
THE ZERO-IN-THE-SPECTRUM QUESTION

JOHN LOTT

Abstract. This is an expository article on the question of whether zero lies in the spec-
trum of the Laplace-Beltrami operator acting on differential forms on a manifold.

1. Introduction

Let M be a complete connected oriented Riemannian manifold. The Laplace-Beltrami
operator 4p acts on the square-integrable p-forms on M . We asked the following question
in 1991 :

Zero-in-the-Spectrum Question : Is zero always in the spectrum of 4p for some
p?

To our knowledge, nobody has found a counterexample. The question was also raised by
Gromov in the case of a contractible manifold with a discrete cocompact group of isometries
[15, p. 21].

Being able to answer the above question is a first step toward understanding the spectrum
of the Laplace-Beltrami operator. We would also like to be able to say whether or not zero
is in the spectrum of 4p for a given p. This problem is partly topological in nature and
partly geometric, in a sense which will be made precise later. In fact, it is equivalent to
knowing the (unreduced) L2-cohomology of M . The study of L2-cohomology touches on
many branches of mathematics, including combinatorial group theory, topology, differential
geometry and algebraic geometry. It is most commonly considered when M is the universal
cover of a compact manifold or when M is a finite-volume Hermitian locally symmetric
space. We refer to [22, 26] and [30] for surveys of these two cases. In this article we will
instead emphasize general complete Riemannian manifolds and give some partial positive
answers to the zero-in-the-spectrum question.

The sections of the article are
1. Introduction
2. Definition of L2-Cohomology
3. General Properties of L2-Cohomology
4. Very Low Dimensions
4.1. One Dimension
4.2. Two Dimensions
5. Universal Covers
5.1. Big and Small Groups
5.2. Two and Three Dimensions
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5.3. Four Dimensions
5.4. More Dimensions
6. Topologically Tame Manifolds

In what follows, all manifolds will be smooth, connected, oriented and of positive dimen-
sion. All maps between manifolds will be orientation-preserving. Unless otherwise indicated,
all Riemannian manifolds will be complete.

We have tried to give as many complete proofs as reasonably possible. All unattributed
results are of unknown origin or are due to the author. I thank Wolfgang Lück for conver-
sations on some of the topics discussed herein. I thank Marie-Claude Vergne for making
the figures. This article is based on lectures given at the Troisième Cycle Romand “On the
Conjecture of the Zero in the Spectrum” held at Les Diablerets, Switzerland, March, 1996.
I warmly thank Alain Valette and the other organizers and participants of the meeting.

2. Definition of L2
-Cohomology

Let M be as above. Let Λp(M) denote the Hilbert space of square-integrable p-forms on
M . The completeness of M enters in one crucial way, in allowing us to integrate by parts
on M in the sense of the following lemma.

Lemma 1. (Gaffney [13]) Suppose that ω, η, dω and dη are smooth square-integrable dif-
ferential forms on M . Then∫

M

dω ∧ η + (−1)deg(ω)

∫
M

ω ∧ dη = 0. (2.1)

Proof. We claim that there is a sequence {φi}∞i=1 of compactly-supported functions on M
with the properties that
1. There is a constant C > 0 such that for all i and almost all m ∈ M , |φi(m)| ≤ C and
|dφi(m)| ≤ C.
2. For almost all m ∈M , limi→∞ φi(m) = 1 and limi→∞ |dφi(m)| = 0.

To construct the sequence {φi}∞i=1, let m0 be a basepoint in M . Let f ∈ C∞0 ([0,∞)) be
a nonincreasing function such that if x ∈ [0, 1

2
] then f(x) = 1. Put φi(m) = f

(
1
i
d(m0,m)

)
.

This gives the desired sequence. The completeness of M ensures that φi is compactly-
supported. Note that φi is a priori only a Lipschitz function, but this is good enough for
our purposes.

Using Lebesgue Dominated Convergence and the fact that we can integrate by parts for
compactly-supported forms, we have∫

M

dω ∧ η + (−1)deg(ω)

∫
M

ω ∧ dη =

∫
M

d(ω ∧ η) = lim
i→∞

∫
M

φi d(ω ∧ η) (2.2)

= − lim
i→∞

∫
M

dφi ∧ ω ∧ η = 0.

This proves the lemma.

Let d∗ be the formal adjoint to d. Using Lemma 1, one can construct a self-adjoint
operator 4 = dd∗ + d∗d acting on Λ∗(M), with domain

Dom(4) = {ω ∈ Λ∗(M) : dω, d∗ω, dd∗ω and d∗dω are square-integrable}.
(2.3)
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Let 4p denote the restriction of 4 to Λp(M). The spectrum σ(4p) of 4p is a closed subset
of [0,∞).

Lemma 2. The kernel of 4p is {ω ∈ Λp(M) : dω = d∗ω = 0}.

Proof. Clearly {ω ∈ Λp(M) : dω = d∗ω = 0} ⊆ Ker(4p). If ω ∈ Ker(4p) then by elliptic
regularity, ω is smooth. Using integration by parts, 0 = 〈ω,4pω〉 = 〈dω, dω〉 + 〈d∗ω, d∗ω〉,
so dω = d∗ω = 0.

Warning : Unlike what happens with compact manifolds, it is possible that Ker(4p) = 0
but nevertheless 0 ∈ σ(4p). The simplest example of this is when M = R and p = 0.
By Lemma 2, Ker(40) consists of square-integrable functions f on R such that df = 0.
Clearly the only such function is the zero function. However, under Fourier transform, 40

is equivalent to the multiplication operator by k2 on L2(R) and hence σ(40) = [0,∞).

