
MATH 566 – Spring 2024
FINAL EXAM

Solutions
Prof Arturo Magidin

Part I

I.1 Give an example of each of the following. You do not need to prove that the example has the
given properties. (2 points each, 10 points total)

(i) A ring R with unity 1R ̸= 0R, that has no two-sided ideals other than the trivial and improper
ideals, that is other than {0R} and R, but that is not a division ring or field.

Example. One possible example is M2×2(R), the ring of 2×2 matrices with real coefficients.
In general, Mn×n(F ) where F is any field and n > 1 has this property. □

(ii) A ring R and a one-sided ideal I that is not a two-sided ideal. Specify whether I is a left
ideal or a right ideal.

Example. One example is R = M2×2(R), and

I =

{(
a b
0 0

)
∈ R

∣∣∣∣∣ a, b ∈ R

}
,

which is a right ideal but not a left ideal. □

(iii) A division ring that is not a field.

Example. The Hamiltonians H, that is

H = {a+ bi+ cj + dk | a, b, c, d ∈ R, i2 = j2 = k2 = ijk = −1}

are a classical example. □

(iv) A commutative ring R and an ideal I that is not principal.

Example. The ideal (x, y) in R[x, y] is not principal. □
(v) An integral domain D that is a UFD but not a PID.

Example. The ring Z[x] is a UFD, as a corollary of Gauss’s Lemma, but is not a PID since
(2, x) is not a principal ideal. So is R[x, y]. □

I.2 Let D be an integral domain, and let D[x] be the ring of polynomials with coefficients in D.

(i) Prove that (x) is a prime ideal of D[x]. (4 points)

Proof. The morphism ε0 : D[x] → D obtained by mapping D to itself via the identity, and
sending x 7→ 0, is a surjective ring homomorphism. The kernel are the polynomials with
constant term 0; that is, (x). By the First Isomorphism Theorem, D ∼= D[x]/(x). Since
D[x]/(x) is an integral domain, it follows that (x) is a prime ideal. □

(ii) Prove that (x) is a maximal ideal if and only if D is field. (3 points)

Proof. We have that (x) is a maximal ideal if and only if D[x]/(x) is a field, if and only if
D is a field. □

(iii) Prove that (x) is not the only nonzero prime ideal of D[x]. (3 points)

Proof. Since D is an integral domain, 0R ̸= 1R. Let ε1 : D[x] → D be the map obtained by
sending D to itself via the identity map, and letting x 7→ 1R. The kernel of this ideal does
not contain x, and contains x−1R ̸= 0; but again we have D[x]/ ker(ε1) ∼= D. So ker(ε1) is a
nonzero prime ideal that is different from (x). In fact, this ideal is equal to (x− 1R), but we
do not need to figure this out to know that it is a nonzero prime ideal different from (x). □
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I.3 Let R1 and R2 be rings with unity. Prove that if I is an ideal of R1 ×R2, then there exist ideals
J1 ◁ R1 and J2 ◁ R2 such that I = J1 × J2. (10 points)

Proof. Let π1 : R1×R2 → R1 and π2 : R1×R2 → R2 be the projections onto the first and second
factors, respectively. Let I ◁ R1 ×R2.

Let J1 = π1(I) and J2 = π2(I). Since πi are surjective, by the Lattice Isomorphism Theorem we
know that J1 ◁ R1 and J2 ◁ R2 (they are images an ideal, hence an ideal of the image). And if
(a, b) ∈ I, then a ∈ J1 and b ∈ J2, so I ⊆ J1 × J2.

To prove that J1 × J2 ⊆ I, let (r, s) ∈ J1 × J2. Then r ∈ J1, so there exists y ∈ R2 such that
(r, y) ∈ I. Symmetrically, since s ∈ J2 there exists x ∈ R1 such that (x, s) ∈ I. Since I is an
ideal, sums of products of elements of I with elements of R lie in I, so

(r, s) = (r, 0) + (0, s) = (1, 0)(r, y) + (0, 1)(x, s) ∈ I.

