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Introduction

Goal : We have notions of curvature from differential geometry.

Do they make sense for metric spaces?

For example, does it make sense to say that a metric space is
“positively curved”?



Introduction

Goal : We have notions of curvature from differential geometry.

Do they make sense for metric spaces?

For example, does it make sense to say that a metric space is
“positively curved”?

Motivations :

1. Intrinsic interest

2. Understanding

3. Applications to smooth geometry



Curvature of Metric Spaces

Five minute summary of differential geometry



Length structure of a Riemannian manifold

Say M is a smooth n-dimensional manifold. For each m € M,
the tangent space T,M is an n-dimensional vector space.

A Riemannian metric g on M assigns, to each m € M, an inner
product on ThM.



Length structure of a Riemannian manifold

Say M is a smooth n-dimensional manifold. For each m € M,
the tangent space T,M is an n-dimensional vector space.

A Riemannian metric g on M assigns, to each m € M, an inner
product on ThM.

Example : M is a submanifold of RN

If ve TyM, let g(v,v) be the square of the length of v.



Length structure of a Riemannian manifold

The length of a smooth curve v : [0,1] — M is

1
L(z) = /0 Va( ) dt.

The distance between mg, m; € M is the infimal length of
curves joining mg to my.



Length structure of a Riemannian manifold

d(mg, my) = inf{L(v) : 7(0) = mo, (1) = my}.

Fact : this defines a metric on the set M.

Any length-minimizing curve from mg to mq is a geodesic.



Riemannian volume

Any Riemannian manifold M comes equipped with a smooth
positive measure dvoly.

In local coordinates, if g = >{';_; gj dx' dx! then

dvoly = y/det(g;) dx*dx?...dx".

The volume of a nice subset A C M is

vol(A) = / dvoly .
A



Sectional curvature

To each m € M and each 2-plane P C TM in the tangent
space at m, one assigns a number K (P), its sectional
curvature.



Sectional curvature

To each m € M and each 2-plane P C TM in the tangent

space at m, one assigns a number K (P), its sectional
curvature.

Example : If M is two-dimensional then P is all of T,M and
K (P) is the Gaussian curvature at m.




Ricci curvature

Ricci curvature is an averaging of sectional curvature.
Fix a unit-length vector v € T,M.

Definition

Ric(v,v) = (n—1) - (the average sectional curvature

of the 2-planes P containing v).



Ricci curvature

Ricci curvature is an averaging of sectional curvature.
Fix a unit-length vector v € T,M.
Definition
Ric(v,v) = (n—1) - (the average sectional curvature

of the 2-planes P containing v).

Example : S? x S?2 C (R® x R® = R®) has nonnegative
sectional curvatures but has positive Ricci curvatures.



Ricci curvature

What does Ricci curvature control?

1. Volume growth

Bishop-Gromov inequality :
If M has nonnegative Ricci curvature then balls in M grow no
faster than in Euclidean space.

That is, for any m € M, r=" vol(B;(m)) is nonincreasing in r.



Ricci curvature

What does Ricci curvature control?

1. Volume growth

Bishop-Gromov inequality :
If M has nonnegative Ricci curvature then balls in M grow no
faster than in Euclidean space.

That is, for any m € M, r=" vol(B;(m)) is nonincreasing in r.

2. The universe

Einstein says that a matter-free spacetime has vanishing Ricci
curvature.



Any Riemannian manifold gets

1. Lengths of curves

2. A metric space structure
3. A measure

4. Sectional curvatures

5. Ricci curvatures



Any Riemannian manifold gets

1. Lengths of curves

2. A metric space structure
3. A measure

4. Sectional curvatures

5. Ricci curvatures

Question :

To what extent can we recover the sectional curvatures from
just the metric space structure?

To what extent can we recover the Ricci curvatures from just
the metric space structure and the measure?



Curvature of Metric Spaces

Metric geometry



Length spaces

Say (X,d) is a compact metric space and v : [0,1] — X isa
continuous map.

number of line segments = 10
approx length = 32.28



Length spaces

Say (X,d) is a compact metric space and v : [0,1] — X isa
continuous map.

number of line segments = 10
approx length = 32.28

The length of v is

L(y)=sup  sup > d(v(ti-1),%(Y)).

I 0=tosy<..<ty=1{]



Length spaces

(X,d) is a length space if the distance between two points
Xp, X1 € X equals the infimum of the lengths of curves joining
them, i.e.

d (X0, %) = INf{L(7) : 7(0) = X0, 7(1) = ¢}



Length spaces

(X,d) is a length space if the distance between two points
Xp, X1 € X equals the infimum of the lengths of curves joining

them, i.e.
d(xo,x1) = inf{L(7) : 7(0) = X0, (1) = x¢}.

