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1 Introduction

In these notes we’ll give an introduction to deformation theory and apply it to the special case of
abelian schemes. We’ll start by defining the deformation functor and show how the cohomology
groups of the sheaf of derivations of a scheme can be used to both determine if deformations
exist and if so, what the set of deformations looks like.

After that, we’ll introduce the 800 pound gorilla of the subject, Schlessinger’s criteria, which
says that under fairly weak and natural assumptions the deformation functor is representable (or
more precisely, pro-representable). This will allow us to produce an object encoding the set of all
deformations of the given scheme.

We’ll then apply this theory to the special case of abelian varieties and see that the object given
to us by Schlessinger’s criteria has a simple geometric interpretation.

The main source that I used to learn this material is Oort’s paper [1].

2 The Deformation Functor

Given a schemeX over a ring k, we’re interested in determining the ways in which the scheme can
be deformed. Intuitively, a deformation of a scheme is a continuous family of schemes passing
through our given scheme. One way to formalize this is to study morphisms of schemes E π−→ Y

such that X = π−1(p) for some k-point p of Y. In other words, the fibers of π give us a family of
schemes including Xwhich is parametrized by Y. Since we’re interested in the local properties of
the family around p, we focus on the case where Y = Spec(A) for some local artinean ring. This
leads us to the formal definition of the deformation functor.

Before stating it, we first define the category of rings that we’ll be working with.

Definition 1. Let A be a local artinian ring.

1. ArtA will denote the category of local artinian A-algebras (R,mR) such that the following diagram
commutes:

A //

��

R

��
A/mA

∼ // R/mR

2. ÂrtA is defined to be the category of complete local noetherian A-algebras O such that O/mOn ∈
ArtA for all n.

The morphisms in this category are the ones which respect the diagram as well.

Definition 2. Let R→ R ′ be a surjection of rings in Artk. Let X ′ → Spec(R ′) be a smooth scheme over
Spec(R ′). We define Defk(X ′, R) to be the set of isomorphism classes of pairs

(X,φ ′)
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Where X is a scheme over Spec(R) and X×R R ′
φ ′−→ X ′ is an isomorphism over Spec(R). The functor

Defk(X ′, ) : Artk → Set is called the deformation functor.

The above definition is captured in the following diagram:

X ′

##GGGGGGGGG X×R R ′ //

��

φ ′oo X

��
Spec(R ′) // Spec(R)

Also, in order to talk about isomorphism classes, we need to explain what a morphism of
deformations is. Suppose (X,φ ′) and (Y,ψ ′) are two deformations of X ′. A morphism f between
these deformations is a morphism of schemes fitting into the following diagram:

Y ×R R ′ //

f×RR ′
��

ψ ′

{{wwwwwwwww
Y

f

��
X ′

##GGGGGGGGG X×R R ′ //

��

φ ′oo X

��
Spec(R ′) // Spec(R)

Given a Spec(R ′)-scheme X ′, it is natural to ask to ask when Defk(X ′,R) is non-empty. In other
words, when does there exist a Spec(R)-scheme X that base changes back to X ′? In the category
of e’tale schemes, we’ll see that for certain maps extensions R → R ′ we not only can always find
such a scheme X, but there is even an equivalence of categories between schemes over Spec(R)
and schemes over Spec(R ′).

We start by studying how morphisms behave under base change.

Theorem 1. Let X and Y be two schemes over S. Let S0 → S be a closed subscheme with sheaf of ideals I
such that I2 = 0. If X is etale over S and X0 = S0 ×S X then the natural map

MorS(Y,X)→MorS0(Y0,X0)

is a bijection.

Proof. First of all, consider the following fibered diagram obtained by base changing first by
Y → S and then by base changing the entire fibered square by S0 → S.

X×S Y //

��

X

���
�
�
�
�
�
�

Y ×S X×S S0

ggNNNNNNNNNNNN
//

��

X×S S0

��

ccFFFFFFFFFF

Y //_____________ S

Y ×S S0

ggOOOOOOOOOOOO
// S0

ccGGGGGGGGGG

By the universal property of fibered products, maps from Y ×S S0 to X×S S0 are naturally
equivalent to maps from Y ×S S0 to X ×S Y ×S S0 which are in turn equivalent to maps from
Y×S S0 to X×S Y. Similarly, maps from Y to X are naturally equivalent to maps from Y to X×S Y.
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Therefore, it’s enough to prove that for any map Y×S S0
σ0−−→ X×S Y there exists a unique map

Y
σ−→ X×S Y such that the diagram above together with σ and σ0 commutes. Since X×S Y → Y is

etale as well, we can replace Swith Y and prove:

X

��
S0

σ0
??�������
// S

∃!σ

UU

In other words, for any morphism S0
σ0−−→ S there exists a unique map S σ−→ X such that the

diagram commutes.
Since morphisms glue, it is enough to prove the theorem locally. As X is etale over S, we can

assume without loss of generality that S = Spec(A), S0 = Spec(A/I) and that we have a rings A,
B = A[t]/(p(t)) such that X = Spec(Bb) for an invertible element b ∈ B and a monic polynomial
p ∈ A[t] such that p ′ is a unit in Bb. Let A0 = A/I

By moving to the category of rings we have to show the following:

Bb
g0

~~}}}}}}}}
∃!g

��
A0 Aoo

OO

Assume that g0(t) = a+ I. In order to define gwe need to find some element a ′ ∈ A such that
a− a ′ ∈ I and p(r ′) = 0. Let a ′ = a+ h for some h ∈ I. Since I2 = 0, p(a ′ + h) = p(r) + hp ′(a).
Therefore, p(a ′) = 0 iff h = −

p(a)
p ′(a)

which proves that the map g exists and is uniquely defined

by t 7→ a+
p(a)
p ′(a)

.