Thus, J1 × J2 ⊆ I, proving equality. □

I.4 Let S = {a ∈ Z | 2 ∤ a and 3 ∤ a} be the set of all integers that are not multiples of 2 or of 3. You
may take for granted that this is a multiplicative subset of Z.
Describe all prime ideals of S−1Z. You may invoke theorems from class to verify that the ideals
you describe are indeed prime ideals, and that your list is complete. (10 points)

Proof. We proved in class that there is a bijection between the prime ideals of S−1R and the
prime ideals of R that are disjoint from S, given by mapping such an ideal P of R to the ideal
S−1P = {a

s | a ∈ P, s ∈ S} of S−1R. So we need to determine the ideals of Z that are disjoint
from S.

The prime ideal (0) is certainly disjoint from S, since 0 /∈ S. A nonzero prime ideal of Z is of the
form (p) with p a positive prime number. If (p) ∩ S = ∅, then p /∈ S, hence either 2 | p or 3 | p.
But since p is a prime, this means that either p = 2 or p = 3. Thus, the only nonzero prime ideals
that are disjoint from S are (2) and (3).

Thus, S−1Z has exactly three prime ideals:

S−1(0) = {0S−1Z},

S−1(2) =
{a

s
∈ S−1Z

∣∣∣ s ∈ S, 2 | a
}
,

S−1(3) =

{
b

s
∈ S−1Z

∣∣∣ s ∈ S, 3 | b
}
. □

I.5 Let (R,φ) be a Euclidean domain.

(i) Prove that for every a ∈ R− {0}, φ(1R) ≤ φ(a). (5 points)

Proof. If a ̸= 0, then 1Ra = a ̸= 0. By the properties of the Euclidean function φ,
φ(1R) ≤ φ(1Ra) = φ(a). □

(ii) Prove that a ∈ R is a unit if and only if a ̸= 0 and φ(a) = φ(1R). (5 points)

Proof. If a is a unit, then there exists b ∈ R such that ab = 1R. Then by the properties
of the Euclidean function we have φ(a) ≤ φ(ab) = φ(1R). Since we already have that
φ(1R) ≤ φ(a), we obtain equality.

Conversely, if φ(a) = φ(1R), then we know that there exist q, r ∈ R such that 1R = qa+r and
either r = 0 or φ(r) < φ(a) = φ(1R). Since there are no nonzero elements with φ(r) < φ(1R),
we must have r = 0, hencer 1R = qa. Thus, a is a unit with inverse q. □
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Part II

II.1 Give an example of each of the following. You do not need to prove the example has the given
properties. (2 points each, 10 points total)

(i) Two fields, F and K, such that K is a finite extension of F but K is not a Galois extension
of F .

Example. For example, F = Q and K = Q( 3
√
2); or to borrow from problem II.5, F = Q

and K = Q( 5
√
11). □

(ii) Two fields, F and K, with K a finitely generated extension of F that is not a finite dimen-
sional extension of F .

Example. One example is F = Q and K = Q(x), the field of rational functions over Q. □

(iii) Two fields F and K such that K is an extension of F , and if L is an intermediate extensions,
F ⊆ L ⊆ K, then either F = L or L = K.

Example. Any extension of prime degree will do, so for example F = Q and K = Q(
√
2),

which has degree 2. □

(iv) Two fields F and K for which there is no nonzero ring homomorphism between them (in
either direction).

Example. If F = Z2 and K = Z3, then these fields are of different characteristics, so there
can be no nonzero ring homomorphism between them: the image of 1F in K must satisfy
that x + x = 2x = 0, but that only happens for x = 0. And the image of 1K in F must
satisfy 3x = 0, and this only occurs for x = 0.

More generally, there can be no nonzero ring homomorphism between fields of different
characteristics. □

(v) A field of characteristic 5 that is infinite.

Example. One example is Z5(x), the field of fractions of Z5[x]. □

II.2 Let f(x) = x3 +2x+2 ∈ Q[x], and let α be a root of f(x). Express α5 and (α− 1)−1 in the form
a+ bα+ cα2, with a, b, c ∈ Q. (10 points)

Example. Note that f(x) is irreducible over Q, as it is Einstenstein at 2. So every element of
Q(α) can be written in the form a+ bα+ cα2.