Examples : We now give σ(4p) for simply-connected space forms.

1. M is the standard sphere Sn. From [14],

σ(4p) = {(k + p)(k + n+ 1− p)}∞k=0 ∪ {(k + p+ 1)(k + n− p)}∞k=0. (2.4)

(See Fig. 1.) The details of the spectrum are not important for us. We only wish to note
that σ(4p) is discrete, and 0 ∈ σ(4p) if p = 0 or p = n. These statements are a consequence
of the fact that M is closed. Namely, if Mn is any closed Riemannian manifold then σ(4p)
is discrete and Ker(4p) ∼= Hp(M ;C). In particular, Ker(40) ∼= H0(M ;C) = C consists of
the constant functions and Ker(4n) ∼= Hn(M ;C) = C consists of multiples of the volume
form.

2. M is the standard Euclidean space Rn. As the p-forms on Rn consist of
(
n
p

)
copies

of the functions, it is enough to consider σ(40). By Fourier analysis, σ(40) = [0,∞). Thus
σ(4p) = [0,∞) for all 0 ≤ p ≤ n. (See Fig. 2.) Note that Ker(4p) = 0 for all p.

3. M is the hyperbolic space H2n. From [9],

σ(4p) =


[

(2n−2p−1)2

4
,∞
)

if 0 ≤ p ≤ n− 1,

{0} ∪
[

1
4
,∞
)

if p = n,[
(2p−2n−1)2

4
,∞
)

if n+ 1 ≤ p ≤ 2n.

(See Fig. 3.) There is an infinite-dimensional kernel to 4n. Otherwise, the spectrum is
strictly bounded away from zero.

4. M is the hyperbolic space H2n+1. From [9],

σ(4p) =


[

(2n−2p)2

4
,∞
)

if 0 ≤ p ≤ n,

[
(2p−2n−2)2

4
,∞
)

if n+ 1 ≤ p ≤ 2n+ 1.
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(See Fig. 4.) For all p, Ker(4p) = 0. The continuous spectrum extends down to zero in
degrees n and n+ 1, and is strictly bounded away from zero in other degrees.
End of Examples

Comparing Figures 1-4, the spectra do not have much in common. However, one common
feature is that zero lies in σ(4p) for some p, although for different reasons in the different
cases. In Figure 1, it is because 40 has a nonzero finite-dimensional kernel. In Figure 2, it
is because zero lies in the continuous spectrum of 4p for all p. In Figure 3, it is because 4n

has an infinite-dimensional kernel. And in Figure 4, it is because zero lies in the continuous
spectrum of 4p for p = n and p = n+ 1.

The above examples, along with others, motivate the zero-in-the-spectrum question. One
can pose the question for various classes of manifolds, such as
1. Complete Riemannian manifolds.
2. Complete Riemannian manifolds of bounded geometry, meaning that the injectivity ra-
dius is positive and the sectional curvature K satisfies |K| ≤ 1.
3. Uniformly contractible Riemannian manifolds, meaning that for all r > 0, there is an
R(r) ≥ r such that for all m ∈ M , the metric ball Br(m) can be contracted to a point
within BR(r)(m).
4. Universal covers of closed Riemannian manifolds.
5. Universal covers of closed aspherical Riemannian manifolds.

There are obvious inclusions
5 ⊂ 4 ⊂ 2
∩ ∩
3 ⊂ 1.

As we shall discuss, there are some reasons

to believe that the answer to the zero-in-the-spectrum question is “yes” in class 5, but the
evidence for a “yes” answer in class 1 consists mainly of a lack of counterexamples.

In order to make the study of the spectrum of 4p more precise, the Hodge decomposition

Λp(M) = Ker(4p)⊕ Im(d)⊕ Λp(M)/Ker(d) (2.5)

is useful. The operator 4p decomposes with respect to (2.5) as a direct sum of three oper-
ators. If we know the spectrum of the Laplace-Beltrami operator on all forms of degree less
than p then the new information in degree p consists of Ker(4p) and the spectrum of 4p

on Λp(M)/Ker(d). So we can ask the more precise questions :
1. What is dim(Ker(4p))?
2. Is zero in σ (4p on Λp(M)/Ker(d))?

By its definition, 4p involves the first derivatives of the metric tensor. We now show that
the answer to the zero-in-the-spectrum question only depends on the C0-properties of the
metric tensor. To do so, we reformulate the question in terms of L2-cohomology. Define a
subspace Ωp(M) of Λp(M) by

Ωp(M) = {ω ∈ Λp(M) : dω is square-integrable}, (2.6)

where dω is initially interpreted in a distributional sense. The subspace Ωp(M) is cooked
up so that we have a cochain complex

. . .
dp−1−→ Ωp(M)

dp−→ Ωp+1(M)
dp+1−→ . . . (2.7)
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Lemma 3. Ker(dp) is a subspace of Ωp(M) which is closed in Λp(M).

Proof. Suppose that {ηi}∞i=1 is a sequence in Ker(dp) which converges to ω ∈ Λp(M) in
an L2-sense. We must show that the distributional form dω vanishes. Given a smooth
compactly-supported (p+ 1)-form ρ, we have

〈dω, ρ〉 = 〈ω, d∗ρ〉 = lim
i→∞
〈ηi, d∗ρ〉 = lim

i→∞
〈dηi, ρ〉 = 0. (2.8)

The lemma follows.

Definition 1. The p-th unreduced L2-cohomology group of M is Hp
(2)(M) = Ker(dp)/Im(dp−1).

The p-th reduced L2-cohomology group of M is H
p

(2)(M) = Ker(dp)/Im(dp−1), a Hilbert space.

