Math 566 - Homework 9

Due Wednesday April 17, 2024

1. Let K be an extension field of F.
(i) Show that $[K: F]=1$ if and only if $K=F$.
(ii) Show that if $[K: F]$ is prime, and L is an intermediate field (that is, $F \subseteq L \subseteq K$), then either $F=L$ or $L=K$.
(iii) Show that if $u \in K$ has degree n over F, and $[K: F]$ is finite, then n divides $[K: F]$.
2. Let $p(x)=x^{3}-6 x^{2}+9 x+3 \in \mathbb{Q}[x]$.
(i) Show that $p(x)$ is irreducible over \mathbb{Q}.
(ii) Let u be a root of $p(x)$, and let $K=\mathbb{Q}(u)$. Express each of the following elements of K in terms of the basis $\left\{1, u, u^{2}\right\}$:
(a) u^{4}.
(b) u^{5}.
(c) $3 u^{5}-u^{4}+2$.
(d) $(u+1)^{-1}$.
3. Let K be an extension of F, and let $u \in K$. Show that if $[F(u): F]$ is finite and odd, then $F\left(u^{2}\right)=F(u)$.
4. Let E and F be field extensions of \mathbb{Q}. Prove that if $\sigma: E \rightarrow F$ is a nonzero field homomorphism, then $\sigma(q)=q$ for all $q \in \mathbb{Q}$.
5. Let $F=\mathbb{Q}(\sqrt{2})$.
(i) Show that $x^{2}-3 \in F[x]$ is irreducible.
(ii) Show that every element of $F(\sqrt{3})$ can be written uniquely in the form

$$
a_{0}+a_{2} \sqrt{2}+a_{3} \sqrt{3}+a_{6} \sqrt{6}, \quad a_{i} \in \mathbb{Q} .
$$

Hint: Note that $\{1, \sqrt{3}\}$ is a basis for $F(\sqrt{3})$ over F, and that $\{1, \sqrt{2}\}$ is a basis for F over \mathbb{Q}.
(iii) Define $\sigma: F(\sqrt{3}) \rightarrow F(\sqrt{3})$ by

$$
\sigma\left(a_{0}+a_{2} \sqrt{2}+a_{3} \sqrt{3}+a_{6} \sqrt{6}\right)=a_{0}-a_{2} \sqrt{2}+a_{3} \sqrt{3}-a_{6} \sqrt{6} .
$$

Prove that σ is an isomorphism of $F(\sqrt{3})$ to itself which does not restrict to the identity on F.
6. Show that there is an isomorphism from $\mathbb{Q}(\sqrt{2})$ to $\mathbb{Q}(\sqrt{2}+1)$ that restricts to the identity on \mathbb{Q}, even though $\sqrt{2}$ and $\sqrt{2}+1$ do not satisfy the same monic irreducible over \mathbb{Q}.
7. Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ be a field automorphism.
(i) Prove that σ must send positive reals to positive reals.
(ii) Prove that if $a, b \in \mathbb{R}$ and $a<b$, then $\sigma(a)<\sigma(b)$.
(iii) Show that if $q \in \mathbb{Q}$, then $\sigma(q)=q$.
(iv) Show that $\sigma(r)=r$ for every $r \in \mathbb{R}$.

