Math 566 - Homework 3

Due Wednesday February 7, 2024

1. Let R and S be rings, and let $f: R \rightarrow S$ be a ring homomorphism. Prove that if Q is a completely prime ideal of S that does not contain $f(R)$, then $f^{-1}(Q)$ is a completely prime ideal of R that contains $\operatorname{ker}(f)$.
2. Let $R_{1}, R_{2}, \ldots, R_{n}$ be rings with unity, and let I be an ideal of $R_{1} \times \cdots \times R_{n}$. Prove that there exist ideals $J_{i} \triangleleft R_{i}, i=1, \ldots, n$, such that $I=J_{1} \times \cdots \times J_{n}$.
3. Let R be a ring, not necessarily commutative, and let $n \geq 1$. Then $M_{n}(R)$, the group of $n \times n$ matrices with coefficients in R, is a ring with the usual matrix multiplication. (You may take this for granted). Let J be a two-sided ideal of R. Prove that $M_{n}(J)$ is an ideal of $M_{n}(R)$.
4. Let R be a ring with unity, and let $S=M_{n}(R)$. Let J be a two-sided ideal of S. We will prove that $J=M_{n}(I)$ for some two-sided ideal I of R.
(i) Let $E_{r s}$ be the matrix that has 1_{R} in the (r, s) entry and 0 s elsewhere. Show that $E_{r s} A$ is the matrix that has the s th row of A in the r th row, and zeros elsewhere. Give a similar description of $A E_{r s}$ and prove that description holds.
(ii Let I be the subset of all elements of R that appear as an entry of some element of J. Show that I is an ideal of R.
(iii) Show that $a \in I$ if and only if there exists a matrix M in J such that a is the $(1,1)$ entry of M, and all other entries of M are 0 .
(iv) Prove that $J=M_{n}(I)$.
5. Show that if R is a division ring, $n \geq 1$, and $S=M_{n}(R)$, then the zero ideal of S is a prime ideal. Show that if $n>1$, then the zero ideal is not completely prime.
6. Let $R=2 \mathbb{Z}$, the ring of even integers. Show that $4 \mathbb{Z}$ is a maximal ideal of R that is not a prime ideal, and show that $6 \mathbb{Z}$ is both maximal and prime in R.
7. Let R be a ring, not necessarily commutative, not necessarily with unity. Let $f, g: \mathbb{Q} \rightarrow R$ be ring homomorphisms. Prove that if $f(n)=g(n)$ for all $n \in \mathbb{Z}$, then $f=g$.
8. Let R be a ring, not necessarily commutative, not necessarily with unity. Prove that the following are equivalent:
(a) Every left ideal of R is finitely generated: if I is a left ideal of R, then there exist $a_{1}, \ldots, a_{n} \in I$ such that $I=\left(a_{1}, \ldots, a_{n}\right)$.
(b) R satisfies ACC (the Ascending Chain Condition) on left ideals: that is, if we have $I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{n} \subseteq \cdots$ an ascending chain of left ideals of R, then there exists n such that $I_{n}=I_{n+j}$ for all $j \geq 0$.
(c) Every nonempty collection \mathcal{S} of left ideals of R has maximal elements: if \mathcal{S} is a nonempty collection of left ideals of R, then there exists a left ideal $M \in \mathcal{S}$ such that for all left ideals $I \in \mathcal{S}$, if $M \subseteq I$ then $M=I$.