To express α5, we divide x5 by f(x):

x5 = (x3 + 2x+ 2)(x2 − 2) + (−2x2 + 4x+ 4),

so evaluating at α we obtain α5 = 4 + 4α− 2α2.

To find (α − 1)−1, we use the Euclidean Algorithm to express gcd(f(x), x − 1) in terms of f(x)
and x− 1. Dividing f(x) by x− 1, we get

x3 + 2x+ 2 = (x2 + x+ 3)(x− 1) + 5.

This means that:

5 = (x3 + 2x+ 2)− (x2 + x+ 3)(x− 1)

1 =
1

5
(x3 + 2x+ 2)−

(
1

5
x2 +

1

5
x+

3

5

)
(x− 1).

Evaluating at α, we obtain

1 = (α− 1)

(
−3

5
− 1

5
α− 1

5
α2

)
,

so (α− 1)−1 = − 3
5 − 1

5α− 1
5α

2. □
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II.3 (i) Let K be a finite dimensional Galois extension of F . Prove that there are only finitely many
intermediate extensions; that is, fields L such that F ⊆ L ⊆ K. (5 points)

Proof. By the Fundamental Theorem of Galois Theory, there is a one-to-one, inclusion re-
versing correspondence between the subgroups of Gal(K/F ) and the intermediate extensions.
Since Gal(K/F ) is finite, it has only finitely many subgroups, so there are only finitely many
intermediate extensions. □

(ii) Let K be a finite dimensional Galois extension of F . Prove that if Gal(K/F ) is an abelian
group, then every intermediate extension L is Galois over F . That is, if L is a field such that
F ⊆ L ⊆ K, then L is Galois over F . (5 points)

Proof. By the Fundamental Theorem of Galois Theory, a subextension L is Galois over F if
and only if AutL(K) is a normal subgroup of Gal(K/F ). If Gal(K/F ) is abelian, then every
subgroup is normal, so that means that every intermediate extension L is Galois over F . □

II.4 Let K be an extension of F , and let α ∈ K. Prove that if [F (α) : F ] is finite, then α is algebraic
over F . (10 points)

Proof. Let [F (α) : F ] = n. Then 1, α, . . . , αn are n + 1 elements of K, which has dimension n
as a vector space over F . That means that they are linearly dependent over F , so there exist
a0, . . . , an ∈ F , not all zero, such that a01 + · · ·+ anα

n = 0. Let f(x) ∈ F [x] be the polynomial

f(x) = a0 + a1x+ · · ·+ anx
n.

Then f(x) ̸= 0, f(x) ∈ F [x], and f(α) = 0. Thus, α is algebraic over F , as claimed.

II.5 Let K = Q( 5
√
11), where 5

√
11 is the real positive fifth root of 11.

(i) Find [K : Q]. (3 points)

Answer. Note that 5
√
11 is a root of f(x) = x5 − 11. This polynomial is irreducible in Q by

Eisenstein’s Criterion at p = 11, so this is the monic irreducible polynomial of 5
√
11 over Q.

Therefore,
[K : Q] = deg(f) = 5.

(ii) Describe explicitly all elements of AutQ(K). (4 points)

Answer. An automorphism of K over Q must send every rational to itself, and so is
completely determined by its value on 5

√
11. The image of 5

√
11 must be a root of x5 − 11

in K. But x5 − 11 has one real root and four nonreal roots, and K ⊆ R. So 5
√
11 is the only

root of f(x) that lies in K. That means that if φ ∈ AutQ(K), then φ(q) = q for all q ∈ Q,
and φ( 5

√
11) = 5

√
11. Thus, φ = idK .

Thus we have shown that AutQ(K) = {idK}. □n

(iii) Is K a Galois extension of Q? Justify your answer. (3 points)

Answer. K is a Galois extension of Q if and only if the fixed field of AutQ(K) is Q. Since
AutQ(K) = {idK}, the fixed field is {idK}′ = K ̸= Q. So K is not a Galois extension of Q. □
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