Theorem 2. Let X and Y be schemes over S. Let S0 → S be a closed subscheme with ideal sheaf I such
that I2 = 0. Then the functor

X 7→ X0 = X×S S0
is an equivalence of categories between the category of e’tale schemes over S and the category of e’tale
schemes over S0.

Proof. By theorem 1, the functor is fully faithful. It remains to show that it’s essentially surjective.
In other words, we need to show that for and e’tale scheme Y over S0 there exists an e’tale

scheme X over S extending Y such that the following diagram is fibered:

Y

��

// X

��
S0 // S

We’ll prove this claim locally and then glue the extensions together with the uniqueness.
Locally, we can assume that S = Spec(A) and S0 = Spec(A/I) for a ring A and an ideal I ⊂ A

such that I2 = 0. Furthermore, there exist polynomials f1, . . . , fm ∈ A[t1, . . . , tn] such that for

g = det
(
∂fi/∂tj

)
g is a unit in A/I. But since I2 = 0, units in A/I lift to units in A so g is a unit in A. Therefore,

we can define X = Spec(A[t1, . . . , tn]/(f1, . . . , fn)).

In particular, by theorem 2 it follows that e’tale schemes over S0 can always be lifted to S. We
can immediately deduce that a smooth scheme over S0 can locally be lifted. As we’ll see in the
next corollary, we can use the equivalence of categories to prove that all of these local lifts are
compatible up to isomorphism.
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Corollary 1. Let R be a ring and I ⊂ R an ideal with I2 = 0. Let X ′ be a smooth scheme over Spec(R/I).
Then for each x ∈ X ′ there exists an open x ∈ U ′ ⊂ X ′ and a smooth scheme U over Spec(R) such that
U×R R/I ∼= U ′.

Furthermore, if x ∈ U ′ ∩ V ′ and V and U are as above, then for every open W ′ ⊂ U ′ ∩ V ′ we have
an isomorphism

U|W ′
∼= // V |W ′

W ′

bbEEEEEEEE

<<yyyyyyyy

Before proceeding to the proof, note that since I2 = 0, U and U×R R/I have the same topo-
logical space so U|W ′ is well defined.

Proof. Since X ′ is locally e’tale, the first part of the theorem follows immediately from theorem 2.

For the second part, assume thatU×R R/I
φ ′−→ U ′ and V ×R R/I

ψ ′−→ V ′ are the isomorphisms

given to us by the first part. By restricting to W ′ we get isomorphisms U|W ′ ×R R/I
φ ′−→W ′ and

V |W ′ ×R R/I
ψ ′−→W ′. Together this gives us an isomorphism U|W ′ ×R R/I

φ ′ψ ′−1−−−−−→ V |W ′ ×R R/I.
By theorem 2 we can extend this to an isomorphism from U to V .

We’ll now set the notation for the rest of the section.
Let 0→ I→ R→ R ′ → 0 be a short exact sequence with R and R ′ in Artk such that I ·mR = 0.

For any Spec(k)-scheme Y, let ΘY be the sheaf of germs of k-derivations from OY to itself. Also,
for each Spec(R)-scheme Y, let AutR(Y,R ′) denote the Spec(R) automorphisms of Y which induce
the identity on Y ×R R ′.

The following lemma will give us an extremely useful connection betweenΘZ×Rk andAutR(Z,R ′)
where Z is a Spec(R)-scheme. The general idea is that given an automorphism φ of Z which re-
stricts to the identity on Z ×R R ′, measuring the amount that φ moves each point gives us a
derivation on OZ×Rk. Roughly speaking, the derivation that we obtain is the vector field associ-
ated to φ. This coincides with our more basic intuition for the relation between a function and
it’s associated derivative. The main technical difficulty lies in showing exactly what space the
derivation should act on in order for the converse to hold. I.e, given a vector field we want the
induced automorphism to be an element of AutR(Z,R ′).

Lemma 1. Suppose that Z is a flat finite type Spec(R) scheme. Let Z ′ = Z×R R ′ and Z0 = Z×R k.
Then we have a canonical isomorphism:

Γ(Z0,ΘZ0)⊗ I→ AutR(Z,R ′)

where composition on the right corresponds to addition on the left.

Proof. We have the following fibered diagram:

Z0 //

��

Z ′ //

��

Z

��
Spec(k) // Spec(R ′) // Spec(R)

We’ll construct the isomorphism locally. Assume that Z = Spec(A). By flatness, A⊗R I ∼= IA

and A⊗R R/I ∼= A/IA. Therefore,

A/mRA ∼= A⊗R R/mR ∼= A⊗R k

and
IA ∼= (A⊗R k)⊗k I
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So it will be enough to show an equivalence between AutR(A,R ′) and k-derivationsA/mRA
D−→

IA

Let φ ∈ AutR(Z,R ′). This means that we have the following commutative diagram:

A/IA

A

<<yyyyyyyy
A

bbEEEEEEEE

φ
oo

R

bbFFFFFFFFF

<<xxxxxxxxx

We define a map A D−→ A byD = φ− id. We claim thatD is a derivation and thatD(A) ⊂ IA.
Indeed, from the commutativity of the proceeding diagram we see thatD(A) ⊂ IA. Furthermore,

φ(ab) = φ(a)φ(b) = (a+D(a))(b+D(b)) =

ab+ aDb+ bDa+DaDb = ab+ aDb+ bDa

which implies that D(ab) = φ(ab) − ab = aDb+ bDa. It’s clear that D is additive and that
D(k) = 0 so D is a k derivation from A to IA.