The square-integrability condition on the forms should be thought of as a global decay
condition, not as a local regularity condition. One can also compute H∗(2)(M) using a complex
as in (2.7) where the forms are additionally required to be smooth [20, Prop. 9].

There is an obvious surjection ip : Hp
(2)(M) → H

p

(2)(M). Clearly ip is an isomorphism if

and only if dp−1 has closed image.

Proposition 1. 1. Ker(4p) ∼= H
p

(2)(M).
2. 0 /∈ σ (4p on Λp(M)/Ker(d)) if and only if ip+1 is an isomorphism.

Proof. 1. Using Lemma 2, we have

Ker(4p) = {ω ∈ Λp(M) : dω = d∗ω = 0} = Ker(dp) ∩ Im(dp−1)
⊥ ∼= H

p

(2)(M).
(2.9)

The first part of the proposition follows.
2. Suppose first that 4p has a bounded inverse on Λp(M)/Ker(d). Given µ ∈ Λp(M), let
µ denote its class in Λp(M)/Ker(d). Define an operator S on smooth compactly-supported
(p + 1)-forms by S(ω) = d4−1

p d∗ω. Then S extends to a bounded operator on Λp+1(M).

Let {ηi}∞i=1 be a sequence in Ωp(M) such that limi→∞ dηi = ω for some ω ∈ Λp+1(M). Then
for each i, we have dηi = S(dηi) and so ω = S(ω). Thus ω ∈ Im(d) and so Im(d) is closed.

Now suppose that 4p does not have a bounded inverse on Λp(M)/Ker(d). Then there
is a sequence of positive numbers r1 > s1 > r2 > s2 > . . . tending towards zero and
an orthonormal sequence {ηi}∞i=1 in Λp(M)/Ker(d) such that with respect to the spectral
projection P of 4p (acting on Λp(M)/Ker(d)), ηi ∈ Im(P ([si, ri])). Put λi = ‖dηi‖. Then
limi→∞ λi = 0. Let {ci}∞i=1 be a sequence in R+ such that

∑∞
i=1 c

2
i =∞ and

∑∞
i=1 ciλi <∞.

Put ω =
∑∞

i=1 cidηi. Then ω ∈ Im(d). Suppose that ω = dµ for some µ ∈ Ωp(M). By the
spectral theorem, we must have µ =

∑∞
i=1 ciηi. However, this is not square-integrable. Thus

Im(d) is not closed. The proposition follows.

Corollary 1. Zero does not lie in σ(4p) for any p if and only if Hp
(2)(M) = 0 for all p, i.e.

if the complex (2.7) is contractible.

So a counterexample to the zero-in-the-spectrum question would consist of a manifold
M whose complex (2.7) is contractible. By way of comparison, recall that the compactly-
supported complex-valued cohomology of M is computed by a cochain complex similar
to (2.7), except using compactly-supported smooth forms. As Hdim(M)

c (M ;C) 6= 0, this
latter complex is never contractible. And the ordinary complex-valued cohomology of M is
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computed by a cochain complex similar to (2.7), except using smooth forms without any
decay conditions. Again, as H0(M ;C) 6= 0, this latter complex is never contractible.

If M is closed then H
∗
(2)(M) is independent of the Riemannian metric on M . This is no

longer true if M is not closed - consider R2 and H2. However, the L2-cohomology groups of
M do have some invariance properties which we now discuss.

Definition 2. Riemannian manifolds M and M ′ are biLipschitz diffeomorphic if there is a
diffeomorphism F : M → M ′ and a constant K > 0 such that the Riemannian metrics g
and g′ satisfy the pointwise inequality

K−1g ≤ F ∗g′ ≤ Kg. (2.10)

IfM andM ′ are biLipschitz diffeomorphic then their reduced and unreduced L2-cohomology
groups are isomorphic, as the Riemannian metric only enters in the complex (2.7) in de-
termining which forms are square-integrable. Thus the answer to the zero-in-the-spectrum
question only depends on the biLipschitz diffeomorphism class of M . More generally, we
can consider a category whose objects are Lipschitz Riemannian manifolds and whose mor-
phisms are Lipschitz maps. Then the reduced and unreduced L2-cohomology groups are
Lipschitz-homotopy-invariants.

Note that L2-cohomology groups are not coarse quasi-isometry invariants. For example,
any closed manifold is coarsely quasi-isometric to a point, but its L2-cohomology is the same
as its ordinary complex-valued cohomology, which may not be that of a point. However,
some aspects of L2-cohomology only depend on the large-scale geometry of the manifold.

Proposition 2. [20, Prop. 12] If M and M ′ are isometric outside of compact sets then
1. Ker(4p) is finite-dimensional on M if and only if it is finite-dimensional on M ′.
2. Zero is in σ (4p on Λp/Ker(d)) on M if and only if the same statement is true on M ′.

Consider uniformly contractible Riemannian manifolds of bounded geometry. If two such
manifolds are coarsely quasi-isometric then they are Lipschitz-homotopy-equivalent and
hence their L2-cohomology groups are isomorphic [15, p. 219]. The next proposition gives
an extension of this result in which uniform contractibility is replaced by uniform vanishing
of cohomology, the latter being defined as follows.

Definition 3. We say that Hj(M ;C) vanishes uniformly if for all r > 0, there is an R(r) ≥
r such that for all m ∈M ,

Im
(
Hj(BR(r)(m);C)→ Hj(Br(m);C)

)
= 0. (2.11)

Proposition 3. (Pansu [25]) Consider a Riemannian manifold M of bounded geometry
such that for some k > 0, Hj(M ;C) vanishes uniformly for 1 ≤ j ≤ k. Then within the
class of such manifolds,
1. H

p

(2)(M) and Hp
(2)(M) are coarse quasi-isometry invariants for 0 ≤ p ≤ k.

