MATH 566 – Spring 2024 **FINAL EXAM** SOLUTIONS Prof Arturo Magidin

Part I

- I.1 Give an example of each of the following. You do not need to prove that the example has the given properties. (2 points each, 10 points total)
 - (i) A ring R with unity 1_R ≠ 0_R, that has no two-sided ideals other than the trivial and improper ideals, that is other than {0_R} and R, but that is not a division ring or field.
 Example. One possible example is M_{2×2}(ℝ), the ring of 2×2 matrices with real coefficients. In general, M_{n×n}(F) where F is any field and n > 1 has this property. □
 - (ii) A ring R and a one-sided ideal I that is not a two-sided ideal. Specify whether I is a left ideal or a right ideal.

Example. One example is $R = M_{2 \times 2}(\mathbb{R})$, and

$$I = \left\{ \left(\begin{array}{cc} a & b \\ 0 & 0 \end{array} \right) \in R \ \middle| \ a, b \in \mathbb{R} \right\},$$

which is a right ideal but not a left ideal. \Box

(iii) A division ring that is not a field.Example. The Hamiltonians 𝔄, that is

$$\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}, i^2 = j^2 = k^2 = ijk = -1\}$$

are a classical example. \Box

- (iv) A commutative ring R and an ideal I that is not principal. **Example.** The ideal (x, y) in $\mathbb{R}[x, y]$ is not principal. \Box
- (v) An integral domain D that is a UFD but not a PID.
 Example. The ring Z[x] is a UFD, as a corollary of Gauss's Lemma, but is not a PID since (2, x) is not a principal ideal. So is R[x, y]. □
- I.2 Let D be an integral domain, and let D[x] be the ring of polynomials with coefficients in D.
 - (i) Prove that (x) is a prime ideal of D[x]. (4 points) **Proof.** The morphism ε₀: D[x] → D obtained by mapping D to itself via the identity, and sending x → 0, is a surjective ring homomorphism. The kernel are the polynomials with constant term 0; that is, (x). By the First Isomorphism Theorem, D ≅ D[x]/(x). Since D[x]/(x) is an integral domain, it follows that (x) is a prime ideal. □
 - (ii) Prove that (x) is a maximal ideal if and only if D is field. (3 points) **Proof.** We have that (x) is a maximal ideal if and only if D[x]/(x) is a field, if and only if D is a field. □
 - (iii) Prove that (x) is not the only nonzero prime ideal of D[x]. (3 points)
 - **Proof.** Since D is an integral domain, $0_R \neq 1_R$. Let $\varepsilon_1 \colon D[x] \to D$ be the map obtained by sending D to itself via the identity map, and letting $x \mapsto 1_R$. The kernel of this ideal does not contain x, and contains $x 1_R \neq 0$; but again we have $D[x]/\ker(\varepsilon_1) \cong D$. So $\ker(\varepsilon_1)$ is a nonzero prime ideal that is different from (x). In fact, this ideal is equal to $(x 1_R)$, but we do not need to figure this out to know that it is a nonzero prime ideal different from (x). \Box

I.3 Let R_1 and R_2 be rings with unity. Prove that if I is an ideal of $R_1 \times R_2$, then there exist ideals $J_1 \triangleleft R_1$ and $J_2 \triangleleft R_2$ such that $I = J_1 \times J_2$. (10 points)

Proof. Let $\pi_1: R_1 \times R_2 \to R_1$ and $\pi_2: R_1 \times R_2 \to R_2$ be the projections onto the first and second factors, respectively. Let $I \triangleleft R_1 \times R_2$.

Let $J_1 = \pi_1(I)$ and $J_2 = \pi_2(I)$. Since π_i are surjective, by the Lattice Isomorphism Theorem we know that $J_1 \triangleleft R_1$ and $J_2 \triangleleft R_2$ (they are images an ideal, hence an ideal of the image). And if $(a, b) \in I$, then $a \in J_1$ and $b \in J_2$, so $I \subseteq J_1 \times J_2$.

To prove that $J_1 \times J_2 \subseteq I$, let $(r, s) \in J_1 \times J_2$. Then $r \in J_1$, so there exists $y \in R_2$ such that $(r, y) \in I$. Symmetrically, since $s \in J_2$ there exists $x \in R_1$ such that $(x, s) \in I$. Since I is an ideal, sums of products of elements of I with elements of R lie in I, so

$$(r,s) = (r,0) + (0,s) = (1,0)(r,y) + (0,1)(x,s) \in I.$$

Thus, $J_1 \times J_2 \subseteq I$, proving equality. \Box

I.4 Let $S = \{a \in \mathbb{Z} \mid 2 \nmid a \text{ and } 3 \nmid a\}$ be the set of all integers that are not multiples of 2 or of 3. You may take for granted that this is a multiplicative subset of \mathbb{Z} .