Now, sincemRI = 0, this induces a map

A/mRA
D−→ IA

Similarly, given a derivation A/mRA
D−→ IA we obtain a derivation A D−→ IA which can then

be used to define an automorphism
A→ A

a 7→ a+Da

Indeed, since D(A) ⊂ IA, id+D induces the identity on A/IA and by flatness [4, III 4.2] this
implies that id+D is an automorphism.

At first glance, the above lemma seems like an elaborate exercise in unwinding definitions.
The next few glances tell a different story. One important consequence is that given an open cover
of a scheme Z, it provides us with a convenient way to talk about a family of automorphisms of
the open subschemes. For example, as we’ll see in the proof of the following proposition, prop-
erties such as the family satisfying the cocycle condition naturally correspond to characteristics
of the homology groups of ΘZ0 . And as usual, the ability to translate the verification of a prop-
erty to the existence of an element in a certain structure is extremely useful. For instance, in well
behaved cases the structure may be trivial.

In this vein, we can use lemma 1 to give a succinct answer to the general question of when we
can deform a scheme. As we saw in corollary 1, for certain extensions we can always deform our
scheme on a local scale. Given a collection of local deformations, we’d like to produce a global
deformation by gluing together the local ones. One way to go about this is to apply a certain
automorphism to each one of the local deformations and hope that the new deformations will
satisfy the cocycle condition and hence glue together. As we’ll see, the existence of such a family
of automorphisms is equivalent to a certain element of H2(X0,ΘX0)⊗k I being equal to 0 so by
looking at this element we can tell if a global deformation exists. As in the lemma, the general
idea is straight forward and the devil is in the details.

Proposition 1. Let X be a smooth Spec(R ′)-scheme. Let X0 = X×R ′ k. Then:

1. There exists a canonical element o ∈ H2(X0,ΘX0)⊗k I such that o = 0 iff Defk(X ′,R) 6= ∅
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2. If o = 0 then given any element (X,φ ′) ∈ Defk(X ′,R) we have a bijection

ιX : H1(X0,ΘX0)⊗k I→ Defk(X
′,R).

Proof. By corollary 1 there exists a cover {U ′α} of X ′ such that each map U ′α → Spec(R ′) can be

lifted to a smooth affine Zα scheme over Spec(R) with an automorphism Zα ×R R ′
φ ′α−−→ U ′α.

Let U ′αβ = U ′α ∩ U ′β and similarly for more indices. Since X ′ is separated, each of these
open sets are affine.

On each open set U ′αβ we have an isomorphism

φ ′β
−1
φ ′α : Zα ×R R ′ → Zβ ×R R ′

By theorem 2 we can extend this to an automorphism ζβα : Zα|U ′αβ → Zβ|U ′αβ . Note that
since Zα and Zα ×R R ′ have the same topological space, Zα|U ′αβ is just a pullback of Zα along
an open embedding.

Similarly, we define

ζ
γ
βα = ζβα|U ′αβγ : Zα|U ′αβγ → Zβ|U ′αβγ

We thus obtain an automorphism

cαβγ =
(
ζ
β
γα

)−1
ζαγβζ

γ
βα ∈ AutR(Zα|U ′αβγ)

By the definition of ζγαβ,

cαβγ ×R R ′ = φ ′α
−1
φ ′γ

−1
φ ′γφ

′
βφ
′
β

−1
φ ′α = 1

which means that cαβγ ∈ AutR(Zα|U ′αβγ ,R ′).
At this point, we could use lemma 1 to produce a collection of elements of Γ((Uαβγ)0,ΘX0)⊗ I

and thus obtain a cochain in Γ(X0,ΘX0)⊗ I. However, since it will be easier and more intuitive
for us to work with elements of AutR(Zα|U ′αβγ ,R ′), we’ll now show that we can talk about
Γ((U ′αβγ)0,ΘX0)⊗ I in terms of elements in AutR(Zα|U ′αβγ ,R ′).

We first note that by lemma 1, we have a canonical isomorphism

AutR(Zα|U ′αβγ ,R ′)→ Γ((Zα|U ′αβγ)0,ΘZ0)⊗ I

where composition on the left corresponds to addition on the right. A happy consequence is
that AutR(Zα|U ′αβγ ,R ′) is an abelian group. Furthermore, by using the isomorphisms (φα)0 =

φ ′α ×R ′ kwe can construct an isomorphism of differentials

Γ(Uαβγ)0,ΘX0)
fαβγ−−−→ Γ((Zα|U ′αβγ)0,ΘZ0)

D 7→ (φα)0D ((φα)0)
−1

Together, we obtain an isomorphism of abelian groups

AutR(Zα|U ′αβγ ,R ′)→ Γ((Zα|U ′αβγ)0,ΘZ0)⊗ I
fαβγ

−1

−−−−−→ Γ(Uαβγ)0,ΘX0)⊗ I

Using this isomorphism, we can describe elements of Γ(Uαβγ)0,ΘX0)⊗ I using elements of
AutR(Zα|U ′αβγ ,R ′). It will also be useful to know how elements of AutR(Zβ|U ′αβγ ,R ′) corre-
spond to elements of Γ(Uαβγ)0,ΘX0)⊗ I. The following commutative diagram shows us how
it’s done:

6



AutR(Zα|U ′αβγ ,R ′) // Γ((Zα|U ′αβγ)0,ΘZ0)⊗ I

(fαβγ)−1

��
Γ(Uαβγ)0,ΘX0)⊗ I

AutR(Zβ|U ′αβγ ,R ′)

b 7→(ζβα)−1bζβα

OO

// Γ((Zβ|U ′αβγ)0,ΘZ0)⊗ I

(fβαγ)−1

OO

To check that this is commutative, let b ∈ AutR(Zβ|U ′αβγ ,R ′). Going right and then left we
get

b 7→ id− b 7→ φ ′β(id− b)(φ ′β)−1 = φ ′βb(φ
′
β)−1

Going up, right and then down we get

b 7→ (ζβα)−1bζβα 7→ id− (ζβα)−1bζβα 7→ φα(φα)−1φβbφβ(φα)−1φα = φ ′βb(φ
′
β)−1

We’ll now show that the collection {cαβγ} is a cocycle and hence represents an element of
H2(X0,ΘX0) under the isomorphism given above. By the definition of the boundary,

(∂{cαβγ})αβγδ = cβγδcαγδ
−1cαβδcαβγ

−1 (1)

We’ll show the restriction of this element to AutR(Zα|U ′αβγ ,R ′) is the identity. As we showed
with the large commutative diagram above, the element cβγδ ∈ AutR(Zβ|U ′αβγ ,R ′) maps to the
same element in Γ(Uαβγ)0,ΘX0)⊗ I as (ζβα)−1cβδγζβα ∈ AutR(Zα|U ′αβγ ,R ′)

Therefore, as elements in the abelian group AutR(Zα|U ′αβγ ,R ′) we have

(∂{cαβγ})αβγδ = (cαγδ)
−1cαβδcβγδ(cαγδ)

−1 =

((ζδγα)−1(ζαδγ)
−1(ζ

γ
δα))((ζ

β
δα)−1(ζαδβ)(ζδδα))

((ζβα)−1(ζ
γ
δβ)−1(ζ

β
δγ)(ζ

δ
γβ)(ζβα))((ζ

γ
βα)−1(ζαγβ)−1(ζ

β
γα)) = 1

The next thing to show is that the homology class {cαβδ} does not depend on the choice of
isomorphisms ζγβα.

Suppose θβα : Zα|U ′αβ → Zβ|U ′αβ were another choice of isomorphism extendingφ ′β
−1
φ ′α.

Since θβα and ζβα agree on the pullback to Spec(R ′), εβα = θβα
(
ζβα

)−1 ∈ AutR(Zα|U ′αβ ,R ′).
Now, if we use the new isomorphisms to generate the homology class, the elements correspond-
ing to cαβγ are

c ′αβγ = (θ
β
γα)−1θαγβθ

γ
βα

So
{c ′αβγ} = {cαβγ}∂({εβα})

This shows that the holmlogy class of {cαβγ} that we defined does not depend on the choice
of isomorphisms ζαβ. Furthermore, we see that [{cαβγ}] = 1 iff there exists some choice of iso-
morphisms θαβ as above such that the associated cocycle satisfies {c ′αβγ} = 1. But this in turn is
equivalent to

c ′αβγ = (θ
β
γα)−1θαγβθ

γ
βα = 1

which means that the isomorphisms θαβ satisfy the cocycle condition. This implies that we
can use them to glue together the Zα and obtain an element of Defk(X ′,R) which concludes the
first part of the proposition.
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For the second part, suppose that we have an element (X,φ ′) ∈ Defk(X ′,R) and define Xα =
X|U ′α .

Let {dαβ} be elements of AutR(X|U ′αβ ,R ′) which satisfy the cocycle condition. Then these
elements can be used to glue together the schemes Xα in a different way and thus obtain an

isomorphic scheme Xd together with an isomorphism Xd ×R R ′
ψ ′−→ U ′. In fact, ψ ′α = φ ′α since

dαβ is trivial on Xα ×R R ′.
We’ll first show that the map {dαβ} 7→ Xd is an injection. Assume that we have an isomor-

phism of deformations Xd f−→ X. Let fα be the restriction to Xd|U ′α . Since dαβ×R R ′ is the identity
by definition and fα(fβ)−1×R R ′ is the identity by the definition of a map of deformation, by the-
orem 2 we get that dαβ = fα(fβ)−1. This means that {dαβ} = ∂({fα}).

We’ll now show that the map {dαβ} 7→ Xd is surjective. Let (Y,ψ ′) ∈ Defk(X ′,R). By theorem
2, the maps

f ′α = (φ ′α)−1ψ ′α : Yα ×R R ′ → Xα ×R R ′

extend to maps fα : Yα → Xα. We use these to define elements dαβ = fβ(fα)−1 ∈ AutR(X|U ′αβ ,R ′).
Finally, since we have

Yαβ
fβ

""DDDDDDDD
fα

}}zzzzzzzz

Xαβ
dαβ // Xαβ

and
Yα ×R R ′

fα×RR ′

��

ψ ′α

zzuuuuuuuuu

U ′α

Xα ×R R ′
φ ′α

ddIIIIIIIII

the maps fα glue together to give us an isomorphism of deformations Y f−→ Xd.

