Math 566 - Homework 3

Due Wednesday February 7, 2024

- 1. Let R and S be rings, and let $f: R \to S$ be a ring homomorphism. Prove that if Q is a completely prime ideal of S that does not contain f(R), then $f^{-1}(Q)$ is a completely prime ideal of R that contains ker(f).
- 2. Let R_1, R_2, \ldots, R_n be rings with unity, and let I be an ideal of $R_1 \times \cdots \times R_n$. Prove that there exist ideals $J_i \triangleleft R_i$, $i = 1, \ldots, n$, such that $I = J_1 \times \cdots \times J_n$.
- 3. Let R be a ring, not necessarily commutative, and let $n \ge 1$. Then $M_n(R)$, the group of $n \times n$ matrices with coefficients in R, is a ring with the usual matrix multiplication. (You may take this for granted). Let J be a two-sided ideal of R. Prove that $M_n(J)$ is an ideal of $M_n(R)$.
- 4. Let R be a ring with unity, and let $S = M_n(R)$. Let J be a two-sided ideal of S. We will prove that $J = M_n(I)$ for some two-sided ideal I of R.
 - (i) Let E_{rs} be the matrix that has 1_R in the (r, s) entry and 0s elsewhere. Show that $E_{rs}A$ is the matrix that has the sth row of A in the rth row, and zeros elsewhere. Give a similar description of AE_{rs} and prove that description holds.
 - (ii Let I be the subset of all elements of R that appear as an entry of some element of J. Show that I is an ideal of R.
 - (iii) Show that $a \in I$ if and only if there exists a matrix M in J such that a is the (1,1) entry of M, and all other entries of M are 0.
 - (iv) Prove that $J = M_n(I)$.
- 5. Show that if R is a division ring, $n \ge 1$, and $S = M_n(R)$, then the zero ideal of S is a prime ideal. Show that if n > 1, then the zero ideal is not completely prime.
- 6. Let $R = 2\mathbb{Z}$, the ring of even integers. Show that $4\mathbb{Z}$ is a maximal ideal of R that is not a prime ideal, and show that $6\mathbb{Z}$ is both maximal and prime in R.
- 7. Let R be a ring, not necessarily commutative, not necessarily with unity. Let $f, g: \mathbb{Q} \to R$ be ring homomorphisms. Prove that if f(n) = g(n) for all $n \in \mathbb{Z}$, then f = g.
- 8. Let R be a ring, not necessarily commutative, not necessarily with unity. Prove that the following are equivalent:
 - (a) Every left ideal of R is finitely generated: if I is a left ideal of R, then there exist $a_1, \ldots, a_n \in I$ such that $I = (a_1, \ldots, a_n)$.
 - (b) R satisfies ACC (the Ascending Chain Condition) on left ideals: that is, if we have $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots$ an ascending chain of left ideals of R, then there exists n such that $I_n = I_{n+j}$ for all $j \ge 0$.
 - (c) Every nonempty collection S of left ideals of R has maximal elements: if S is a nonempty collection of left ideals of R, then there exists a left ideal $M \in S$ such that for all left ideals $I \in S$, if $M \subseteq I$ then M = I.