Math 566 - Homework 4

Due Wednesday February 21, 2024

- 1. Let R be a ring, and I an ideal of R. Show that if R is a principal ideal ring (a ring in which every ideal is principal), then R/I is a principal ideal ring. Do not assume R is commutative or has a unity.
- 2. Let $R = \mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$. This is a unital subring of \mathbb{C} (you may take this for granted). Define $N \colon R \to \mathbb{Z}$ by

$$N(a + b\sqrt{-5}) = (a + b\sqrt{-5})(a - b\sqrt{-5}) = a^2 + 5b^2.$$

- (i) Show that N is multiplicative: if $x, y \in R$, then N(xy) = N(x)N(y).
- (ii) Show that $N(x) \ge 0$ for all $x \in R$, with equality if and only if x = 0.
- (iii) Show that N(x) = 1 if and only if x is a unit in R. Determine all units of R.
- (iv) Show that if $a, b \in R$ and $a \mid b$ in R, then $N(a) \mid N(b)$ in \mathbb{Z} .
- (v) Show that 2, 3, $1 + \sqrt{-5}$, and $1 \sqrt{-5}$ are irreducible in R.
- (vi) Show that none of 2, 3, $1 + \sqrt{-5}$, and $1 \sqrt{-5}$ are prime.
- 3. A complex number z is an algebraic integer if and only if there is a monic polynomial p(x) with integer coefficients,

$$p(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0, \qquad a_i \in \mathbb{Z}$$

such that p(z) = 0. The set A of all algebraic integers forms a subring of \mathbb{C} (you may take this for granted).

- (i) Prove that the only rational numbers that are algebraic integers are the integers.
- (ii) Prove that \mathbb{A} is not a field, but has no irreducible elements and no primes.
- 4. A proper ideal I of a commutative ring with unity R is said to be a *primary ideal* if and only if for all $a, b \in R$, if $ab \in I$, then either $a \in I$ or $b^n \in I$ for some $n \ge 1$. Determine the primary ideals of \mathbb{Z} .
- 5. Let R be a commutative ring with unity, and let X be a nonempty subset of R. We say that d is a greatest common divisor of X if and only if
 - (i) For every $x \in X$, $d \mid x$; and
 - (ii) If $c \in R$ is such that $c \mid x$ for all $x \in X$, then $c \mid d$.

Prove that if R is a commutative principal ideal ring with unity, then every nonempty (possibly infinite) set of elements of R has a greatest common divisor.

- 6. Let R be a commutative ring with unity. Show that if $x \in R$ is nilpotent, then $1_R x$ and $1_R + x$ are both units.
- 7. Let R be a commutative ring, and let $A \subseteq R$. Let

 $\sqrt{A} = \{ r \in R \mid \text{there exists } n > 0 \text{ such that } r^n \in A \}.$

Prove that if I is an ideal of R, then \sqrt{I} is an ideal of R that contains I. The ideal \sqrt{I} is called the *radical of I*.

8. Let R be a commutative ring with unity. Show that $\sqrt{(0)}$ is the ideal of all nilpotent elements of R (we proved the set of all nilpotent elements is an ideal in Homework 3) and that it is contained in every prime ideal of R.