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Introduction

Goal : We have notions of curvature from differential geometry.

Do they make sense for metric spaces?

For example, does it make sense to say that a metric space is
“positively curved”?

Motivations :
1. Intrinsic interest
2. Understanding
3. Applications to smooth geometry



Introduction

Goal : We have notions of curvature from differential geometry.

Do they make sense for metric spaces?

For example, does it make sense to say that a metric space is
“positively curved”?

Motivations :
1. Intrinsic interest
2. Understanding
3. Applications to smooth geometry



Curvature of Metric Spaces

Introduction

Five minute summary of differential geometry

Metric geometry

Alexandrov curvature

Optimal transport

Entropy functionals

Abstract Ricci curvature

Applications



Length structure of a Riemannian manifold

Say M is a smooth n-dimensional manifold. For each m ∈ M,
the tangent space TmM is an n-dimensional vector space.

A Riemannian metric g on M assigns, to each m ∈ M, an inner
product on TmM.

Example : M is a submanifold of RN

If v ∈ TmM, let g(v, v) be the square of the length of v.
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Length structure of a Riemannian manifold

The length of a smooth curve γ : [0, 1] → M is

L(γ) =

∫ 1

0

√
g(γ̇, γ̇) dt .

The distance between m0, m1 ∈ M is the infimal length of
curves joining m0 to m1.



Length structure of a Riemannian manifold

d(m0, m1) = inf{L(γ) : γ(0) = m0, γ(1) = m1}.

Fact : this defines a metric on the set M.

Any length-minimizing curve from m0 to m1 is a geodesic.



Riemannian volume

Any Riemannian manifold M comes equipped with a smooth
positive measure dvolM .

In local coordinates, if g =
∑n

i,j=1 gij dx i dx j then

dvolM =
√

det (gij) dx1dx2 . . . dxn.

The volume of a nice subset A ⊂ M is

vol(A) =

∫
A

dvolM .



Sectional curvature

To each m ∈ M and each 2-plane P ⊂ TmM in the tangent
space at m, one assigns a number K (P), its sectional
curvature.

Example : If M is two-dimensional then P is all of TmM and
K (P) is the Gaussian curvature at m.
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Ricci curvature

Ricci curvature is an averaging of sectional curvature.

Fix a unit-length vector v ∈ TmM.

Definition

Ric(v, v) = (n − 1) · (the average sectional curvature

of the 2-planes P containing v).

Example : S2 × S2 ⊂ (R3 × R3 = R6) has nonnegative
sectional curvatures but has positive Ricci curvatures.
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Ricci curvature

What does Ricci curvature control?

1. Volume growth

Bishop-Gromov inequality :
If M has nonnegative Ricci curvature then balls in M grow no
faster than in Euclidean space.

That is, for any m ∈ M, r−n vol(Br (m)) is nonincreasing in r .

2. The universe

Einstein says that a matter-free spacetime has vanishing Ricci
curvature.
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Summary

Any Riemannian manifold gets

1. Lengths of curves
2. A metric space structure
3. A measure
4. Sectional curvatures
5. Ricci curvatures

Question :
To what extent can we recover the sectional curvatures from
just the metric space structure?

To what extent can we recover the Ricci curvatures from just
the metric space structure and the measure?
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Length spaces

Say (X , d) is a compact metric space and γ : [0, 1] → X is a
continuous map.

The length of γ is

L(γ) = sup
J

sup
0=t0≤t1≤...≤tJ=1

J∑
j=1

d(γ(tj−1), γ(tj)).
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Length spaces

(X , d) is a length space if the distance between two points
x0, x1 ∈ X equals the infimum of the lengths of curves joining
them, i.e.

d(x0, x1) = inf{L(γ) : γ(0) = x0, γ(1) = x1}.

A length-minimizing curve is called a geodesic.
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Length spaces

Examples of length spaces :
1. The underlying metric space of any Riemannian manifold.
2.

Nonexamples :
1. A finite metric space with more than one point.
2. A circle with the chordal metric.
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Alexandrov curvature

Definition
A compact length space (X , d) has nonnegative Alexandrov
curvature if geodesic triangles in X are at least as “fat” as
corresponding triangles in R2.

