Math 566 - Homework 6

Due Wednesday March 6, 2024

1. Let $R=\mathbb{Z}_{6}$, and $S=\{2,4\}$. Prove that S is a multiplicative subset of R, and that $S^{-1} R \cong \mathbb{Z}_{3}$.
2. Let $S=\left\{ \pm 1001^{k} \mid k\right.$ a positive integer $\}$. Let $\varphi: \mathbb{Z} \rightarrow S^{-1} \mathbb{Z}$ be the canonical map, $\varphi(a)=\frac{1001 a}{1001}$. Describe the prime factorization of all $a \in \mathbb{Z}$ such that $\varphi(a)$ is a unit in $S^{-1} \mathbb{Z}$.
3. Let P be a nonzero prime ideal of \mathbb{Z}, and let \mathbb{Z}_{P} be the localization of \mathbb{Z} at P; that is, $\mathbb{Z}_{P}=(\mathbb{Z}-P)^{-1} \mathbb{Z}$. Show that we can identify \mathbb{Z}_{P} with the subring of \mathbb{Q} consisting of the rationals that can be written as $\frac{a}{b}$ with $a, b \in \mathbb{Z}$ and $b \notin P$.
4. Show that if we view \mathbb{Z}_{P} as a subring of \mathbb{Q} as in Problem 3, then

$$
\bigcap_{P} \mathbb{Z}_{P}=\mathbb{Z}
$$

where the intersection runs over all nonzero prime ideals of \mathbb{Z}.
5. Fractions of quotients. Let R be a commutative ring, I be an ideal of R, and let $\pi: R \rightarrow R / I$ be the canonical projection onto the quotient.
(i) Show that if S is a multiplicative subset of R, then $\pi S=\{\pi(s) \mid s \in S\}$ is a multiplicative subset of R / I.
(ii) Show that $\theta: S^{-1} R \rightarrow(\pi S)^{-1}(R / I)$ given by $\theta\left(\frac{r}{s}\right)=\frac{\pi(r)}{\pi(s)}$ is a well-defined surjective ring homomorphism.
(iii) Recall that $S^{-1} I \triangleleft S^{-1} R$. Prove that $\left(S^{-1} R\right) / S^{-1} I \cong(\pi S)^{-1}(R / I)$.
6. Fractions of fractions. Let R be a commutative ring, and S a multiplicative subset of R. Let T be the a multiplicative subset of $S^{-1} R$, and let

$$
S_{*}=\left\{r \in R \left\lvert\, \begin{array}{l|l}
\frac{r}{s} \in T \text { for some } s \in S
\end{array}\right.\right\} .
$$

(i) Show that S_{*} is a multiplicative subset of R.
(ii) Prove that if $t \in S_{*}$ and $s \in S$, then $s r \in S_{*}$.
(iii) Define $f: T^{-1}\left(S^{-1} R\right) \rightarrow S_{*}^{-1} R$ by $f\left(\frac{a / t}{b / u}\right)=\frac{a u}{b t}$. Show that this is a welldefined ring homomorphism.
(iv) Prove that $T^{-1}\left(S^{-1} R\right) \cong S_{*}^{-1} R$.

Note: This means that one can realize a ring of quotients of a ring of quotients of R as a ring of quotients of R; this is analogous to the fact that a quotient of a quotient of R can be realized as a quotient of R (the Third Isomorphism Theorem).

