Math 566 - Homework 10

Due Wednesday April 24, 2024

1. Let K be an extension of F, and let $u \in K$. Show that if u is the root of a monic polynomial $x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in K[x]$, and each a_{i} is algebraic over F, then u is algebraic over F.
2. Let K be an extension of F, and let L and M be intermediate extensions (so $F \subseteq L \subseteq K$ and $F \subseteq M \subseteq K$).
(i) Prove that $[L M: M] \leq[L: L \cap M]$.
(ii) Conclude that $[L M: M] \leq[L: F]$.
3. Let K be an extension of F, and let $u, v \in K$ be algebraic over F with $[F(u): F]=n$ and $[F(v): F]=m$.
(i) Prove that $[F(u, v): F] \leq n m$.
(ii) Show that if $\operatorname{gcd}(m, n)=1$, then $[F(u, v): F]=n m$.
4. Let K be a finite dimensional extension of F and let L and M be intermediate extensions.
(i) Show that if $[L M: F]=[L: F][M: F]$, then $L \cap M=F$.
(ii) Show that if $[L: F]=2$ or $[M: F]=2$, and $L \cap M=F$, then we will have $[L M: F]=[L: F][M: F]$.
(iii) Use a real and a nonreal cube root of 2 to give an example of a finite dimensional extension K of \mathbb{Q}, and intermediate fields L and M, such that $L \cap M=\mathbb{Q}$ and $[L: \mathbb{Q}]=[M: \mathbb{Q}]=3$, but $[L M: \mathbb{Q}]<9$.
5. Prove that $\mathbb{Q}(\sqrt{2})$ is not isomorphic to $\mathbb{Q}(\sqrt{3})$. Note: We know there is no isomorphism $\mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{3})$ that sends $\sqrt{2}$ to $\sqrt{3}$; but this, in and of itself, does not preclude the possibility of an isomorphism where $\sqrt{2}$ is mapped to some other element of $\mathbb{Q}(\sqrt{3})$.
6. Let K be an extension of F, where $\operatorname{char}(F) \neq 2$. Prove that $[K: F]=2$ if and only if $K=F(\sqrt{d})$ for some $d \in F$ that is not a square in F.
7. Let K be an extension of F where $\operatorname{char}(F) \neq 2$. Prove that if $[K: F]=2$, then K is Galois over F.
8. Let K be a finite dimensional Galois extension of F, and let L and M be intermediate fields. Use the Fundamental Theorem of Galois Theory to prove the following:
(i) $\operatorname{Aut}_{L M}(K)=\operatorname{Aut}_{L}(K) \cap \operatorname{Aut}_{M}(K)$.
(ii) $\operatorname{Aut}_{L \cap M}(K)=\left\langle\operatorname{Aut}_{L}(K), \operatorname{Aut}_{M}(K)\right\rangle$.

You may invoke the theorem even though we have not finished proving it in class. Hint: You should be able to prove this using only the correspondence between intermediate fields and subgroups.