A length-minimizing curve is called a geodesic.



Length spaces

Examples of length spaces :
1. The underlying metric space of any Riemannian manifold.

Y -’
e \O/’ \;
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Length spaces

Examples of length spaces :
1. The underlying metric space of any Riemannian manifold.
2.

Nonexamples :
1. A finite metric space with more than one point.
2. A circle with the chordal metric.

@)



Curvature of Metric Spaces

Alexandrov curvature



Alexandrov curvature

Definition
A compact length space (X, d) has nonnegative Alexandrov
curvature if geodesic triangles in X are at least as “fat” as

corresponding triangles in R?.



Alexandrov curvature

Definition

A compact length space (X, d) has nonnegative Alexandrov
curvature if geodesic triangles in X are at least as “fat” as
corresponding triangles in R?.

I Ta

The comparison triangle in R? has the same sidelengths
Fatness :
(Length of bisector from x) > (Length of bisector from Xg)



Alexandrov curvature

Example : the boundary of a convex region in RN has
nonnegative Alexandrov curvature.




Alexandrov curvature

Example : the boundary of a convex region in RN has
nonnegative Alexandrov curvature.

1. If (M, g) is a Riemannian manifold then its underlying metric
space has nonnegative Alexandrov curvature if and only if M
has nonnegative sectional curvatures.

2. If {(X;,d;)}2, have nonnegative Alexandrov curvature and
limj _(Xi, dj) = (X,d) in the Gromov-Hausdorff topology then
(X,d) has nonnegative Alexandrov curvature.

3. Applications to Riemannian geometry



Gromov-Hausdorff topology

A topology on the set of all compact metric spaces (modulo
isometry).

(X1,d1) and (X3, d,) are close in the Gromov-Hausdorff
topology if somebody with bad vision has trouble telling them
apart.




Gromov-Hausdorff topology

A topology on the set of all compact metric spaces (modulo
isometry).

(X1,d1) and (X3, d,) are close in the Gromov-Hausdorff
topology if somebody with bad vision has trouble telling them
apart.

Example : a cylinder with a small cross-section is
Gromov-Hausdorff close to a line segment.

.
i

.
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The guestion

Can one extend Alexandrov’'s work from sectional curvature to
Ricci curvature?

Motivation : Gromov’s precompactness theorem

Theorem
GivenN € Zt and D > 0,

{(M,g) : dim(M) = N,diam(M) < D,Ricy > 0}

is precompact in the Gromov-Hausdorff topology on
{compact metric spaces}/isometry.



Gromov-Hausdorff space

Each point is a compact metric space.
Each interior point is a Riemannian manifold (M, g) with
dim(M) = N, diam(M) < D and Ricy > 0.



Gromov-Hausdorff space

Oy
%}

Each point is a compact metric space.
Each interior point is a Riemannian manifold (M, g) with
dim(M) = N, diam(M) < D and Ricy > 0.

The boundary points are compact metric spaces (X, d) with
dimy X < N. They are generally not manifolds.
(Example : X = M/G.)

In some moral sense, the boundary points are metric spaces
with “nonnegative Ricci curvature”.



Curvature of Metric Spaces

Optimal transport



Given a before and an after dirtpile, what is the most efficient
way to move the dirt from one place to the other?

Let's say that the cost to move a gram of dirt from x to y is
d(x,y)%.



Gaspard Monge

| REPUELIOUE PRAEASE |

Mémoire sur la théorie des déblais et des remblais (1781)

Memoir on the theory of excavations and fillings (1781)




Gaspard Monge

866° MEmoires DE LUAcADEMIE ROYALE

MEMOIRE
SUR L4
THEORIE DES DEBLAIS
ET DES REMBLAIS
-
Par M. M O NG E.

Lonsqu’ou doit teanfporter des terres d'un lieu dans un
autre, on a coutume de donner le nom de Deéblai au
volume des terres que lon doit tranfporter, & le nom de
Remblai 3 Tefpace qu'elles doivent occuper aprés le tranfport.
Le prix du tranfport d'une molécule étant, toutes choles
dailleurs égales, progortionnel  fon poids & 3 'efpace®ju'on
lui fait parcourir , & par conféquent le prix du tranfport total
devant éue proportionnel i la fomme des produits des molé-
cules multipliées chacune par Iefpace parcouru , il seenfuit
que le débhi & le remblai tant donnés de figure & de
pofition, il meft pas indifférent que telle molécule du déblai
foit tranfportée dans tel ou tel autre endroit du rembla
mais quil y a une certaine diftribution 4 faire des molécules
du premier dans le fecond, d'aprés laquelle la fomme de ces
produits fera la moindre poffible, & le prix du tranfport total
{era un minimun.
Ceeft fa folution de cette queftion que je me propofe de
donner ici. Je diviferai ce Mémoire en deux parties, dans la
- premiére jo fuppoferai que les déblais & fes remblais font des
aires contenues dans un méme plan ¢ dans Je fecond,, je fup-
polerai que ce font des volumes.

