Math 566 - Homework 1

Due Wednesday January 24, 2024

- 1. Let $(R, +, \cdot)$ be a ring, and define the *opposite ring* $(R^{\text{op}}, +, \circ)$ as follows: the underlying set of R^{op} is R, and addition in R^{op} is the same as addition on R. Multiplication on R^{op} , which we will denote by \circ , is defined by $a \circ b = b \cdot a$, where \cdot is the multiplication in R.
 - (i) Show that $(R^{\text{op}}, +, \circ)$ is a ring.
 - (ii) Show that R has an identity if and only if R^{op} has an identity.
 - (iii) Show that R is a division ring if and only if R^{op} is a division ring.
- 2. Let $(R, +, \cdot)$ be a set, together with two binary operations, and assume that the set and operations satisfy all the axioms of a ring, *except perhaps* for commutativity of addition. That is, (R, +) is a (not necessarily commutative) group, \cdot is associative, and \cdot distributes on both sides over +.
 - (i) Prove that if R has a multiplicative identity, that is, an element $1_R \in R$ such that for all $a \in R$ we have $a \cdot 1_R = 1_R \cdot a = a$, then x + y = y + x for all $x, y \in R$; that is, commutativity of + is a consequence of the other axioms of a ring, together with the existence of a unity.
 - (ii) Give an example to show that commutativity of + does not follow from the other axioms if R does not have a multiplicative identity, by exhibiting an example of a set R, and binary operations + and \cdot such that (R, +) is a *nonabelian* group, and \cdot is an associative operation that distributes over + on both sides.
- 3. Cayley's Theorem for Rings. Let $(R, +, \cdot)$ be a ring; for each $r \in R$, let $\lambda_r \colon R \to R$ be the function given by

 $\lambda_r(a) = ra$

- (i) Show that for each $r \in R$, λ_r is an element of End(R, +), the endomorphism group of the abelian group (R, +).
- (ii) Define $\psi \colon R \to \operatorname{End}(R, +)$ by $\psi(r) = \lambda_r$. Prove that this map is a ring homomorphism (where $\operatorname{End}(R, +)$ is a ring with pointwise addition and composition of functions). Prove that if R has a unity, then ψ is one-to-one.
- (iii) Use the Dorroh embedding to show that if R is a ring, with or without unity, then there exists an abelian group A an a one-to-one ring homomorphism $\varphi \colon R \to \text{End}(A, +)$. That is: every ring is [isomorphic to] a subring of the endomorphism ring of an abelian group.
- 4. A Boolean ring is a ring $(R, +, \cdot)$ such that $a^2 = a$ for all $a \in R$. Prove that every Boolean ring is commutative and a = -a for all $a \in R$. Hint: Square (a + a) and (a b). (An element a of a ring such that $a^2 = a$ is called an *idempotent*.)
- 5. Let X be a set, and let $\mathcal{P}(X)$ be the power set of X (the set of all subsets of X). Define operations \oplus and \odot on $\mathcal{P}(X)$ by:

$A \oplus B = (A - B) \cup (B - A)$	(symmetric difference)
$A \odot B = A \cap B$	(intersection)

Show that $(\mathcal{P}(X), \oplus, \odot)$ is a Boolean ring with unity.

6. Give an example of a ring R and a subring S such that R has a unity, S has a unity, but $1_S \neq 1_R$.