The comparison triangle in R2 has the same sidelengths
Fatness :
(Length of bisector from x) ≥ (Length of bisector from x0)
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Alexandrov curvature

Example : the boundary of a convex region in RN has
nonnegative Alexandrov curvature.

1. If (M, g) is a Riemannian manifold then its underlying metric
space has nonnegative Alexandrov curvature if and only if M
has nonnegative sectional curvatures.

2. If {(Xi , di)}∞i=1 have nonnegative Alexandrov curvature and
limi→∞(Xi , di) = (X , d) in the Gromov-Hausdorff topology then
(X , d) has nonnegative Alexandrov curvature.

3. Applications to Riemannian geometry
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Gromov-Hausdorff topology

A topology on the set of all compact metric spaces (modulo
isometry).

(X1, d1) and (X2, d2) are close in the Gromov-Hausdorff
topology if somebody with bad vision has trouble telling them
apart.

Example : a cylinder with a small cross-section is
Gromov-Hausdorff close to a line segment.
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The question

Can one extend Alexandrov’s work from sectional curvature to
Ricci curvature?

Motivation : Gromov’s precompactness theorem

Theorem
Given N ∈ Z+ and D > 0,

{(M, g) : dim(M) = N, diam(M) ≤ D, RicM ≥ 0}

is precompact in the Gromov-Hausdorff topology on
{compact metric spaces}/isometry.



Gromov-Hausdorff space

Each point is a compact metric space.
Each interior point is a Riemannian manifold (M, g) with
dim(M) = N, diam(M) ≤ D and RicM ≥ 0.

The boundary points are compact metric spaces (X , d) with
dimH X ≤ N. They are generally not manifolds.
(Example : X = M/G.)

In some moral sense, the boundary points are metric spaces
with “nonnegative Ricci curvature”.
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Dirtmoving

Given a before and an after dirtpile, what is the most efficient
way to move the dirt from one place to the other?

Let’s say that the cost to move a gram of dirt from x to y is
d(x , y)2.



Gaspard Monge

Mémoire sur la théorie des déblais et des remblais (1781)

Memoir on the theory of excavations and fillings (1781)



Gaspard Monge



Wasserstein space

Let (X , d) be a compact metric space.

Notation
P(X ) is the set of Borel probability measures on X.

That is, µ ∈ P(X ) iff µ is a nonnegative Borel measure on X
with µ(X ) = 1.

Definition
Given µ0, µ1 ∈ P(X ), the Wasserstein distance W2(µ0, µ1) is
the square root of the minimal cost to transport µ0 to µ1.



Wasserstein space

W2(µ0, µ1)
2 = inf

{∫
X×X

d(x , y)2 dπ(x , y)

}
,

where

π ∈ P(X × X ), (p0)∗π = µ0, (p1)∗π = µ1.



Wasserstein space

Fact :
(P(X ), W2) is a metric space, called the Wasserstein space.

The metric topology is the weak-∗ topology, i.e. limi→∞ µi = µ if
and only if for all f ∈ C(X ), limi→∞

∫
X f dµi =

∫
X f dµ.

Proposition
If X is a length space then so is the Wasserstein space P(X ).

Hence we can talk about its (minimizing) geodesics {µt}t∈[0,1],
called Wasserstein geodesics.
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Optimal transport

What is the optimal transport scheme between µ0, µ1 ∈ P(X )?

X = Rn, µ0 and µ1 absolutely continuous :
Rachev-Rüschendorf, Brenier (1990)

X a Riemannian manifold, µ0 and µ1 absolutely continuous :
McCann (2001)

Empirical fact : The Ricci curvature of the Riemannian manifold
affects the optimal transport in a quantitative way.
Otto-Villani (2000),
Cordero-Erausquin-McCann-Schmückenschläger (2001)



Metric-measure spaces

Definition
A metric-measure space is a metric space (X , d) equipped with
a given probability measure ν ∈ P(X ).

A smooth metric-measure space is a Riemannian manifold
(M, g) with a smooth probability measure dν = e−Ψ dvolM .

Idea : Use optimal transport on X to define what it means for
(X , ν) to have “nonnegative Ricci curvature”.

