Math 566 - Homework 7

Due Wednesday April 3, 2024

1. Let R be a ring with unity and let $I \triangleleft R$ be an ideal of R. Prove that $I[x]$ is an ideal of $R[x]$ and $R[x] / I[x] \cong(R / I)[x]$.
2. Let R be the ring of 2×2 matrices with coefficients in \mathbb{Z}
(i) Show that for all $A \in R,(x+A)(x-A)=x^{2}-A^{2}$ holds in $R[x]$.
(ii) Show that there are matrices A and C in R such that

$$
(C+A)(C-A) \neq C^{2}-A^{2} .
$$

3. Let R be a commutative ring. Given $p \in R[x]$,

$$
p=a_{0}+a_{1} x+\cdots+a_{n} x^{n},
$$

we have a function $\mathbf{p}: R \rightarrow R$ given by

$$
\mathbf{p}(r)=a_{0}+a_{1} r+\cdots+a_{n} r^{n} .
$$

The assignment $p \mapsto \mathbf{p}$ defines a ring homomorphism $\varphi: R[x] \rightarrow R^{R}$, the ring of all functions from R to itself with pointwise addition and product. (You may take this for granted).
Show that if R is finite and nonzero, then φ is not one-to-one.
4. Let D be an integral domain. Show that the morphism $\varphi: D[x] \rightarrow D^{D}$ from the previous problem is one-to-one if and only if D is infinite.
5. Show that if F is a field, then (x) is a maximal ideal of $F[x]$, but it is not the only maximal ideal of F.
6. Let D be an integral domain, and let $c \in D$ be an irreducible element. Prove that the ideal (x, c) of $D[x]$ is not principal.
7. Let R be a commutative ring with unity, and let

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x] .
$$

Define the formal derivative of $f(x)$ by

$$
f^{\prime}(x)=a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1} .
$$

with $f^{\prime}(x)=0$ if $f=0$.
(i) Prove that $(f+g)^{\prime}=f^{\prime}+g^{\prime},(a f)^{\prime}=a f^{\prime}$, and $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$ for all $f, g \in R[x]$ and all $a \in R$.
(ii) Prove that if R is an integral domain, $\operatorname{deg}(f)>0$, and $\operatorname{char}(R)=0$, then $f^{\prime} \neq 0$.
(iii) Prove that if R is an integral domain, $\operatorname{deg}(f)>0$, and $\operatorname{char}(R)=p$, then $f^{\prime}=0$ if and only if f is a polynomial in x^{p}. That is,

$$
f=a_{0}+a_{p} x^{p}+a_{2 p} x^{2 p}+\cdots+a_{m p} x^{m p}, \quad a_{i} \in R .
$$