2. Ker(H
k+1

(2) (M) → Hk+1(M ;C)) and Ker(Hk+1
(2) (M) → Hk+1(M ;C)) are coarse quasi-

isometry invariants.

3. General Properties of L2
-Cohomology

In this section we give some general results about the L2-cohomology of complete Rie-
mannian manifolds. First, we give a useful sufficient condition for the reduced L2-cohomology
to be nonzero.



THE ZERO-IN-THE-SPECTRUM QUESTION 7

Proposition 4. For all p, Im (Hp
c(M ;C)→ Hp(M ;C)) injects into H

p

(2)(M).

Proof. Suppose that ω is a smooth compactly-supported closed p-form which represents a
nonzero class in Hp(M ;C). By Poincaré duality, there is a smooth compactly-supported
closed (dim(M)− p)-form ρ such that

∫
M
ω ∧ ρ 6= 0.

As ω is compactly-supported, it is square-integrable and so represents an element [ω] of
H
p

(2)(M). Suppose that [ω] = 0. Then there is a sequence {ηi}∞i=1 in Ωp−1(M) such that

ω = limi→∞ dηi, where the limit is in an L2-sense. It follows that∫
M

ω ∧ ρ = lim
i→∞

∫
M

dηi ∧ ρ = lim
i→∞

∫
M

d(ηi ∧ ρ) = 0, (3.1)

which is a contradiction. Thus [ω] 6= 0.

Corollary 2. Let N4k be a compact manifold-with-boundary with nonzero signature. Then

if M is any complete Riemannian manifold which is diffeomorphic to int(N), H
2k

(2)(M) 6= 0.

Proof. By definition, the signature of N is the signature of the intersection form on

Im
(
H2k(N, ∂N ;C)→ H2k(N ;C)

) ∼= Im
(
H2k
c (M ;C)→ H2k(M ;C)

)
. (3.2)

If the signature of N is nonzero then Im
(
H2k
c (M ;C)→ H2k(M ;C)

)
must be nonzero. The

corollary follows from Proposition 4.

Example : Let N be CP 2 with a small 4-ball removed. Then N satisfies the hypothesis
of Corollary 2.

We now show that the middle-dimensional reduced L2-cohomology is a conformal invariant
of M .

Proposition 5. If M2k is even-dimensional then Ker(4k) is conformally-invariant.

Proof. Suppose that g and eφg are conformally equivalent Riemannian metrics on M , with
φ ∈ C∞(M). We use the fact that the action of the Hodge duality operator ∗ on Λk(M) is
independent of φ. If ω is a k-form on M , its L2-norm

∫
M
ω ∧ ∗ω is independent of φ. Thus

the Hilbert space Λk(M) is independent of φ. Furthermore,

Ker(4k) = {ω ∈ Λk(M) : dω = d∗ω = 0} (3.3)

= {ω ∈ Λk(M) : dω = ± ∗ d ∗ (ω) = 0}
= {ω ∈ Λk(M) : dω = d ∗ (ω) = 0} (3.4)

is independent of φ.

Example : Take M = H2. Then M is conformally equivalent to a Euclidean disk D. The
harmonic square-integrable 1-forms on D are of the form f1(x, y)dx + f2(x, y)dy, where f1

and f2 are square-integrable harmonic functions on D. There is clearly an infinite number

of such functions, and so dim(H
1

(2)(H
2)) = ∞. The same argument applies to H2k, to give

dim(H
k

(2)(H
2k)) =∞.

In the case of functions, one has a good control of when zero is in the spectrum of the
Laplacian.
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Lemma 4. Ker(40) 6= 0 if and only if vol(M) <∞.

Proof. If vol(M) <∞ then the constant functions on M are square-integrable and harmonic.
Conversely, if f ∈ Ker(40) then by Lemma 2, f is constant. If f is nonzero and square-
integrable then vol(M) <∞.

Definition 4. M is open at infinity if there is a constant C > 0 such that for all domains

D in M with smooth compact closure, area(∂D)

vol(D)
≥ C.

Examples :
1. Rn is not open at infinity, as can be seen by taking large balls for D.
2. Hn is open at infinity.

Proposition 6. (Buser [3]) Let M have infinite volume. Suppose that there is a constant
c ≥ 0 such that RicciM ≥ −c2. Then 0 /∈ σ(40) if and only if M is open at infinity.

Proof. 1. Suppose that M is open at infinity. By Cheeger’s inequality,

inf(σ(40)) ≥ inf
D

1

4

(
area(∂D)

vol(D)

)2

> 0. (3.5)

2. Suppose that M is not open at infinity. The bottom of the spectrum of 40 is given in
terms of Rayleigh quotients by

inf(σ(40)) = inf
f 6=0

∫
M
|df |2∫

M
f 2

, (3.6)

where f ranges over compactly-supported Lipschitz functions on M . We want to find
compactly-supported Lipschitz functions on M of arbitrarily small Rayleigh quotient. By

assumption, for all ε > 0 there is a domain D such that area(∂D)

vol(D)
≤ ε. Put

N1(∂D) = {m ∈M : m /∈ D and d(m, ∂D) ≤ 1}. (3.7)

Define a function f , which approximates the characteristic function of D, by

f(m) =


1 if m ∈ D
1− d(m, ∂D) if m ∈ N1(∂D)

0 if m /∈ D and m /∈ N1(∂D).