(X , d) −→ (P(X ), W2)
To one compact length space we have assigned another.
Use the properties of the Wasserstein space (P(X ), W2) to say
something about the geometry of (X , d).
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Measured Gromov-Hausdorff limits

An easy consequence of Gromov precompactness :{(
M, g,

dvolM
vol(M)

)
: dim(M) = N, diam(M) ≤ D, RicM ≥ 0

}
is precompact in the measured Gromov-Hausdorff topology on
{compact metric-measure spaces}/isometry.

What can we say about the limit points? (Work of
Cheeger-Colding)

What are the smooth limit points?
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Measured Gromov-Hausdorff (MGH) topology

Definition
limi→∞(Xi , di , νi) = (X , d , ν) if there are Borel maps
fi : Xi → X and a sequence εi → 0 such that
1. (Almost isometry) For all xi , x ′i ∈ Xi ,

|dX (fi(xi), fi(x
′
i ))− dXi

(xi , x ′i )| ≤ εi .

2. (Almost surjective) For all x ∈ X and all i , there is some
xi ∈ Xi such that

dX (fi(xi), x) ≤ εi .

3. limi→∞(fi)∗νi = ν in the weak-∗ topology.
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Notation

X a compact Hausdorff space.

P(X ) = Borel probability measures on X , with weak-∗ topology.

U : [0,∞) → R a continuous convex function with U(0) = 0.

Fix a background measure ν ∈ P(X ).



Entropy

The “negative entropy” of µ with respect to ν is

Uν(µ) =

∫
X

U(ρ(x)) dν(x) + U ′(∞) µs(X ).

Here
µ = ρ ν + µs

is the Lebesgue decomposition of µ with respect to ν and

U ′(∞) = lim
r→∞

U(r)
r

.

Uν(µ) measures the nonuniformity of µ w.r.t. ν. It is minimized
when µ = ν.

We get a function Uν : P(X ) → R ∪∞.
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Effective dimension

N ∈ [1,∞] a new parameter (possibly infinite).

It turns out that there’s not a single notion of “nonnegative Ricci
curvature”, but rather a 1-parameter family. That is, for each N,
there’s a notion of a space having “nonnegative N-Ricci
curvature”.

Here N is an effective dimension of the space, and must be
inputted.



Displacement convexity classes

Definition
(McCann) If N < ∞ then DCN is the set of such convex
functions U so that the function

λ → λN U(λ−N)

is convex on (0,∞).

Definition
DC∞ is the set of such convex functions U so that the function

λ → eλ U(e−λ)

is convex on (−∞,∞).



Displacement convexity classes

Example

UN(r) =

{
Nr(1− r−1/N) if 1 < N < ∞,

r log r if N = ∞.

If U = U∞ then the corresponding functional is

Uν(µ) =

{∫
X ρ log ρ dν if µ is a.c. w.r.t. ν,

∞ otherwise,

where µ = ρ ν.
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Convexity on Wasserstein space

(X , d) is a compact length space.

ν is a fixed probability measure on X .

We want to ask whether the negative entropy function Uν is a
convex function on P(X ).

That is, given µ0, µ1 ∈ P(X ), whether Uν restricts to a convex
function along a Wasserstein geodesic {µt}t∈[0,1] from µ0 to µ1.
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Nonnegative N-Ricci curvature

Definition
Given N ∈ [1,∞], we say that a compact measured length
space (X , d , ν) has nonnegative N-Ricci curvature if :

For all µ0, µ1 ∈ P(X ) with supp(µ0) ⊂ supp(ν) and
supp(µ1) ⊂ supp(ν), there is some Wasserstein geodesic
{µt}t∈[0,1] from µ0 to µ1 so that for all U ∈ DCN and all t ∈ [0, 1],

Uν(µt) ≤ t Uν(µ1) + (1− t) Uν(µ0).



Nonnegative N-Ricci curvature

Note : We only require convexity along some geodesic from µ0

to µ1, not all geodesics.

But the same geodesic has to work for all U ∈ DCN .



What does this have to do with curvature?

Look at optimal transport on the 2-sphere.
ν = normalized Riemannian density.
Take µ0, µ1 two disjoint congruent blobs. Uν(µ0) = Uν(µ1).

Optimal transport from µ0 to µ1 goes along longitudes.
Positive curvature gives focusing of geodesics.
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Take a snapshot at time t .

