Math 566 - Homework 2

Due Wednesday January 31, 2024

- 1. Let $(R, +, \cdot)$ be a ring, and let $(R^{op}, +, \circ)$ be the opposite ring, as in Homework 1, Problem 1. Let *I* be a subset of *R*. Show that *I* is a left (resp. right) ideal of $(R, +, \cdot)$ if and only if *I* is a right (resp. left) ideal of $(R^{op}, +, \circ)$
- 2. Let R be a ring, and let X be a set. Let R^X be the set of all functions $f: X \to R$. Define addition and multiplication in R^X by

$$(f+g)(x) = f(x) + g(x),$$
 $(fg)(x) = f(x)g(x)$

where the operations on the right hand side are the operations of R.

- (i) Prove that \mathbb{R}^X with these operations is a ring.
- (ii) Prove that R^X is commutative if and only if R is commutative or X is empty.
- (iii) Prove that R^X has a unity if and only if R has a unity or X is empty.
- 3. Let R and S be rings with unity, and let $f: R \to S$ be a ring homomorphism; recall that we do not require ring homomorphisms to be unital unless we specify that they are.
 - (i) Show that if $1_S \in \text{Im}(f)$, then $f(1_R) = 1_S$.
 - (ii) Prove that if there exists $u \in R$ such that f(u) is a unit in S, then $f(1_R) = 1_S$.
- 4. Let p be a prime number.
 - (i) Prove that if $1 \le k \le p-1$, then $\binom{p}{k}$ is a multiple of p.
 - (ii) THE FRESHMAN'S DREAM. Let R be a commutative ring with identity such that $\operatorname{char}(R) = p$. Prove that for all $a, b \in R$ and positive integers $n, (a+b)^{p^n} = a^{p^n} + b^{p^n}$.
- 5. Let R be a ring. An element $r \in R$ is *nilpotent* if and only if there exists a positive integer n such that $r^n = 0$.
 - (i) Show that if R is commutative, then the set of all nilpotent elements of R is an ideal of R.
 - (ii) Give an example of a ring R and elements a and b of R such that each of a and b are nilpotent, but neither ab nor a + b are nilpotent. HINT: Try 2×2 matrices.
- 6. Given a function $f \colon \mathbb{R} \to \mathbb{R}$, the support of f is the set

$$\operatorname{supp}(f) = \{ r \in R \mid f(r) \neq 0 \}.$$

We say f has compact support if and only if there exists N > 0 such that $\operatorname{supp}(f) \subseteq [-N, N]$.

Let R be the ring of all functions $f \colon \mathbb{R} \to \mathbb{R}$ with pointwise addition and multiplication.

- (i) Let S be the set of all elements of R that are continuous and have compact support. Prove that S is a subring of R.
- (ii) Prove that S does not have an identity, but nonetheless $S^2 = S$.
- (iii) Prove that S is not an ideal of R.