Math 566 - Homework 1

Due Wednesday January 24, 2024

1. Let $(R,+, \cdot)$ be a ring, and define the opposite ring $\left(R^{\mathrm{op}},+, \circ\right)$ as follows: the underlying set of R^{op} is R, and addition in R^{op} is the same as addition on R. Multiplication on R^{op}, which we will denote by \circ, is defined by $a \circ b=b \cdot a$, where \cdot is the multiplication in R.
(i) Show that $\left(R^{\mathrm{op}},+, \circ\right)$ is a ring.
(ii) Show that R has an identity if and only if R^{op} has an identity.
(iii) Show that R is a division ring if and only if $R^{\text {op }}$ is a division ring.
2. Let $(R,+, \cdot)$ be a set, together with two binary operations, and assume that the set and operations satisfy all the axioms of a ring, except perhaps for commutativity of addition. That is, $(R,+)$ is a (not necessarily commutative) group, \cdot is associative, and \cdot distributes on both sides over + .
(i) Prove that if R has a multiplicative identity, that is, an element $1_{R} \in R$ such that for all $a \in R$ we have $a \cdot 1_{R}=1_{R} \cdot a=a$, then $x+y=y+x$ for all $x, y \in R$; that is, commutativity of + is a consequence of the other axioms of a ring, together with the existence of a unity.
(ii) Give an example to show that commutativity of + does not follow from the other axioms if R does not have a multiplicative identity, by exhibiting an example of a set R, and binary operations + and \cdot such that $(R,+)$ is a nonabelian group, and \cdot is an associative operation that distributes over + on both sides.
3. Cayley's Theorem for Rings. Let $(R,+, \cdot)$ be a ring; for each $r \in R$, let $\lambda_{r}: R \rightarrow R$ be the function given by

$$
\lambda_{r}(a)=r a
$$

(i) Show that for each $r \in R, \lambda_{r}$ is an element of $\operatorname{End}(R,+)$, the endomorphism group of the abelian group $(R,+)$.
(ii) Define $\psi: R \rightarrow \operatorname{End}(R,+)$ by $\psi(r)=\lambda_{r}$. Prove that this map is a ring homomorphism (where $\operatorname{End}(R,+)$ is a ring with pointwise addition and composition of functions). Prove that if R has a unity, then ψ is one-to-one.
(iii) Use the Dorroh embedding to show that if R is a ring, with or without unity, then there exists an abelian group A an a one-to-one ring homomorphism $\varphi: R \rightarrow \operatorname{End}(A,+)$. That is: every ring is [isomorphic to] a subring of the endomorphism ring of an abelian group.
4. A Boolean ring is a ring $(R,+, \cdot)$ such that $a^{2}=a$ for all $a \in R$. Prove that every Boolean ring is commutative and $a=-a$ for all $a \in R$. Hint: Square $(a+a)$ and $(a-b)$. (An element a of a ring such that $a^{2}=a$ is called an idempotent.)
5. Let X be a set, and let $\mathcal{P}(X)$ be the power set of X (the set of all subsets of X). Define operations \oplus and \odot on $\mathcal{P}(X)$ by:

$$
\begin{array}{ll}
A \oplus B=(A-B) \cup(B-A) & \\
\text { (symmetric difference) } \\
A \odot B=A \cap B & \\
\text { (intersection) }
\end{array}
$$

Show that $(\mathcal{P}(X), \oplus, \odot)$ is a Boolean ring with unity.
6. Give an example of a ring R and a subring S such that R has a unity, S has a unity, but $1_{S} \neq 1_{R}$.

