Math 566 - Homework 2

Due Wednesday January 31, 2024

1. Let $(R,+, \cdot)$ be a ring, and let $\left(R^{\mathrm{op}},+, \circ\right)$ be the opposite ring, as in Homework 1 , Problem 1. Let I be a subset of R. Show that I is a left (resp. right) ideal of $(R,+, \cdot)$ if and only if I is a right (resp. left) ideal of ($R^{\mathrm{op}},+, \circ$)
2. Let R be a ring, and let X be a set. Let R^{X} be the set of all functions $f: X \rightarrow R$. Define addition and multiplication in R^{X} by

$$
(f+g)(x)=f(x)+g(x), \quad(f g)(x)=f(x) g(x)
$$

where the operations on the right hand side are the operations of R.
(i) Prove that R^{X} with these operations is a ring.
(ii) Prove that R^{X} is commutative if and only if R is commutative or X is empty.
(iii) Prove that R^{X} has a unity if and only if R has a unity or X is empty.
3. Let R and S be rings with unity, and let $f: R \rightarrow S$ be a ring homomorphism; recall that we do not require ring homomorphisms to be unital unless we specify that they are.
(i) Show that if $1_{S} \in \operatorname{Im}(f)$, then $f\left(1_{R}\right)=1_{S}$.
(ii) Prove that if there exists $u \in R$ such that $f(u)$ is a unit in S, then $f\left(1_{R}\right)=1_{S}$.
4. Let p be a prime number.
(i) Prove that if $1 \leq k \leq p-1$, then $\binom{p}{k}$ is a multiple of p.
(ii) The Freshman's Dream. Let R be a commutative ring with identity such that $\operatorname{char}(R)=p$. Prove that for all $a, b \in R$ and positive integers $n,(a+b)^{p^{n}}=a^{p^{n}}+b^{p^{n}}$.
5. Let R be a ring. An element $r \in R$ is nilpotent if and only if there exists a positive integer n such that $r^{n}=0$.
(i) Show that if R is commutative, then the set of all nilpotent elements of R is an ideal of R.
(ii) Give an example of a ring R and elements a and b of R such that each of a and b are nilpotent, but neither $a b$ nor $a+b$ are nilpotent. Hint: Try 2×2 matrices.
6. Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$, the support of f is the set

$$
\operatorname{supp}(f)=\{r \in R \mid f(r) \neq 0\} .
$$

We say f has compact support if and only if there exists $N>0$ such that $\operatorname{supp}(f) \subseteq$ $[-N, N]$.
Let R be the ring of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with pointwise addition and multiplication.
(i) Let S be the set of all elements of R that are continuous and have compact support. Prove that S is a subring of R.
(ii) Prove that S does not have an identity, but nonetheless $S^{2}=S$.
(iii) Prove that S is not an ideal of R.

