Math 566 - Homework 10

Due Wednesday April 24, 2024

- 1. Let K be an extension of F, and let $u \in K$. Show that if u is the root of a monic polynomial $x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in K[x]$, and each a_i is algebraic over F, then u is algebraic over F.
- 2. Let K be an extension of F, and let L and M be intermediate extensions (so $F \subseteq L \subseteq K$ and $F \subseteq M \subseteq K$).
 - (i) Prove that $[LM:M] \leq [L:L \cap M]$.
 - (ii) Conclude that $[LM:M] \leq [L:F]$.
- 3. Let K be an extension of F, and let $u, v \in K$ be algebraic over F with [F(u) : F] = nand [F(v) : F] = m.
 - (i) Prove that $[F(u, v) : F] \leq nm$.
 - (ii) Show that if gcd(m, n) = 1, then [F(u, v) : F] = nm.
- 4. Let K be a finite dimensional extension of F and let L and M be intermediate extensions.
 - (i) Show that if [LM:F] = [L:F][M:F], then $L \cap M = F$.
 - (ii) Show that if [L : F] = 2 or [M : F] = 2, and $L \cap M = F$, then we will have [LM : F] = [L : F][M : F].
 - (iii) Use a real and a nonreal cube root of 2 to give an example of a finite dimensional extension K of \mathbb{Q} , and intermediate fields L and M, such that $L \cap M = \mathbb{Q}$ and $[L:\mathbb{Q}] = [M:\mathbb{Q}] = 3$, but $[LM:\mathbb{Q}] < 9$.
- 5. Prove that $\mathbb{Q}(\sqrt{2})$ is not isomorphic to $\mathbb{Q}(\sqrt{3})$. NOTE: We know there is no isomorphism $\mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{3})$ that sends $\sqrt{2}$ to $\sqrt{3}$; but this, in and of itself, does not preclude the possibility of an isomorphism where $\sqrt{2}$ is mapped to some other element of $\mathbb{Q}(\sqrt{3})$.
- 6. Let K be an extension of F, where $char(F) \neq 2$. Prove that [K : F] = 2 if and only if $K = F(\sqrt{d})$ for some $d \in F$ that is not a square in F.
- 7. Let K be an extension of F where $char(F) \neq 2$. Prove that if [K : F] = 2, then K is Galois over F.
- 8. Let K be a finite dimensional Galois extension of F, and let L and M be intermediate fields. Use the Fundamental Theorem of Galois Theory to prove the following:
 - (i) $\operatorname{Aut}_{LM}(K) = \operatorname{Aut}_{L}(K) \cap \operatorname{Aut}_{M}(K)$.
 - (ii) $\operatorname{Aut}_{L\cap M}(K) = \langle \operatorname{Aut}_L(K), \operatorname{Aut}_M(K) \rangle.$

You may invoke the theorem even though we have not finished proving it in class. HINT: You should be able to prove this using only the correspondence between intermediate fields and subgroups.