3 The Schlessinger Criterion

In proposition 1 we saw that the set of deformations of a scheme X ′ was in a bijection with the
elements of a certain homology group. However, in order to get a better handle on the internal
structure of the set of deformations and to understand them more clearly, we would like the
deformation functor Defk(X ′,R) to be representable in the following sense.

Definition 3. A covariant functor F : ArtA → Set is called pro-representable if it is representable by
an element of ÂrtA.

Schlessinger’s criteria gives us necessary and conditions for such a functor to be pro-representable
and in certain cases even gives us the element of ÂrtA. Before stating Schlessinger’s criteria we
will need a few more definitions.

Definition 4. Let C be a category with final object ∅ and fibered products. A covariant functor F : C →
Set is called left-exact if

1. F(∅) = {pt}
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2. the canonical map F(X×Y Z)→ F(X)×F(Y) F(Z) is a bijection.

Note that if F : Artk → Set is left exact then F(k[ε]) has the structure of a vector space over k.

Definition 5. A functor F : Artk → Set is called formally smooth if for every surjection R π−→ R ′ in

Artk, F(R)
Fπ−→ F(R ′) is surjective.

Definition 6. A surjection 0→ I→ R
π−→ R ′ → 0 in Artk is called small if ImR = 0.

Theorem 3. (Schlessinger) A covariant functor F : Artk → Set is pro-representable iff F is left exact and
dimk(F(k[ε])) <∞.

Also, it suffices to check left exactness for products of the form:

S

��
R ′ small

// // R

where the bottom map is a small surjection.
Finally, if F is formally smooth and dimk(F(k[ε])) = n then F is pro-representable by k[[t1, . . . , tn]].

The proof of this theorem is rather hard, so instead of proving it, in the next section we’ll use
the criteria to prove a somewhat intuitive but deep result about abelian schemes.

4 Deformations of Abelian Schemes

In this section we’ll use the material from the previous two sections in order to study deforma-
tions abelian schemes.

Intuitively, an n-dimensional abelian variety has n2 directions in which we can deform it.
In order to make this more concrete, let’s take a look at our favorite abelian variety - the n-

dimensional complex torus. Since a torus is determined by a lattice in Cn, this explains the source
of the n2 directions mentioned above.

More formally, let S be the set of matrices sij ∈ M(n, C) whose imaginary part has a non
zero determinant and define G to be the group of automorphisms of Cn × S generated by the
automorphisms δi and φj for 1 ≤ i, j ≤ nwhere

δi(x, s) = (x+ ei, s)

φi(x, s) = (x+ [s]↓j, s)
and [s]↓j is the j-th column of s. In other words, for each matrix in S we have a collection of
translations of C corresponding to the lattice spanned (over R) by the columns of S and the
elementary basis vectors.

In addition, define B = (C× S)/G. Then the n-dimensional complex tori are exactly the fibers
of the projection π : B → S since each fiber represents the quotient by the lattice corresponding
to the columns of s ∈ S.

Now let’s consider some element s0 ∈ S and the corresponding torus T = π−1(s0). Given
any path γ on the manifold S centered at s0, by considering the fibers π−1 ◦ γ on each point of
the path we obtain a family of tori which is a deformation of the torus T . Thus, to each tangent
vector of S at s0 we can associate a deformation of T .

Interestingly, in the paper [2], Kodira and Spencer show that all deformations of T can be
obtained in this fashion. This shows that the tangent space of s0 is a concrete realization of the
mysterious n2 directions mentioned above.

In a sense, the aforementioned result of Kodira and Spencer is a special case of the main
theorem that we wish to prove regarding deformations of arbitrary abelian schemes.

We start by setting notation and recalling some basic results relating to abelian schemes.
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Definition 7. An abelian scheme over a scheme S is a group S-scheme X which is smooth, proper and
has geometrically connected fibers. If S = Spec(k) then we will call X an abelian variety over k.

For the remainder of this section, X0 will be an abelian variety over k.

Definition 8. MX0 : Artk → Set is the covariant functor sending a ring R to the isomorphism classes of
pairs (X,φ0) of the form

X0

##GGGGGGGGG X×R k

��

φ0
∼

oo // X

��
Spec(k) // Spec(R)

where X is an abelian scheme over Spec(R). We call MX0 the deformation functor of abelian schemes.

A morphism of deformations of abelian schemes is defined in the same way as it is for ordi-
nary deformations.

We are now ready to state our main theorem for this section.

Theorem 4. The functor MX0 is pro-representable by k[[t11, . . . , tgg]] where g = dim(X0).

Note that this makes sense in light of our discussion above since we can think of k[[t11, . . . , tgg]]
as space of tangent vectors of dimension g2.

Before stating the abelian scheme results that we’ll use, we’ll look at an example showing that
non abelian group schemes do not always have deformations.

Example 1. We start by constructing a non-abelian group scheme of rank p2 for some prime p.
Let k = Fp and let B be a k-algebra. We define

N0(B) =

{(
α β

0 1

)∣∣∣∣α ∈ B, β ∈ Bαp = 1βp = 0

}
Now, N0 is a group Spec(k)-scheme since N0 = Spec(E0) where E0 = k[τ, ρ], τp = 1 and

ρp = 0with multiplication defined bym0(τ) = τ⊗ τ andm0(ρ) = ρ⊗ 1+ τ⊗ ρ.
We’ll now note that N0(B) cannot be deformed to any integral domain R of characteristic 0.

