows as well.
(iii) Show that R is a division ring if and only if R^{op} is a division ring.

Proof. Let $a \in R^{\mathrm{op}}$ be nonzero. If a^{-1} is the multiplicative inverse of a in R, then $a^{-1} \circ a=a a^{-1}=1_{R}$ and $a \circ a^{-1}=a^{-1} a=1_{R}$, so a^{-1} is also a o-inverse for a in $R^{\text {op }}$. Thus, every nonzero element of R^{op} has an inverse, so R^{op} is a division ring. The converse again follows because $\left(R^{\mathrm{op}}\right)^{\mathrm{op}}=R$.
2. Let $(R,+, \cdot)$ be a set, together with two binary operations, and assume that the set and operations satisfy all the axioms of a ring, except perhaps for commutativity of addition. That is, $(R,+)$ is a (not necessarily commutative) group, • is associative, and \cdot distributes on both sides over + .
(i) Prove that if R has a multiplicative identity, i.e., an element $1_{R} \in R$ such that $a \cdot 1_{R}=$ $1_{R} \cdot a=a$ for all $a \in R$, then $x+y=y+x$ for all $x, y \in R$; that is, commutativity of + is a consequence of the other axioms of a ring, together with the existence of a unity.
Proof. Let $x, y \in R$. Consider $(x+y)\left(1_{R}+1_{R}\right)$ distributed both ways:

$$
\begin{aligned}
& (x+y)\left(1_{R}+1_{R}\right)=(x+y) 1_{R}+(x+y) 1_{R}=x+y+x+y \\
& (x+y)\left(1_{R}+1_{R}\right)=x\left(1_{R}+1_{R}\right)+y\left(1_{R}+1_{R}\right)=x+x+y+y
\end{aligned}
$$

Since these two are equal, we have $x+y+x+y=x+x+y+y$. Adding $-x$ on the left and $-y$ on the right, we obtain $y+x=x+y$. Thus, addition is necessarily commutative in this situation.
(ii) Give an example to show that commutativity of + does not follow from the other axioms if R does not have a multiplicative identity, by exhibiting an example of a set R, and binary operations + and \cdot such that $(R,+)$ is a nonabelian group, and \cdot is an associative operation that distributes over + on both sides.
Answer. Let G be a nonabelian group (written multiplicatively). Define ($R,+, \cdot)$ by letting R be the same set as G, and defining $a+b=a b$ and $a \cdot b=e_{G}$. This satisfies all conditions of a ring except for commutativity of + ; indeed, we have a group under + , and

$$
\begin{aligned}
(a \cdot b) \cdot c & =e_{G}
\end{aligned}=a \cdot(b \cdot c), ~=(a \cdot c), ~=(b+c)=e_{G}=e_{G} e_{G}=(a \cdot b)+(a \cdot c) .
$$

3. Cayley's Theorem for Rings. Let $(R,+, \cdot)$ be a ring; for each $r \in R$, let $\lambda_{r}: R \rightarrow R$ be the function given by

$$
\lambda_{r}(a)=r a
$$

(i) Show that for each $r \in R, \lambda_{r}$ is an element of $\operatorname{End}(R,+)$, the endomorphism group of the abelian group $(R,+)$.
Proof. We just need to show that $\lambda_{r}(a+b)=\lambda_{r}(a)+\lambda_{r}(b)$; but this is just the left distributivity of multiplication: $r(a+b)=r a+r b$.
(ii) Define $\psi: R \rightarrow \operatorname{End}(R,+)$ by $\psi(r)=\lambda_{r}$. Prove that this map is a ring homomorphism (where $\operatorname{End}(R,+)$ is a ring with pointwise addition and composition of functions). Prove that if R has a unity, then ψ is one-to-one.
Proof. We have that for all $r, s \in R$, and each $a \in R$,

$$
\begin{aligned}
\psi(r+s)(a) & =\lambda_{r+s}(a)=(r+s) a=r a+s a=\lambda_{r}(a)+\lambda_{s}(a) \\
& =\left(\lambda_{r}+\lambda_{s}\right)(a)=(\psi(r)+\psi(s))(a) . \\
\psi(r s)(a) & =\lambda_{r s}(a)=(r s) a=r(s a)=r\left(\lambda_{s}(a)\right) \\
& =\lambda_{r}\left(\lambda_{s}(a)\right)=\left(\lambda_{r} \circ \lambda_{s}\right)(a)=(\psi(r) \circ \psi(s))(a) .
\end{aligned}
$$