Describe all prime ideals of $S^{-1}\mathbb{Z}$. You may invoke theorems from class to verify that the ideals you describe are indeed prime ideals, and that your list is complete. (10 points)

Proof. We proved in class that there is a bijection between the prime ideals of $S^{-1}R$ and the prime ideals of R that are disjoint from S, given by mapping such an ideal P of R to the ideal $S^{-1}P = \{\frac{a}{s} \mid a \in P, s \in S\}$ of $S^{-1}R$. So we need to determine the ideals of \mathbb{Z} that are disjoint from S.

The prime ideal (0) is certainly disjoint from S, since $0 \notin S$. A nonzero prime ideal of \mathbb{Z} is of the form (p) with p a positive prime number. If $(p) \cap S = \emptyset$, then $p \notin S$, hence either $2 \mid p$ or $3 \mid p$. But since p is a prime, this means that either p = 2 or p = 3. Thus, the only nonzero prime ideals that are disjoint from S are (2) and (3).

Thus, $S^{-1}\mathbb{Z}$ has exactly three prime ideals:

$$S^{-1}(0) = \{0_{S^{-1}\mathbb{Z}}\},\$$

$$S^{-1}(2) = \left\{\frac{a}{s} \in S^{-1}\mathbb{Z} \mid s \in S, 2 \mid a\right\},\$$

$$S^{-1}(3) = \left\{\frac{b}{s} \in S^{-1}\mathbb{Z} \mid s \in S, 3 \mid b\right\}. \square$$

I.5 Let (R, φ) be a Euclidean domain.

- (i) Prove that for every a ∈ R − {0}, φ(1_R) ≤ φ(a). (5 points) **Proof.** If a ≠ 0, then 1_Ra = a ≠ 0. By the properties of the Euclidean function φ, φ(1_R) ≤ φ(1_Ra) = φ(a). □
- (ii) Prove that $a \in R$ is a unit if and only if $a \neq 0$ and $\varphi(a) = \varphi(1_R)$. (5 points)

Proof. If a is a unit, then there exists $b \in R$ such that $ab = 1_R$. Then by the properties of the Euclidean function we have $\varphi(a) \leq \varphi(ab) = \varphi(1_R)$. Since we already have that $\varphi(1_R) \leq \varphi(a)$, we obtain equality.

Conversely, if $\varphi(a) = \varphi(1_R)$, then we know that there exist $q, r \in R$ such that $1_R = qa + r$ and either r = 0 or $\varphi(r) < \varphi(a) = \varphi(1_R)$. Since there are no nonzero elements with $\varphi(r) < \varphi(1_R)$, we must have r = 0, hencer $1_R = qa$. Thus, a is a unit with inverse q. \Box

Part II

- II.1 Give an example of each of the following. You do not need to prove the example has the given properties. (2 points each, 10 points total)
 - (i) Two fields, F and K, such that K is a finite extension of F but K is not a Galois extension of F.

Example. For example, $F = \mathbb{Q}$ and $K = \mathbb{Q}(\sqrt[3]{2})$; or to borrow from problem II.5, $F = \mathbb{Q}$ and $K = \mathbb{Q}(\sqrt[5]{11})$. \Box

(ii) Two fields, F and K, with K a finitely generated extension of F that is not a finite dimensional extension of F.

Example. One example is $F = \mathbb{Q}$ and $K = \mathbb{Q}(x)$, the field of rational functions over \mathbb{Q} . \Box

- (iii) Two fields F and K such that K is an extension of F, and if L is an intermediate extensions, $F \subseteq L \subseteq K$, then either F = L or L = K. **Example.** Any extension of prime degree will do, so for example $F = \mathbb{Q}$ and $K = \mathbb{Q}(\sqrt{2})$, which has degree 2. \Box
- (iv) Two fields F and K for which there is no nonzero ring homomorphism between them (in either direction).

Example. If $F = \mathbb{Z}_2$ and $K = \mathbb{Z}_3$, then these fields are of different characteristics, so there can be no nonzero ring homomorphism between them: the image of 1_F in K must satisfy that x + x = 2x = 0, but that only happens for x = 0. And the image of 1_K in F must satisfy 3x = 0, and this only occurs for x = 0.

More generally, there can be no nonzero ring homomorphism between fields of different characteristics. \Box

(v) A field of characteristic 5 that is infinite.

Example. One example is $\mathbb{Z}_5(x)$, the field of fractions of $\mathbb{Z}_5[x]$. \Box

II.2 Let $f(x) = x^3 + 2x + 2 \in \mathbb{Q}[x]$, and let α be a root of f(x). Express α^5 and $(\alpha - 1)^{-1}$ in the form $a + b\alpha + c\alpha^2$, with $a, b, c \in \mathbb{Q}$. (10 points)

Example. Note that f(x) is irreducible over \mathbb{Q} , as it is Einsteinstein at 2. So every element of $\mathbb{Q}(\alpha)$ can be written in the form $a + b\alpha + c\alpha^2$.

To express α^5 , we divide x^5 by f(x):

$$x^{5} = (x^{3} + 2x + 2)(x^{2} - 2) + (-2x^{2} + 4x + 4),$$

so evaluating at α we obtain $\alpha^5 = 4 + 4\alpha - 2\alpha^2$.