Suppose for contradiction that N = Spec(E) is a smooth group Spec(R) scheme where E is a free
R-module of rank p2. Define L = Frac(R). It is possible (but surprisingly difficult) to show that
N⊗R L is a reduced scheme. Since L is algebraically closed, we get that N⊗ L → Spec(L) is a
finite Spec(L)-scheme so N⊗ L is a finite group of order p2 which implies that it’s commutative.
But we can use this to show that N is commutative as well which is a contradiction.

Lemma 2. ([3, cor 6.2]) Suppose we have the following diagram

X

p
��>>>>>>>

f
++

g

33 G

q
���������

S

where G is a group S-scheme, S is connected, p is flat and Γ(Xs,OXs) ∼= κ(s) for all s ∈ S.
Then, if for some s ∈ S we know that fs = gs then there is a section S

η−→ G such that f(x) =
(ηp)(x) · g(x)

Corollary 2. Let X be an abelian scheme over Spec(R). Let X f−→ X be a map of Spec(R)-schemes such
that f×R k = id. Then f = id.

Corollary 3. ([3, cor 6.4]) Let X be an abelian S-scheme and G a group S-scheme. If X f−→ G is a map of
S-schemes and sends id to id then f is a group homomorphism.
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The next proposition shows us how to transfer results about Defk to MX0 .

Proposition 2. Let 0 → I → R → R ′ → 0 be a small surjection in Artk and let (X ′,φ0) be some
deformation in MX0(R

′). Then, forgetting the group structure, we have a bijection

MX0(R) ⊃ (MX0(π))−1(X ′,φ0)
κ−→ Defk(X

′,R)

In other words, if we start with an abelian scheme X ′ over Spec(R ′), then we have a bijection
between deformations of abelian schemes from X0 to Spec(R) which restrict to X ′ over Spec(R ′)
and deformations of ordinary schemes from X ′ up to Spec(R). The following diagram may be
helpful in keeping track of what is going on. In the diagram, (Y,ψ0) is an element of MX0(R)
such that MX0(π)(Y,ψ0) = (x,φ0).

Y ×R k
ψ0

{{wwwwwwwww
α×R ′k∼

��

// Y ×R R ′

α ′∼

��

// Y

��

X0

##GGGGGGGGG X ′ ×R ′ k

��

φ0

oo // X ′

��
Spec(k) // Spec(R ′) // Spec(R)

Where α ′ : Y ′ → X ′ is an isomorphism of deformations of abelian schemes.

Proof. Let (Y,ψ0) be an element of MX0(R) such that MX0(π)(Y,ψ0) = (x,φ0) as in the diagram
above. Let α ′ be the map in the diagram as well. We define

κ(Y,ψ0) = (Y ×R R ′,α ′) ∈ Defk(X
′,R)

We’ll first show that κ is well defined. Suppose that Y ×R R ′
µ ′−→ X ′ is a different map of

deformations of X0. Define a map a = α ′µ ′−1 : X ′ → X ′. Since α ′ ×R ′ k agrees with µ ′ ×R ′ k,
a×R ′ k = id. Therefore, by lemma 2, a = id. This shows that κ is well defined.

The next step is to show that κ is injective. Suppose that

(Y,ψ ′) = κ(Y,ψ0) = κ(Z,µ0) = (Z,µ ′)

Let α ′ be the map we introduced earlier in order to define κ(Y,ψ0) and let β ′ be the corre-
sponding map for Z.

Equality as elements of Defk(X ′,R) implies that we have some isomorphism of Spec(R)-

schemes Y b−→ Z such that (µ ′)b = ψ ′. We want to use b to produce an isomorphism of deforma-
tions of abelian schemes. By the definition of κwe have the following commutative diagram

Y ×R k

ψ0

��																
b×R ′k

��

// Y ×R R ′ //

b×RR ′
��

Y

b

��
Z×R k

µ0{{wwwwwwwww
β ′×R ′k

��

// Z×R R ′

β ′

��

// Z

��

X0

##GGGGGGGGG X ′ ×R ′ k

��

φ0

oo // X ′

��
Spec(k) // Spec(R ′) // Spec(R)

together with maps Y ×R R ′
α ′−→ X ′ and Y ×R k

α0−−→ X ′ ×R ′ k as before and

α ′ = β ′(b×R R ′)
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α ′ ×R ′ k = (b×R ′ k)(β ′ ×R ′ k)

Now, let Y
fY−→ Spec(R) be the structure map and Spec(R)

εY−−→ Y the identity morphism. In
order for b×R R ′ to be a group isomorphism, we fix it by defining

h = b− bεYfY

Clearly, hεY is the identity. By corollary 3, this implies that h : Y → Z is a homomorphism
of abelian Spec(R)-schemes. In addition, since α ′ ×R ′ k and β ′ ×R ′ k are both isomorphisms of
abelian varieties,

α ′ ×R ′ k = (b×R ′ k)(β ′ ×R ′ k)⇒ α ′ ×R ′ k = (h×R ′ k)(β ′ ×R ′ k)

which means that h is indeed a morphism of deformations of abelian schemes. By applying
the same procedure to b−1, we get a morphism g from Z to Y such that g×R k is the inverse of
h×R k. This implies that g is the inverse of h and that h is an isomorphism of deformations of
abelian schemes and that κ is injective.

The last step is to show that κ is surjective. Let (Y,ψ ′) be an element of Defk(X ′,R). We need
to show that (Y,ψ ′) ∈ κ(MX0(R)). For this, it will be enough to show that Y is an abelian Spec(R)-

scheme. Since Y ×R R ′
ψ ′−→ X ′ is an isomorphism by definition, the following lemma finishes the

proof.