(3.8)

Clearly
∫
M
f 2 ≥ vol(D). As f has nonzero gradient only in N1(∂D), where |df | = 1 almost

everywhere, we have
∫
M
|df |2 = vol(N1(∂D)). If D is nice and round then we expect that

vol(N1(∂D)) ∼ area(∂D) (3.9)

and the Rayleigh quotient
∫
M |df |

2∫
M f2 will be comparable to ε.

The only problem with this argument is that D may not be nice and round, but may have
long thin legs coming out of it, like an octopus. Then (3.9) may not be valid. The content
of [3] is that if this is the case, we can cut the legs off of D to come up with a new domain
for which the above heuristic argument is valid. It is in this step that the lower bound on
the Ricci curvature is used. We refer to [3] for details.

Corollary 3. (Brooks [2]) Let M be a normal covering of a compact manifold X with
covering group Γ. Then 0 ∈ σ(40) on M if and only if Γ is amenable.
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Proof. If Γ is finite then 0 ∈ σ(40) and Γ is amenable. If Γ is infinite then by Proposition
6, 0 ∈ σ(40) if and only if M is not open at infinity. Let S be a finite set of generators
of Γ. Let G be the Cayley graph of Γ, constructed using S. There is a notion of G being
open at infinity which is similar to Definition 4. As M is coarsely quasi-isometric to G, M
is not open at infinity if and only if G is not open at infinity. However, this is one of the
characterizations of amenability of Γ.

We now prove a result about manifolds which, roughly speaking, are at least as large as
Euclidean space.

Definition 5. M is hyperEuclidean if there is a proper distance-nonincreasing map F :
M → R

dim(M) of nonzero degree.

Remarks :
1. A map is proper if preimages of compact sets are compact. Instead of requiring that
F be distance-nonincreasing, we could require that F have a finite Lipschitz constant. By
postcomposing F with a dilatation of Rdim(M), the two conditions are equivalent.
2. If M is hyperEuclidean then a compactly-supported modification of M is also hyper-
Euclidean.
3. Examples of hyperEuclidean manifolds are given by simply-connected nonpositively-
curved manifolds M . Namely, fix m0 ∈M and put F = exp−1

m0
.

4. There was once a conjecture that all uniformly contractible manifolds are hyperEuclidean
(with a degree-one map to Rdim(M)), but this turns out to be wrong [11]. There is still
an open conjecture that a uniformly contractible manifold of bounded geometry is hyper-
Euclidean, and in particular, that the universal cover of an aspherical closed manifold is
hyperEuclidean.

Proposition 7. (Gromov [15, p. 238]) If M is hyperEuclidean then 0 ∈ σ(4p) for some p.

Proof. Put n = dim(M). First, suppose that n is even. We will construct a vector bundle
E with connection on Rn which is topologically nontrivial but analytically trivial, in a sense
which will be made precise. Then assuming that zero is not in the spectrum of M , we will
apply the relative index theorem to F ∗E in order to get a contradiction.

Recall that K0(Sn) = Z ⊕ Z. If E is a (virtual) vector bundle on Sn, the two Z factors
correspond to rk(E) and

∫
Sn

ch(E), respectively. This means that for some N > 0, there is
a complex CN -bundle E on Sn with

∫
Sn

ch(E) 6= 0. Fixing a point∞ ∈ Sn, we can trivialize
E in a neighborhood of ∞. Furthermore, we can put a Hermitian metric and Hermitian
connection on E so that the connection is flat in a neighborhood of ∞.

Let E be the restriction of E to Rn = Sn−{∞}. Let ∇ be the restriction of the Hermitian
connection on E to Rn. Then E is trivialized outside of a compact set K ⊂ Rn and ∇ is flat
outside of K.

As Rn is contractible, there is an isomorphism of Hermitian vector bundles i : Rn×CN →
E. Then i∗∇ can be considered to be a u(N)-valued 1-form ω on Rn. The curvature of ω
is the u(N)-valued 2-form Ω = dω + ω2. The nontriviality of E translates to the facts that
1. Ω vanishes outside of K and
2. The de Rham cohomology class of the compactly-supported form Tr

(
e−

Ω
2πi

)
− N is a

nonzero multiple of the fundamental class [Rn] ∈ Hn
c (Rn;R).
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In fact, we can take ω to have a finite L∞-norm ‖ ω ‖∞. For example, if n = 2, take
N = 1. Let f ∈ C∞0 ([0,∞)) be a nonincreasing function such that if x ∈ [0, 1

2
] then f(x) = 1.

Put ω = −i(1− f(r))dθ. Then

Ω = dω = if ′(r)dr ∧ dθ. (3.10)

We have ‖ ω ‖∞ = supr≥0
1−f(r)

r
and

∫
R2

[
Tr
(
e−

Ω
2πi

)
− 1
]

= 1.

Returning to the case of general even n, for ε > 0, let Φε : Rn → R
n be the map

Φε(x) = εx. Put ωε = Φ∗εω and Ωε = dωε + ω2
ε . Then

‖ ωε ‖∞ = ε ‖ ω ‖∞ and

∫
Rn

[
Tr
(
e−

Ωε
2πi

)
−N

]
=

∫
Rn

[
Tr
(
e−

Ω
2πi

)
−N

]
6= 0.