Thus, $\psi(r+s)=\psi(r)+\psi(s)$ and $\psi(r s)=\psi(r) \circ \psi(s)$. Thus, ψ is a ring homomorphism.
If R has a unity and $r \in \operatorname{ker}(\psi)$, then $\psi(r)$ is the zero map, so $r=r 1_{R}=\psi(r)\left(1_{R}\right)=0$. Thus, $\operatorname{ker}(\psi)=\{0\}$, proving that ψ is one-to-one.
Alternatively: if R has a unity, and $\psi(r)=\psi(s)$, then

$$
r=r 1_{R}=\lambda_{r}\left(1_{R}\right)=\psi(r)\left(1_{R}\right)=\psi(s)\left(1_{R}\right)=\lambda_{s}\left(1_{R}\right)=s 1_{R}=s,
$$

hence $\psi(r)=\psi(s)$ implies $r=s$, so ψ is one-to-one, as claimed.
(iii) Use the Dorroh embedding to show that if R is a ring, with or without unity, then there exists an abelian group A an a one-to-one ring homomorphism $\varphi: R \rightarrow \operatorname{End}(A,+)$. That is: every ring is [isomorphic to] a subring of the endomorphism ring of an abelian group.
Proof. Let R be a ring. If R has a unity, then part (ii) already yields that R embeds into the endomorphism ring of the abelian group $(R,+)$.
If R does not have a unity, then we know that R embeds into the ring with unity S constructed using the Dorroh embedding. Now, the map $\psi: S \rightarrow \operatorname{End}(S)$ from part (ii) is a ring embedding. Thus, the composition $\psi \circ h: R \rightarrow \operatorname{End}(S)$ gives the desired embedding.
Note: In fact, the latter construction can be done to any ring, whether or not it has a unity. If R already has a unity, then this embeds it as a subring into a new ring with a new unity.
4. A Boolean ring is a ring $(R,+, \cdot)$ such that $a^{2}=a$ for all $a \in R$. Prove that every Boolean ring is commutative and $a=-a$ for all $a \in R$. Hint: Square $(a+a)$ and $(a-b)$. (An element a of a ring such that $a^{2}=a$ is called an idempotent.)
Proof. We have

$$
\begin{aligned}
& (a+a)=(a+a)^{2}=a^{2}+a^{2}+a^{2}+a^{2}=a+a+a+a \\
& (a-b)=(a-b)^{2}=a^{2}-a b-b a+b^{2}=a-a b-b a+b
\end{aligned}
$$

From the first equality, cancelling we get $a+a=0$, so $a=-a$. This holds for all $a \in R$, and so in particular we also have $a b=-a b$ for any $a, b \in R$. Thus, in the second equation we have

$$
a+b=a-b=a-a b-b a+b=a+a b+b a+b
$$

Cancelling again, we get $a b+b a=0$, so $a b=-b a=b a$. Thus, $a b=b a$ and so the ring is commutative.
5. Let X be a set, and let $\mathcal{P}(X)$ be the power set of X (the set of all subsets of X). Define operations \oplus and \odot on $\mathcal{P}(X)$ by:

$$
\begin{array}{llrl}
A \oplus B & =(A-B) \cup(B-A) & & \text { (symmetric difference) } \\
A \odot B & =A \cap B & & \text { (intersection) }
\end{array}
$$

Show that $(\mathcal{P}(X), \oplus, \odot)$ is a Boolean ring with unity.
Proof. The symmetric difference is commutative and associative: $(A \oplus B) \oplus C$ consists exactly of the elements that are in exactly one of A, B, and C, or in all three; the same holds for $A \oplus(B \oplus C)$.
The empty set is the additive identity: $A \oplus \varnothing=(A-\varnothing) \cup(\varnothing-A)=A$. Finally, A is the additive inverse of A, since $A \oplus A=(A-A) \cup(A-A)=\varnothing$.
The intersection is associative; the set X is a multiplicative identity. Since intersection distributes over union, we have that

$$
A \odot(B \oplus C)=A \cap((B-C) \cup(C-B))=(A \cap(B-C)) \cup(A \cap(C-B))
$$

On the other hand,

$$
(A \odot B) \oplus(A \odot C)=((A \cap B)-(A \cap C)) \cup((A \cap C)-(A \cap B))
$$

Now we simply note that $R \cap(S-T)=(R \cap S)-(R \cap T)$. Indeed, if $a \in R \cap(S-T)$ then $a \in R$, $a \in S$, and $a \notin T$; therefore, $a \in R \cap S$ and $a \notin R \cap T$, so $a \in(R \cap S)-(R \cap T)$. Conversely, if $x \in(R \cap S)-(R \cap T)$, then $x \in R \cap S$ and $x \notin R \cap T$; thus, $x \in R, x \in S$, and either $x \notin R$ or $x \notin T$. Since $x \notin R$ is impossible, we get $x \in R, x \in S$, and $x \notin T$; that is, $x \in R \cap(S-T)$.
Thus, we get the equality we seek and we have a ring with unity. Finally, $A \odot A=A \cap A=A$, so we have a boolean ring.
6. Give an example of a ring R and a subring S such that R has a unity, S has a unity, but $1_{S} \neq 1_{R}$.

Answer. Let $R=\mathbb{Z} \times \mathbb{Z}$; the unity of R is (1, 1). Let $S=\mathbb{Z} \times\{0\}$. This is a subring; and $(1,0) \in S$ is a unity for S. So R is a ring, S is a subring of R, R has a unity, S has a unity, but $1_{S}=(1,0) \neq(1,1)=1_{R}$.