PREMIERE PARTIE.
Du ranfport des aires planes fur des aives comprifes dans
un mémé plan.
L
QuesLe que foit Ta route que doive fuivre une molécule




Wasserstein space

Let (X,d) be a compact metric space.

Notation
P(X) is the set of Borel probability measures on X.

That is, u € P(X) iff u is a nonnegative Borel measure on X
with x(X) = 1.

Definition
Given po, u1 € P(X), the Wasserstein distance W (g, 111) is
the square root of the minimal cost to transport pg to ;.



Wasserstein space

ERCETY

wauo,)? = int{ [ dxy)2dr(ey) ],

where

m € P(X x X),(Po)«m = po, (P1)sm = pa.



Wasserstein space

Fact :
(P(X),W,) is a metric space, called the Wasserstein space.

The metric topology is the weak-x topology, i.e. limj_ ., pj = p if
and only if for all f € C(X), limj_ [, fdu = [ fdpu.



Wasserstein space

Fact :
(P(X),W,) is a metric space, called the Wasserstein space.

The metric topology is the weak-x topology, i.e. limj_ ., pj = p if
and only if for all f € C(X), limj_ [, fdu = [ fdpu.

Proposition
If X is a length space then so is the Wasserstein space P(X).

Hence we can talk about its (minimizing) geodesics {1t }ieo,1),
called Wasserstein geodesics.



Optimal transport

What is the optimal transport scheme between pq, 1 € P(X)?

X =R", ug and u; absolutely continuous :
Rachev-Riischendorf, Brenier (1990)

X a Riemannian manifold, uqo and u1 absolutely continuous :
McCann (2001)

Empirical fact : The Ricci curvature of the Riemannian manifold
affects the optimal transport in a quantitative way.

Otto-Villani (2000),
Cordero-Erausquin-McCann-Schmiickenschlager (2001)



Metric-measure spaces

Definition
A metric-measure space is a metric space (X, d) equipped with
a given probability measure v € P(X).

A smooth metric-measure space is a Riemannian manifold
(M, g) with a smooth probability measure dv = e~V dvoly.



Metric-measure spaces

Definition
A metric-measure space is a metric space (X, d) equipped with
a given probability measure v € P(X).

A smooth metric-measure space is a Riemannian manifold
(M, g) with a smooth probability measure dv = e~V dvoly.

Idea : Use optimal transport on X to define what it means for
(X, v) to have “nonnegative Ricci curvature”.

(X,d) — (P(X), W2)

To one compact length space we have assignhed another.

Use the properties of the Wasserstein space (P(X), W,) to say
something about the geometry of (X, d).



Measured Gromov-Hausdorff limits

An easy consequence of Gromov precompactness :

{(M,g,\%) : dim(M) = N,diam(M) < D, Ricy > 0}

is precompact in the measured Gromov-Hausdorff topology on
{compact metric-measure spaces }/isometry.



Measured Gromov-Hausdorff limits

An easy consequence of Gromov precompactness :

{(M,g,\%) : dim(M) = N,diam(M) < D, Ricy > 0}

is precompact in the measured Gromov-Hausdorff topology on
{compact metric-measure spaces }/isometry.

What can we say about the limit points? (Work of
Cheeger-Colding)

What are the smooth limit points?



Measured Gromov-Hausdorff (MGH) topology

Definition

limi . (Xi,di,;) = (X,d,v) if there are Borel maps
fi : Xj — X and a sequence ¢; — 0 such that

1. (Almost isometry) For all x;, x € X;,

| (fi (i), fi (X)) — d, (xi, %{)| < i

2. (Almost surjective) For all x € X and all i, there is some
X; € X; such that
dx(fi(Xi),X) < €.

3. limj_(f))«s = v in the weak-x topology.



Curvature of Metric Spaces

Entropy functionals



X a compact Hausdorff space.
P(X) = Borel probability measures on X, with weak-x topology.

U : [0,00) — R a continuous convex function with U(0) = 0.