(3.11)

We now turn our attention to M . Suppose that 0 /∈ σ(4p) for all p. Consider the self-
adjoint operator d+ d∗ on Λ∗(M). As (d+ d∗)2 = 4, it follows that 0 /∈ σ(d+ d∗). In other
words, d+ d∗ is L2-invertible. Define an operator µ on Λ∗(M) by saying that if ω ∈ Λp(M)
then

µ(ω) = i
n(n−1)

2 (−1)
p(p−1)

2 ∗ (ω). (3.12)

One can check that µ2 = 1 and µ(d+ d∗) + (d+ d∗)µ = 0.
Clearly the operator (d + d∗) ⊗ IdN , acting on Λ∗(M) ⊗ CN , is also invertible. Consider

the u(N)-valued 1-form F ∗ωε on M . As F is distance-nonincreasing,

‖ F ∗ωε ‖∞ ≤ ‖ ωε ‖∞ = ε ‖ ω ‖∞ . (3.13)

Let e(F ∗ωε) denote exterior multiplication by F ∗ωε, acting on Λ∗(M)⊗CN and let i(F ∗ωε)
denote interior multiplication by F ∗ωε. By making ε small enough, the operator e(F ∗ωε)−
i(F ∗ωε) has arbitrarily small norm and so the operator ((d+ d∗)⊗ IdN)+e(F ∗ωε)− i(F ∗ωε)
is also invertible.

Put D = (d⊗ IdN) + e(F ∗ωε). Then D is exterior differentiation, using the connection
F ∗ωε, and

D +D∗ = ((d+ d∗)⊗ IdN) + e(F ∗ωε)− i(F ∗ωε). (3.14)

As (d + d∗) ⊗ IdN and D + D∗ anticommute with µ ⊗ IdN , they have well-defined indices
which happen to vanish, as the operators are invertible. On the other hand, let L(M) be
the Hirzebruch L-form. The relative index theorem of Gromov and Lawson [10, 16] says
that

ind(D +D∗)− ind((d+ d∗)⊗ IdN) =

∫
M

L(M) ∧
[
Tr
(
e−

F∗Ωε
2πi

)
−N

]
.

(3.15)

As F is proper, the de Rham cohomology class of Tr
(
e−

F∗Ωε
2πi

)
−N = F ∗

[
Tr
(
e−

Ωε
2πi

)
−N

]
is well-defined as a multiple of the fundamental class [M ] ∈ Hn

c (M ;R). As the series for
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L(M) starts off as L(M) = 1 + . . . , we obtain

ind(D +D∗)− ind((d+ d∗)⊗ IdN) =

∫
M

[
Tr
(
e−

F∗Ωε
2πi

)
−N

]
(3.16)

=

∫
M

F ∗
[
Tr
(
e−

Ωε
2πi

)
−N

]
= deg(F )

∫
Rn

[
Tr
(
e−

Ωε
2πi

)
−N

]
6= 0.

This contradicts the vanishing of ind(D +D∗) and ind((d+ d∗)⊗ IdN). Thus zero must be
in the spectrum of M after all.

Now suppose that n is odd. As M is hyperEuclidean, so is R × M . With respect to
the decomposition Λ∗(R×M) = Λ∗(R)⊗Λ∗(M), the Laplace-Beltrami operator on R×M
decomposes as

4R×M = (4R ⊗ I) + (I ⊗4M) . (3.17)

Then

σ(4R×M) = {λ1 + λ2 : λ1 ∈ [0,∞) and λ2 ∈ σ(4M)}. (3.18)

From what has already been proved, 0 ∈ σ(4R×M). It follows that 0 ∈ σ(4M).

Remarks :
1. We have shown that if M is hyperEuclidean then 0 ∈ σ(4p) for some p. One can ask
whether the number p can be pinned down. In general, when computing the index of the
operator d + d∗, the differential forms outside of the middle dimensions do not contribute.
This is a reflection of the fact that the signature of a closed manifold can be computed using
only the middle-dimensional cohomology. So this gives some reason to think that if dim(M)

is even then 0 ∈ σ
(
4 dim(M)

2

)
.

Unfortunately, the operator (D+D∗)2 does not preserve the degree of a differential form
and so we cannot use the above proof to reach the desired conclusion. However, with a more

refined index theorem [28, Theorem 6.24], one can indeed conclude that 0 ∈ σ
(
4 dim(M)

2

)
if

dim(M) is even and that 0 ∈ σ
(
4 dim(M)±1

2

)
if dim(M) is odd.

2. If M is an irreducible noncompact globally symmetric space G/K, with G = Isom(M)
and K a maximal compact subgroup, then one can say more about the bottom of the spec-

trum. If rk(G) = rk(K) then Ker
(
4 dim(M)

2

)
is infinite-dimensional and the spectrum of 4

is bounded away from zero otherwise. If rk(G) > rk(K) then Ker(4) = 0 and 0 ∈ σ(4p) if

and only if p ∈
[
dim(M)

2
− rk(G)−rk(K)

2
, dim(M)

2
+ rk(G)−rk(K)

2

]
[19, Section VIIB].

Finally, we state a result about uniformly contractible Riemannian manifolds.

Definition 6. [15, p. 29] A metric space Z has finite asymptotic dimension if there is
an integer n such that for any r > 0, there is a covering Z =

⋃
i∈I Ci of Z by subsets of

uniformly bounded diameter so that no metric ball of radius r in Z intersects more than
n + 1 elements of {Ci}i∈I . The smallest such integer n is called the asymptotic dimension
asdim+(Z) of Z.
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Proposition 8. (Yu [33]) If M is a uniformly contractible Riemannian manifold with finite
asymptotic dimension then 0 ∈ σ(4p) for some p.

The proof of Proposition 8 uses methods of coarse index theory [28].

4. Very Low Dimensions

In this section we show that the answer to the zero-in-the-spectrum question is “yes” for
one-dimensional simplicial complexes and two-dimensional Riemannian manifolds.

