Math 566 - Homework 5

Due Wednesday February 28, 2024
The assignment continues in the back.

1. The Hilbert numbers are the positive integers of the form $4 n+1$, with $n \geq 0$,

$$
\mathscr{H}=1+4 \mathbb{N} .
$$

A Hilbert prime is a Hilbert number greater than 1 that is not divisible by any smaller Hilbert number except 1.
(i) Let $a, b \in \mathscr{H}$. Show that $a \mid b$ in \mathbb{Z} if and only if there exists $c \in \mathscr{H}$ such that $b=a c$. Thus, divisibility in \mathscr{H} coincides with divisibily in \mathbb{Z}.
(ii) Prove that a Hilbert number is a Hilbert prime if and only if it is either an integer prime of the form $4 n+1$ (such as $5,13,17$, etc), or an integer of the form $(4 a+3)(4 b+3)$ where both $4 a+3$ and $4 b+3$ are integer primes (for example, $21=(3)(7))$.
(iii) Let a be a Hilbert number greater than 1. Prove that a can be written as a product of Hilbert primes using strong induction: if a is a Hilbert prime, then we can write $a=a$. Otherwise, show there is a smallest Hilbert prime b such that $b \mid a$, and writing $a=b c$, apply the induction hypothesis to c.
(iv) Using the above algorithm, factor 441 into Hilbert primes.
(v) Find a different factorization of 441 into Hilbert primes. Conclude that the Hilbert numbers do not satisfy unique factorization.
2. Let R be a Euclidean domain with Euclidean function φ.
(i) Prove that for all $r \neq 0, \varphi\left(1_{R}\right) \leq \varphi(r)$.
(ii) Prove that $u \in R$ is a unit if and only if $\varphi(u)=\varphi\left(1_{R}\right)$.

Definition. Let R be a commutative ring with unity. A function $N: R \rightarrow \mathbb{N}$ is a Dedekind-Hasse norm if $N(a) \geq 0$ for all a, with equality if and only if $a=0$; and for every nonzero $a, b \in R$, either $a \in(b)$ or there exists a nonzero element $c \in(a, b)$ with norm strictly smaller than that of b (that is, either b divides a, or there exist $s, t \in R$ such that $0<N(s a-t b)<N(b)$.
3. Let R be an integral domain. Prove that if there is a Dedekind-Hasse norm N on R, then R is a PID. Hint: Given an nonzero ideal I, let b be a nonzero element of I with $N(b)$ minimal.

Definition. Let R be an integral domain. A nonzero nonunit $u \in R$ is said to be a universal side divisor if for every $x \in R$ there is a $z \in R$ such that z is either 0 or a unit, and u divides $x-z$; that is, there is a weak version of the division algorithm for u : every x can be written as $x=q u+z$, where z is either 0 or a unit.
4. Show that if R is a Euclidean domain that is not a field, then there are universal side divisors in R.
5. Let $\alpha=\frac{1+\sqrt{-19}}{2}$, and let $R=\mathbb{Z}[\alpha]=\{a+b \alpha \mid a, b \in \mathbb{Z}\}$, which is a subring of \mathbb{C}. Define $N: R \rightarrow \mathbb{Z}$ by

$$
N(a+b \alpha)=(a+b \alpha)(a+b \bar{\alpha})=a^{2}+a b+5 b^{2}
$$

where $\bar{\alpha}$ is the complex conjugate of α.
(i) Show that N is multiplicative: if $x, y \in R$, then $N(x y)=N(x) N(y)$.
(ii) Show that $N(x) \geq 0$ for all $x \in R$, and $N(x)=0$ if and only if $x=0$.
(iii) Show that x is a unit in R if and only if $N(x)=1$.
(iv) Show that the only units of R are 1 and -1 .
(v) Show that if $a, b \in \mathbb{Z}$, and $b \neq 0$, then $N(a+b \alpha) \geq 5$. Conclude that the smallest nonzero values of N are 1 and 4 , and determine all $x \in R$ with $N(x)=4$.
(vi) Show that both 2 and 3 are irreducible in R.
(vii) Show that if $u \in R$ is a universal side divisor, then $u= \pm 2$ or $u= \pm 3$.
(viii) Show that none of $\alpha, \alpha+1$, and $\alpha-1$ are divisible by ± 2 or by ± 3.
(ix) Conclude that R does not have universal side divisors, and hence is not a Euclidean domain.

Note. One can show that N is a Dedekind-Hasse norm on R, so that R is a PID that is not a Euclidean domain.