Fix a background measure v € P(X).



The “negative entropy” of ;. with respect to v is

Un(u) = /X U(p(x)) du(x) + U'(00) ps(X):

Here
po=pv + s
is the Lebesgue decomposition of i with respect to v and

U'(o0) = lim 20,

r—o0 r



The “negative entropy” of ;. with respect to v is
U = [ U(p00) o) + U'(e0) ().

Here
po=pv + s
is the Lebesgue decomposition of i with respect to v and

U'(o0) = lim 20,

r—o0 r

U, (n) measures the nonuniformity of x w.r.t. v. It is minimized
when p = v.

We get a function U, : P(X) — R U oo.



Effective dimension

N € [1, oc] @ new parameter (possibly infinite).

It turns out that there’s not a single notion of “nonnegative Ricci
curvature”, but rather a 1-parameter family. That is, for each N,
there’s a notion of a space having “nonnegative N-Ricci
curvature”.

Here N is an effective dimension of the space, and must be
inputted.




Displacement convexity classes

Definition
(McCann) If N < oo then DCy is the set of such convex
functions U so that the function
A= AU
is convex on (0, co).

Definition
DC is the set of such convex functions U so that the function

A—erU(e™)

is convex on (—oo, 00).



Displacement convexity classes

Example

Un(r) = Nr(1—r=¥N) if1 <N < oo,
N Y iogr if N = oo.

If U = U, then the corresponding functional is

U (p) = Jxplogpdy ifpisa.c. wrt. v,
S o0 otherwise,

where . = pu.



Curvature of Metric Spaces

Abstract Ricci curvature



Convexity on Wasserstein space

(X,d) is a compact length space.

v is a fixed probability measure on X.



Convexity on Wasserstein space

(X,d) is a compact length space.
v is a fixed probability measure on X.

We want to ask whether the negative entropy function U,, is a
convex function on P(X).

That is, given po, u1 € P(X), whether U, restricts to a convex
function along a Wasserstein geodesic {1t }t¢o,1) from 1o to 1.



Nonnegative N-Ricci curvature

Definition
Given N € [1, o], we say that a compact measured length
space (X,d,v) has nonnegative N-Ricci curvature if :

For all po, u1 € P(X) with supp(uo) C supp(v) and
supp(u1) C supp(v), there is some Wasserstein geodesic
{m }tefo,) from po to g so that for all U € DCy and all t € [0, 1],

Uy(ut) < tUp(pa) + (1 —1t) Uy(po).



Nonnegative N-Ricci curvature

Note : We only require convexity along some geodesic from g
to u1, not all geodesics.

But the same geodesic has to work for all U € DCy.



What does this have to do with curvature?

Look at optimal transport on the 2-sphere.
v = normalized Riemannian density.
Take o, p1 two disjoint congruent blobs. U, (1) = U, (u1).




What does this have to do with curvature?

Look at optimal transport on the 2-sphere.
v = normalized Riemannian density.
Take o, p1 two disjoint congruent blobs. U, (1) = U, (u1).

Optimal transport from pg to uq goes along longitudes.
Positive curvature gives focusing of geodesics.




Take a shapshot at time t.




Take a shapshot at time t.

The intermediate-time blob y; is more spread out, so it's more
uniform with respect to v.
The more uniform the measure, the higher its entropy.



Take a shapshot at time t.

The intermediate-time blob y; is more spread out, so it's more
uniform with respect to v.

The more uniform the measure, the higher its entropy.

So the entropy is a concave function of t, i.e. the negative
entropy is a convex function of t.



Main result

Theorem
Let {(X;,d;, )}, be a sequence of compact measured length
spaces with

I|II’T] (Xi,di,Vi) = (X,d, I/)

in the measured Gromov-Hausdorff topology.

Forany N € [1, o], if each (X, d;, z;) has nonnegative N-Ricci
curvature then (X, d, v) has nonnegative N-Ricci curvature.



What does all this have to do with Ricci curvature?

Let (M, g) be a compact connected n-dimensional Riemannian

manifold.
We could take the Riemannian measure, but let's be more

general.



What does all this have to do with Ricci curvature?

Let (M, g) be a compact connected n-dimensional Riemannian
manifold.

We could take the Riemannian measure, but let's be more
general.

Say ¥V € C*(M) has
/e“" dvoly = 1.
M

Putry = e~V dvoly.

Any smooth positive probability measure on M can be written in
this way.



What does all this have to do with Ricci curvature?