4.1. One Dimension. As a one-dimensional manifold is either S1 or R, zero is clearly in
the spectrum.

A more interesting problem is to consider a connected one-dimensional simplicial complex
K. Let V be the set of vertices of K and let E be the set of oriented edges of K. That is,
an element e of E consists of an edge of K and an ordering (se, te) of ∂e. We let −e denote
the same edge with the reverse ordering of ∂e. For x ∈ V , let mx denote the number of
unoriented edges of which x is a boundary. We assume that mx <∞ for all x. Put

C0(K) = {f : V → C such that
∑
x∈V

mx |f(x)|2 <∞}, (4.1)

C1(K) = {F : E → C such that F (−e) = −F (e) and
1

2

∑
e∈E

|F (e)|2 <∞}.

Then C0(K) and C1(K) are Hilbert spaces. The weighting used to define C0(K) is natural
in certain respects [8].

There is a bounded operator d : C0(K)→ C1(K) given by (df)(e) = f(te)−f(se). Define
the Laplace-Beltrami operators by 40 = d∗d and 41 = dd∗. An element of Ker(41) is
an F ∈ C1(K) such that for each vertex x the total current flowing into x vanishes, i.e.∑

e∈E:te=x
F (e) = 0.

The next proposition is essentially due to Gromov [15, p. 236], who proved it in the case
when {mx}x∈V is bounded.

Proposition 9. 0 ∈ σ(40) or 0 ∈ σ(41).

Proof. As the nonzero spectra of d∗d and dd∗ are the same, for our purposes it suffices to
consider σ(40) and Ker(41). We argue by contradiction. Suppose that 0 /∈ σ(40) and
Ker(41) = 0. First, K must be infinite, as otherwise Ker(40) 6= 0. Second, K must be
a tree, as if K had a loop then we could create a nonzero element of Ker(41) by letting a
current of unit strength flow around the loop.

We now show that K has lots of branching. For x, y ∈ V , let [x, y] be the geodesic arc
from x to y and let (x, y) be its interior. Let d(x, y) be the number of edges in [x, y].

Lemma 5. There is a constant L > 0 such that if d(x, y) > L then there is an infinite
subtree of K which intersects (x, y) but does not contain x or y.

Proof. If the lemma is not true then for all N > 1, there are vertices x and y such that
d(x, y) > N but there are no infinite subtrees as in the statement of the lemma. In other
words, the connected component C of K − {x} − {y} which contains (x, y) is finite. As K



THE ZERO-IN-THE-SPECTRUM QUESTION 13

is a tree, x is only connected to the vertices in C by a single edge, and similarly for y (see
Fig. 5). Define f ∈ C0(K) by

f(v) =

{
1 if v ∈ C,
0 otherwise.

(4.2)

Then

〈df, df〉
〈f, f〉

≤ 2

2(d(x, y)− 1)
≤ 1

N
. (4.3)

As N can be taken arbitrarily large, this contradicts the assumption that 0 /∈ σ(40).

It follows that K contains a subtree K ′ which is topologically equivalent to an infinite
triadic tree, with the distances between branchings at most L (see Fig. 6). We can create
a nonzero square-integrable harmonic 1-cochain F ′ on K ′ by letting a unit current flow
through it, as in Fig. 6. Let F ∈ C1(K) be the extension of F ′ by zero to K. If x is a
vertex of K ′ then the total current flowing into x is still zero, as no new current comes in
along the edges of K −K ′. Thus Ker(41) 6= 0, which is a contradiction.

4.2. Two Dimensions.

Proposition 10. (Lott, Dodziuk) The answer to the zero-in-the-spectrum question is “yes”
if M is a two-dimensional manifold.

Proof. The Hodge decomposition gives

Λ0(M) = Ker(40)⊕ Λ0(M)/Ker(d), (4.4)

Λ1(M) = Ker(41)⊕ dΛ0(M)⊕ ∗dΛ0(M), (4.5)

Λ2(M) = ∗Ker(40)⊕ ∗(Λ0(M)/Ker(d)). (4.6)

Thus it is enough to look at Ker(40), Ker(41) and σ (40 on Λ0(M)/Ker(d)).
We argue by contradiction. Assume that zero is not in the spectrum. By Proposition 4,

Im(H1
c(M)→ H1(M)) = 0. Thus M must be planar, in the sense of either of the following

two equivalent conditions :
1. Any simple closed curve in M separates it into two pieces.
2. M is diffeomorphic to the complement of a closed subset of S2.

As Ker(40) = 0, M cannot be S2. By Proposition 5, the possible existence of nonzero
square-integrable harmonic 1-forms on M only depends on the underlying Riemann surface
coming from the Riemannian metric on M .

We recall some notions from Riemann surface theory [1]. A function f ∈ C∞(M) is
superharmonic if 40f > 0. (This is a conformally-invariant statement.) The Riemann
surface underlying M is hyperbolic if it has a positive superharmonic function and parabolic
otherwise. If M is planar and hyperbolic then there is a nonconstant harmonic function
f ∈ C∞(M) such that

∫
M
df ∧∗df <∞ [1, p. 208]. Then df would be a nonzero element of

Ker(41). Thus M must be parabolic.
Put λ0 = inf(σ(40)). Choose some λ such that 0 < λ < λ0. Then there is a positive

f ∈ C∞(M) (not square-integrable!) such that 40f = λf [31, Theorem 2.1]. However, this
contradicts the parabolicity of M .
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We do not know of any result analogous to Proposition 10 for general two-dimensional
simplicial complexes, say uniformly finite. See, however, Subsection 5.2.

