Math 566 - Homework 9

Due Wednesday April 17, 2024

- 1. Let K be an extension field of F.
 - (i) Show that [K:F] = 1 if and only if K = F.
 - (ii) Show that if [K : F] is prime, and L is an intermediate field (that is, $F \subseteq L \subseteq K$), then either F = L or L = K.
 - (iii) Show that if $u \in K$ has degree n over F, and [K : F] is finite, then n divides [K : F].
- 2. Let $p(x) = x^3 6x^2 + 9x + 3 \in \mathbb{Q}[x]$.
 - (i) Show that p(x) is irreducible over \mathbb{Q} .
 - (ii) Let u be a root of p(x), and let $K = \mathbb{Q}(u)$. Express each of the following elements of K in terms of the basis $\{1, u, u^2\}$:
 - (a) u^4 .
 - (b) u^5 .

(c)
$$3u^5 - u^4 + 2$$
.

- (d) $(u+1)^{-1}$.
- 3. Let K be an extension of F, and let $u \in K$. Show that if [F(u) : F] is finite and odd, then $F(u^2) = F(u)$.
- 4. Let *E* and *F* be field extensions of \mathbb{Q} . Prove that if $\sigma: E \to F$ is a nonzero field homomorphism, then $\sigma(q) = q$ for all $q \in \mathbb{Q}$.
- 5. Let $F = \mathbb{Q}(\sqrt{2})$.
 - (i) Show that $x^2 3 \in F[x]$ is irreducible.
 - (ii) Show that every element of $F(\sqrt{3})$ can be written uniquely in the form

$$a_0 + a_2\sqrt{2} + a_3\sqrt{3} + a_6\sqrt{6}, \qquad a_i \in \mathbb{Q}$$

HINT: Note that $\{1, \sqrt{3}\}$ is a basis for $F(\sqrt{3})$ over F, and that $\{1, \sqrt{2}\}$ is a basis for F over \mathbb{Q} .

(iii) Define $\sigma \colon F(\sqrt{3}) \to F(\sqrt{3})$ by

$$\sigma(a_0 + a_2\sqrt{2} + a_3\sqrt{3} + a_6\sqrt{6}) = a_0 - a_2\sqrt{2} + a_3\sqrt{3} - a_6\sqrt{6}.$$

Prove that σ is an isomorphism of $F(\sqrt{3})$ to itself which does not restrict to the identity on F.

- 6. Show that there is an isomorphism from $\mathbb{Q}(\sqrt{2})$ to $\mathbb{Q}(\sqrt{2}+1)$ that restricts to the identity on \mathbb{Q} , even though $\sqrt{2}$ and $\sqrt{2}+1$ do not satisfy the same monic irreducible over \mathbb{Q} .
- 7. Let $\sigma \colon \mathbb{R} \to \mathbb{R}$ be a field automorphism.
 - (i) Prove that σ must send positive reals to positive reals.
 - (ii) Prove that if $a, b \in \mathbb{R}$ and a < b, then $\sigma(a) < \sigma(b)$.
 - (iii) Show that if $q \in \mathbb{Q}$, then $\sigma(q) = q$.
 - (iv) Show that $\sigma(r) = r$ for every $r \in \mathbb{R}$.