Lemma 3. ([3, prop 6.15]) Let X be a smooth and proper Spec(R)-scheme and let Spec(R)
ε−→ X be a

section.
X×R R ′ //

��

X

��
Spec(R ′) // Spec(R)

ε

VV

Assume X×R R ′ is an abelian Spec(R ′)-scheme with ε×R R ′ as the identity. Then X is an abelian
Spec(R)-scheme with ε as the identity.

The proof of this theorem in GIT is quite nice and is an interesting application of proposition
1. The main idea is to take the multiplication map on X ×R R ′ and show that the obstruction
element in proposition 1 vanishes. This shows that the multiplication can be extended to X and
functoriality of the deformation functor tells us that this is indeed multiplication.

However, since this document is already much longer than I intended, I’ll refer you to GIT [3]
for the details.

We are now in the position to prove theorem 4.

Proof. Our primary tool for this proof will of course be to apply Schlessinger’s criteria (theorem
3) to the deformation of abelian schemes functor MX0 . We’ll check the conditions of the criteria
one by one.

We plunge in head first with a proof of left-exactness. Let’s recall exactly what it is that we
have to prove. Consider the following commutative diagram in Artk where the bottom square is

12



fibered, the columns are exact and π is a small surjection.

0

��

0

��
J

��

I

��
Q

χ //

ρ

��

R

π

��
T

��

µ // R ′

��
0 0

(2)

We have to prove that the natural map

MX0(Q)
∼−→MX0(T ×R ′ R)

ω−→MX0(T)×MX0(R ′) MX0(R)

is a bijection.
Note that since the bottom square is fibered, χ(J) ⊂ I and in fact J

χ−→ I is an isomorphism. This
follows from the uniqueness of the map J → Q. Furthermore, we get that ρ is a small surjection
as well.

Using χwe obtain a natural isomorphism

H2(X0,ΘX0)⊗ J
id⊗χ−−−→ H2(X0,ΘX0)⊗ I

Let (Y,ψ0) ∈ MX0(T) and MX0(µ)(Y,ψ0) ∈ MX0(R
′). Furthermore, let o(Y) and o(MX0(µ)(Y,ψ0))

be the deformation obstruction elements given in proposition 1.
We claim that (id ⊗ χ)(o(Y)) = o(MX0(µ)(Y,ψ0)). Recall that in proposition 1 we defined

the obstruction elements locally as elements in AutR(Zα,R ′) where U ′α was a local cover of the
Spec(R ′)-scheme X ′ and Zα = Spec(Aα) was a lift of X|U ′α to an affine Spec(R)-scheme.

In our case, X ′ corresponds to the Spec(T)-scheme Y. Let {U ′α} be an collection of open sub-
schemes of Y with deformations to affine Spec(Q)-schemes {Zα = Spec(Aα)} as in proposition
1.

U ′α //

��

Spec(Aα)

��
Spec(T) // Spec(Q)

By base changing by Spec(R)→ Spec(Q) we get

U ′α ×Spec(T) Spec(R ′) //

��

Spec(Aα ⊗Q R)

��
Spec(R ′) // Spec(R)

In addition, recall that locally we identify Γ(X0,ΘX0)⊗ Jwith k-derivationsAα⊗QQ/mQ
D−→

Aα ⊗Q J and the canonical map AutQ(Zα, T) → Γ(X0,ΘX0)⊗ J has the form φ 7→ D = id−φ.

Similarly, we identify Γ(X0,ΘX0)⊗ Iwith k-derivations (Aα⊗Q R)⊗R R/mR
D−→ (Aα⊗Q R)⊗R I
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and the canonical map AutR(Zα ×Spec(Q) Spec(R),R ′) → Γ(X0,ΘX0)⊗ I has the form φ 7→ D =
id−φ.

Together, we obtain the following commutative diagram where the horizontal arrows are the
ones we just described and the vertical arrows are base change

AutQ(Zα, T) //

��

Γ(X0,ΘX0)⊗ J

��
AutR(Zα ×Spec(Q) Spec(R),R ′) // Γ(X0,ΘX0)⊗ I

Furthermore, after passing to homology, the right vertical map becomes id⊗ χ. This shows
that indeed (id⊗ χ)(o(Y)) = o(MX0(µ)(Y,ψ0)).

We are now ready to prove that ω is a bijection. If MX0(T)×MX0(R ′) MX0(R) = ∅ then there
is nothing to show. Otherwise, suppose we have an element

((Y,ψ ′0), (X,φ0)) ∈ MX0(T)×MX0(R ′) MX0(R)

Let (X ′,φ ′0) = MX0(π)(X,φ0) ∈ MX0(R
′) In particular, (MX0(π))−1((X ′,φ ′0)) 6= ∅ and by

proposition 2, Defk(X ′,R) 6= ∅. By proposition 1 this means that o(X ′) = 0. Therefore,

(id⊗ χ)(o(Y)) = (o(MX0(µ)(Y)) = o(X ′) = 0

Therefore, o(Y) = 0 so again by propositions 1 and 2 we obtain the following diagram

H1(X0,ΘX0)⊗ J
id⊗χ

∼
//

∼

��

H1(X0,ΘX0)⊗ I

∼

��
Defk(Y,Q) //

∼κ−1

��

Defk(X ′,R)

∼κ−1

��
MX0(Q)

MX0(χ)
// MX0(R)

where the middle horizontal arrow is base change. By following the construction in proposi-
tion 1 we see that the upper square is commutative. Similarly, by following the construction of κ
in proposition 2 we see that the lower square is commutative. This means that the map MX0(χ)
defines a bijection

(MX0(ρ))
−1(Y,ψ ′0)

MX0(χ)
−−−−−→ (MX0(π))−1(X ′,φ ′0)

which implies that that ω is indeed a bijection as we wanted. This concludes the proof of left
exactness.