To find $(\alpha - 1)^{-1}$, we use the Euclidean Algorithm to express gcd(f(x), x - 1) in terms of f(x) and x - 1. Dividing f(x) by x - 1, we get

$$x^{3} + 2x + 2 = (x^{2} + x + 3)(x - 1) + 5.$$

This means that:

$$5 = (x^3 + 2x + 2) - (x^2 + x + 3)(x - 1)$$

$$1 = \frac{1}{5}(x^3 + 2x + 2) - \left(\frac{1}{5}x^2 + \frac{1}{5}x + \frac{3}{5}\right)(x - 1).$$

Evaluating at α , we obtain

$$1 = (\alpha - 1) \left(-\frac{3}{5} - \frac{1}{5}\alpha - \frac{1}{5}\alpha^2 \right),$$

so $(\alpha - 1)^{-1} = -\frac{3}{5} - \frac{1}{5}\alpha - \frac{1}{5}\alpha^2$. \Box

- II.3 (i) Let K be a finite dimensional Galois extension of F. Prove that there are only finitely many intermediate extensions; that is, fields L such that $F \subseteq L \subseteq K$. (5 points) **Proof.** By the Fundamental Theorem of Galois Theory, there is a one-to-one, inclusion reversing correspondence between the subgroups of Gal(K/F) and the intermediate extensions. Since Gal(K/F) is finite, it has only finitely many subgroups, so there are only finitely many intermediate extensions. \Box
 - (ii) Let K be a finite dimensional Galois extension of F. Prove that if Gal(K/F) is an abelian group, then every intermediate extension L is Galois over F. That is, if L is a field such that F ⊆ L ⊆ K, then L is Galois over F. (5 points)
 Proof. By the Fundamental Theorem of Galois Theory, a subextension L is Galois over F if and only if Aut_x(K) is a normal subgroup of Cal(K/F). If Cal(K/F) is abelian, then every

and only if $\operatorname{Aut}_L(K)$ is a normal subgroup of $\operatorname{Gal}(K/F)$. If $\operatorname{Gal}(K/F)$ is abelian, then *every* subgroup is normal, so that means that every intermediate extension L is Galois over F. \Box

II.4 Let K be an extension of F, and let $\alpha \in K$. Prove that if $[F(\alpha) : F]$ is finite, then α is algebraic over F. (10 points)

Proof. Let $[F(\alpha) : F] = n$. Then $1, \alpha, \ldots, \alpha^n$ are n + 1 elements of K, which has dimension n as a vector space over F. That means that they are linearly dependent over F, so there exist $a_0, \ldots, a_n \in F$, not all zero, such that $a_0 1 + \cdots + a_n \alpha^n = 0$. Let $f(x) \in F[x]$ be the polynomial

$$f(x) = a_0 + a_1 x + \dots + a_n x^n.$$

Then $f(x) \neq 0$, $f(x) \in F[x]$, and $f(\alpha) = 0$. Thus, α is algebraic over F, as claimed.

II.5 Let $K = \mathbb{Q}(\sqrt[5]{11})$, where $\sqrt[5]{11}$ is the real positive fifth root of 11.

(i) Find $[K : \mathbb{Q}]$. (3 points)

Answer. Note that $\sqrt[5]{11}$ is a root of $f(x) = x^5 - 11$. This polynomial is irreducible in \mathbb{Q} by Eisenstein's Criterion at p = 11, so this is the monic irreducible polynomial of $\sqrt[5]{11}$ over \mathbb{Q} . Therefore,

$$[K:\mathbb{Q}] = \deg(f) = 5.$$

(ii) Describe explicitly all elements of $\operatorname{Aut}_{\mathbb{Q}}(K)$. (4 points)

Answer. An automorphism of K over \mathbb{Q} must send every rational to itself, and so is completely determined by its value on $\sqrt[5]{11}$. The image of $\sqrt[5]{11}$ must be a root of $x^5 - 11$ in K. But $x^5 - 11$ has one real root and four nonreal roots, and $K \subseteq \mathbb{R}$. So $\sqrt[5]{11}$ is the only root of f(x) that lies in K. That means that if $\varphi \in \operatorname{Aut}_{\mathbb{Q}}(K)$, then $\varphi(q) = q$ for all $q \in \mathbb{Q}$, and $\varphi(\sqrt[5]{11}) = \sqrt[5]{11}$. Thus, $\varphi = \operatorname{id}_K$.

Thus we have shown that $\operatorname{Aut}_{\mathbb{Q}}(K) = {\operatorname{id}_K}$. \Box n

- (iii) Is K a Galois extension of \mathbb{Q} ? Justify your answer. (3 points) Answer. K is a Galois extension of \mathbb{Q} if and only if the fixed field of $\operatorname{Aut}_{\mathbb{Q}}(K)$ is \mathbb{Q} . Since
 - Aut_Q(K) = {id_K}, the fixed field is {id_K}' = K \neq Q. So K is not a Galois extension of Q. \Box