For N € [1, o], define the N-Ricci tensor Ricy of (M", g, v) by

Ric + Hess(V) if N = oo,
Ric + Hess(V) — - d¥d¥ ifn < N < oo,
Ric + Hess(V) — co (dW @ dW) if N =n,
—00 if N <n,

where by convention co -0 = 0.

Ricy is a symmetric covariant 2-tensor field on M that depends
ong and V.



What does all this have to do with Ricci curvature?

For N € [1, o], define the N-Ricci tensor Ricy of (M", g, v) by

Ric + Hess(V)
Ric + Hess(V) — i-dV ®dw
Ric + Hess(V) — oo (dV @ dW)

—0o0

where by convention co -0 = 0.

if N = oo,
ifn < N < oo,
ifN =n,
if N <n,

Ricy is a symmetric covariant 2-tensor field on M that depends

ong and V.

(If N = n then Ricy is —oo except where dW = 0. There,

Ricy = Ric.)

Ric,, = Bakry-Emery tensor = right-hand side of Perelman’s

modified Ricci flow equation.



Abstract Ricci recovers classical Ricci

Recall that v = e~V dvoly.

Theorem
For N € [1, o], the measured length space (M, g,v) has
nonnegative N-Ricci curvature if and only if Ricy > 0.



Abstract Ricci recovers classical Ricci

Recall that v = e~V dvoly.

Theorem
For N € [1, o], the measured length space (M, g,v) has
nonnegative N-Ricci curvature if and only if Ricy > 0.

: . __ _dvol
Classical case : W constant, so v = IR

Then (M", g, v) has abstract nonnegative N-Ricci curvature if
and only if it has classical nonnegative Ricci curvature, as soon
asN > n.




Curvature of Metric Spaces

Applications



Smooth limit spaces

Had Gromov precompactness theorem. What are the limit
spaces (X,d,v)? Suppose that the limit space is a smooth
measured length space, i.e.

(X,d,l/) = (ngBae_w dVOIB)

for some n-dimensional smooth Riemannian manifold (B, gg)
and some ¥ € C>*(B).



Smooth limit spaces

Had Gromov precompactness theorem. What are the limit
spaces (X,d,v)? Suppose that the limit space is a smooth
measured length space, i.e.

(X,d,l/) = (BagBae_w dVOIB)

for some n-dimensional smooth Riemannian manifold (B, gg)
and some ¥ € C>*(B).

Theorem

If (B, gg, e~V dvolg) is a measured Gromov-Hausdorff limit of
Riemannian manifolds with nonnegative Ricci curvature and
dimension at most N then Ricy(B) > 0.



Smooth limit spaces

Had Gromov precompactness theorem. What are the limit
spaces (X,d,v)? Suppose that the limit space is a smooth
measured length space, i.e.

(X,d,l/) = (BagBae_w dVOIB)

for some n-dimensional smooth Riemannian manifold (B, gg)
and some ¥ € C>*(B).

Theorem

If (B, gg, e~V dvolg) is a measured Gromov-Hausdorff limit of
Riemannian manifolds with nonnegative Ricci curvature and
dimension at most N then Ricy(B) > 0.

Note : the dimension can drop on taking limits.

The converse is true if N > n + 2.



Bishop-Gromov-type inequality

Theorem
If (X,d, ) has nonnegative N-Ricci curvature and x € supp(v)
then r =N (B, (x)) is nonincreasing in r.



Lichnerowicz inequality

If (M, g) is a compact Riemannian manifold, let A\; be the
smallest positive eigenvalue of the Laplacian —V?2.

Theorem
Lichnerowicz (1964)
If dim(M) = n and M has Ricci curvatures bounded below by

K > 0 then
n

A >
l=n-1




Sharp global Poincaré inequality

Theorem
If (X,d,v) has N-Ricci curvature bounded below by K > 0 and
f is a Lipschitz function on X with [ f dv = 0 then

N-11
2 < V2 du.
/xde_ N K/x’”dy




Sharp global Poincaré inequality

Theorem

If (X,d,v) has N-Ricci curvature bounded below by K > 0 and
f is a Lipschitz function on X with [ f dv = 0 then

N-11
2 < — — §72 .
/xde_ N K/x’”dy

|[VE|(x) = limsup f

Here



Open guestions

1. Take any result that you know about Riemannian manifolds
with nonnegative Ricci curvature.

Does it extend to measured length spaces (X, d, v) with
nonnegative N-Ricci curvature?
(Yes for Bishop-Gromov, no for splitting theorem.)

2. Take an interesting measured length space (X, d, v). Does it
have nonnegative N-Ricci curvature?

This almost always boils down to understanding the optimal
transport on X.
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