The intermediate-time blob µt is more spread out, so it’s more
uniform with respect to ν.
The more uniform the measure, the higher its entropy.
So the entropy is a concave function of t , i.e. the negative
entropy is a convex function of t .
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Main result

Theorem
Let {(Xi , di , νi)}∞i=1 be a sequence of compact measured length
spaces with

lim
i→∞

(Xi , di , νi) = (X , d , ν)

in the measured Gromov-Hausdorff topology.

For any N ∈ [1,∞], if each (Xi , di , νi) has nonnegative N-Ricci
curvature then (X , d , ν) has nonnegative N-Ricci curvature.



What does all this have to do with Ricci curvature?

Let (M, g) be a compact connected n-dimensional Riemannian
manifold.
We could take the Riemannian measure, but let’s be more
general.

Say Ψ ∈ C∞(M) has ∫
M

e−Ψ dvolM = 1.

Put ν = e−Ψ dvolM .

Any smooth positive probability measure on M can be written in
this way.
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What does all this have to do with Ricci curvature?

For N ∈ [1,∞], define the N-Ricci tensor RicN of (Mn, g, ν) by
Ric + Hess(Ψ) if N = ∞,

Ric + Hess(Ψ) − 1
N−n dΨ⊗ dΨ if n < N < ∞,

Ric + Hess(Ψ) − ∞ (dΨ⊗ dΨ) if N = n,

−∞ if N < n,

where by convention ∞ · 0 = 0.

RicN is a symmetric covariant 2-tensor field on M that depends
on g and Ψ.

(If N = n then RicN is −∞ except where dΨ = 0. There,
RicN = Ric.)

Ric∞ = Bakry-Emery tensor = right-hand side of Perelman’s
modified Ricci flow equation.
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Abstract Ricci recovers classical Ricci

Recall that ν = e−Ψ dvolM .

Theorem
For N ∈ [1,∞], the measured length space (M, g, ν) has
nonnegative N-Ricci curvature if and only if RicN ≥ 0.

Classical case : Ψ constant, so ν = dvol
vol(M) .

Then (Mn, g, ν) has abstract nonnegative N-Ricci curvature if
and only if it has classical nonnegative Ricci curvature, as soon
as N ≥ n.
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Smooth limit spaces

Had Gromov precompactness theorem. What are the limit
spaces (X , d , ν)? Suppose that the limit space is a smooth
measured length space, i.e.

(X , d , ν) = (B, gB, e−Ψ dvolB)

for some n-dimensional smooth Riemannian manifold (B, gB)
and some Ψ ∈ C∞(B).

Theorem
If (B, gB, e−Ψ dvolB) is a measured Gromov-Hausdorff limit of
Riemannian manifolds with nonnegative Ricci curvature and
dimension at most N then RicN(B) ≥ 0.

Note : the dimension can drop on taking limits.

The converse is true if N ≥ n + 2.
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Bishop-Gromov-type inequality

Theorem
If (X , d , ν) has nonnegative N-Ricci curvature and x ∈ supp(ν)
then r−N ν(Br (x)) is nonincreasing in r .



Lichnerowicz inequality

If (M, g) is a compact Riemannian manifold, let λ1 be the
smallest positive eigenvalue of the Laplacian −∇2.

Theorem
Lichnerowicz (1964)
If dim(M) = n and M has Ricci curvatures bounded below by
K > 0 then

λ1 ≥
n

n − 1
K .



Sharp global Poincaré inequality

Theorem
If (X , d , ν) has N-Ricci curvature bounded below by K > 0 and
f is a Lipschitz function on X with

∫
X f dν = 0 then∫

X
f 2 dν ≤ N − 1

N
1
K

∫
X
|∇f |2 dν.

Here

|∇f |(x) = lim sup
y→x

|f (y)− f (x)|
d(y , x)

.
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.



Open questions

1. Take any result that you know about Riemannian manifolds
with nonnegative Ricci curvature.

Does it extend to measured length spaces (X , d , ν) with
nonnegative N-Ricci curvature?
(Yes for Bishop-Gromov, no for splitting theorem.)

2. Take an interesting measured length space (X , d , ν). Does it
have nonnegative N-Ricci curvature?

This almost always boils down to understanding the optimal
transport on X .


	Introduction
	Five minute summary of differential geometry
	Metric geometry
	Alexandrov curvature
	Optimal transport
	Entropy functionals
	Abstract Ricci curvature
	Applications