The next step is to prove that dimk(MX0(k[ε])) = g2. As we’ve shown above, the exact
sequence

0→ kε→ k[ε]→ k→ 0

implies that

MX0(k[ε])
∼= H1(X0,ΘX0)⊗ kε ∼= H1(X0,ΘX0)

Also, for any abelian variety X0, ΘX0
∼= OX0 ⊗ TX,e where TX,e is the tangent space at the

identity. This is proved in most texts on abelian varieties but if you haven’t seen this before,
thinking about what happens in the case of lie groups provides good intuition. Another general
fact about abelian varieties is that H1(X0,OX0) ∼= TX0

v,e where X0v is the dual abelian variety
over k. Together, we get that
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MX0(k[ε])
∼= H1(X0,OX0)⊗ TX0,e

∼= TX0
v,e ⊗ TX0,e

and in particular, dimk(MX0(k[ε])) = g2.
The last thing to prove is that MX0 is formally smooth. As usual, let

0→ I→ R→ R ′ → 0

be a small surjection in Artk. Let (X,φ0) be an element of MX0(R
′). We have to show that

MX0(R) 6= ∅. By propositions 2 and 1, it’s enough to show that o(X ′) = 0. To this end, we’ll use
the fact that the obstruction element is invariant under automorphisms of X ′ to show that it must
equal 0 by symmetry.

Consider the inversion map X ′ i−→ X ′. A general fact for abelian varieties is that

H2(X0,OX0) ∼= H1(X0,OX0) ∧ H1(X0,OX0)

Therefore,

H2(X0,ΘX0)⊗ I ∼= (TX0v,e ⊗ TX0,e) ∧ (TX0v,e ⊗ TX0,e)⊗ I ∼= (TX0v,e ∧ TX0
v,e)⊗ TX0,e ⊗ I

By applying i, we multiply each of the first three elements by −1. So i⊗ id acts on H2(X0,ΘX0)⊗
I as −1. However, by well definedness of o(X ′), it is invariant under automorphisms of X ′. There-
fore, after extending i to inversion on X ′, we get that o(X ′) = (i⊗ id)(o(X ′)) = −o(X ′).

If char(k) 6= 2 then o(X ′) = 0 and we’re done.
For the char(k) = 2 case we have to be slightly more sneaky.
We start be defining P ′ = X ′ ×Spec(R ′) X

′ and P0 = P ′ ×Spec(R ′) Spec(k). P ′ is an abelian
Spec(R ′)-scheme and o(P ′) ∈ H2(P0,ΘP0) ⊗ I. There are two natural projections from P0

∼=
X0 × X0 to X0 and these induce two injections

i1, i2 : H2(X0,ΘX0)→ H2(P0,ΘP0)

We now claim that o(P ′) = i1(o(X
′)) + i2(o(X

′)). Let {U ′α} be a covering of X ′ such as we
used when constructing the obstruction element in the proof of proposition 1. Similarly, let {Zα}

be the lifts of the U ′α-s and let cαβγ ∈ AutR(Zα|U ′αβγ ,R ′) be the automorphisms defined in
the same proof. Recall that we identified o(X ′) with cocycles {cαβγ} and that locally, addition in
H2(X0,ΘX0)⊗ I corresponded to composition in the AutR(Zα|U ′αβγ ,R ′).

Now, we can form an open cover of P ′ by taking products of pairs of elements in the cover of
X ′. This gives us the open cover {U ′(α1,α2) = U ′α1 ×Spec(R ′) U

′
α2 }. Furthermore, the Spec(R)-

scheme Z(α1,α2) = Zα1 ×Spec(R) Zα2 forms a lift of U ′(α1,α2) and we can obtain the element

c(α1,α2)(β1β2)(γ1,γ2) ∈ AutR(Z(α1,α2)|U ′(α1 ,α2)(β1 ,β2)(γ1 ,γ2)
,R ′)

by composing cα1,β1,γ1 × id and id× cα2,β2,γ2 . This is exactly what we claimed.
We now define an additional Spec(R ′)-automorphism a ′ of P ′ by a ′(x,y) = (x+ y,y).
As we’ve already mentioned in the chark 6= 2 case, in the construction of o we could have first

applied the automorphism a ′ to P ′ and by the well definedness of o(P ′) we would have gotten
the the same obstruction element. By looking at the induced automorphism on H2(P0,ΘP0)⊗ I
we get that

i1(o(X
′)) + i2(o(X

′)) = i1(o(X
′)) + i2(o(X

′)) + i2(o(X
′))

The explicit way to see this is to note that if o(X ′) is the derivation D from OX0 to itself then
i1(o(X

′)) + i2(o(X
′)) is the derivation f⊗ g 7→ D(f)⊗ 1+ 1⊗D(g) fromOX0 ⊗OX0 to itself. and

after composing with (a ′)[ we get f⊗ g 7→ D(f)⊗ 1+ 1⊗D(g) + 1⊗D(g).
Since we are in characteristic 2, we get that o(P ′) = i1(o(X

′)). Similarly, we get that o(P ′) =
i2(o(X

′)). By adding these together we get that 0 = 2o(P ′) = o(P ′) as we wanted.
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