5. Universal Covers

Suppose that M is the universal cover of a compact Riemannian manifold X. We give
M the pulled-back Riemannian metric and consider the Laplace-Beltrami operator 4p on
M . There are numerical invariants derived from {4p}p≥0, the so-called L2-Betti numbers

{b(2)
p (X)}p≥0 and Novikov-Shubin invariants {αp+1(X)}p≥0. The L2-Betti numbers lie in

[0,∞) and the Novikov-Shubin invariants lie in [0,∞] ∪∞+. Here ∞+ is a formal symbol

which should be considered to be greater than ∞. Roughly speaking, b
(2)
p (X) measures the

size of Ker(4p) as a π1(X)-module and αp+1(X) measures the thickness near zero of the
spectrum of 4p on Λp(M)/Ker(d); the larger αp+1(X), the thinner the spectrum near zero.
We refer to [21, 22, 26] for the definitions of these invariants. We will only need the following
properties :

Properties : 1. b
(2)
p (X) = 0 ⇐⇒ Ker(4p) = 0.

2. 0 /∈ σ(4p on Λp(M)/Ker(d)) ⇐⇒ αp+1 =∞+.

3. b
(2)
p (X) and αp(X) are homotopy-invariants of X.

4. b
(2)
0 (X), b

(2)
1 (X), α1(X) and α2(X) only depend on π1(X).

5. b
(2)
0 (X) = 0 if and only if π1(X) is infinite.

6. α1(X) =∞+ if and only if π1(X) is finite or nonamenable.
7. The Euler characteristic of X satisfies

χ(X) =
∑
p

(−1)p b(2)
p (X) (5.1)

8. If Xn is closed then b
(2)
n−p(X) = b

(2)
p (X).

9. If X4k is closed then there are nonnegative numbers b
(2)
2k,±(X) such that b

(2)
2k (X) =

b
(2)
2k,+(X) + b

(2)
2k,−(X) and the signature of X satisfies

τ(X) = b
(2)
2k,+(X)− b(2)

2k,−(X). (5.2)

One can extend properties 1-7 from compact Riemannian manifolds X to finite CW -
complexes K.

In what follows, Γ will denote a finitely-presented group. Given a presentation of Γ, there
is an associated 2-dimensional CW -complex K which we call the presentation complex. To
form it, make a bouquet of circles indexed by the generators of Γ. Attach 2-cells based on
the relations of Γ. (We allow trivial or repeated relations in the presentation.) This is the
presentation complex.

Definition 7. Put b
(2)
0 (Γ) = b

(2)
0 (K), b

(2)
1 (Γ) = b

(2)
1 (K), α1(Γ) = α1(K) and α2(Γ) = α2(K).

By Property 4 above, Definition 7 makes sense in that the choice of presentation of Γ
does not matter.

As the invariants b
(2)
0 (Γ), b

(2)
1 (Γ), α1(Γ) and α2(Γ) will play an important role, let us state

explicitly what they measure. First, from Property 5, b
(2)
0 (Γ) tells us whether or not Γ is
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infinite. In general, b
(2)
0 (Γ) = 1

|Γ| . Next, from Property 1, b
(2)
1 (Γ) tells us whether or not M

has square-integrable harmonic 1-forms (or K̃ has square-integrable harmonic 1-cochains).
From Property 2, α1(Γ) tells us whether or not the Laplacian 40, acting on functions on
M , has a gap in its spectrum away from zero. In fact, Property 6 is just a restatement of
Corollary 3. Finally, from Property 2, α2(Γ) tells us whether or not the spectrum of the
Laplacian on Λ1(M)/Ker(d) goes down to zero.

5.1. Big and Small Groups. Let us first introduce a convenient terminology for the
purposes of the present paper.

Definition 8. The group Γ is big if it is nonamenable, b
(2)
1 (Γ) = 0 and α2(Γ) = ∞+.

Otherwise, Γ is small.

We recall that 4p denotes the Laplace-Beltrami operator on the universal cover M .

Proposition 11. Let X and M be as above. The group π1(X) is small if and only if
0 ∈ σ(40) or 0 ∈ σ(41).

Proof. This follows immediately from Properties 1, 2, 4, 5 and 6 above.

The question arises as to which groups are big and which are small. Clearly any amenable
group is small.

Proposition 12. Fundamental groups of compact surfaces are small.

Proof. Suppose that Σ is a compact surface and Γ = π1(Σ). If Σ has boundary then Γ is
a free group Fj on some number j of generators. If j = 0 or j = 1 then Γ is amenable. If

j > 1 then b
(2)
1 (Γ) = j − 1 > 0.

Suppose now that Σ is closed. If χ(Σ) ≥ 0 then Γ is amenable. If χ(Σ) < 0 then

b
(2)
1 (Γ) = −χ(Σ) > 0.

We now extend Proposition 12 to 3-manifold groups. We use some facts about compact
connected 3-manifolds Y , possibly with boundary. (See, for example, [21, Section 6]). Again,
all of our manifolds are assumed to be oriented. First, Y has a decomposition as a connected
sum Y = Y1#Y2# . . .#Yr of prime 3-manifolds. A prime 3-manifold is exceptional if it is
closed and no finite cover of it is homotopy-equivalent to a Seifert, Haken or hyperbolic
3-manifold. No exceptional prime 3-manifolds are known and it is likely that there are
none.

Proposition 13. (Lott-Lück) Suppose that Y is a compact connected oriented 3-manifold,
possibly with boundary, none of whose prime factors are exceptional. Then π1(Y ) is small.

Proof. We argue by contradiction. Suppose that π1(Y ) is big. First, π1(Y ) must be infinite.
If ∂Y has any connected components which are 2-spheres then we can cap them off with
3-balls without changing π1(Y ). So we can assume that ∂Y does not have any 2-sphere
components. In particular, χ(Y ) = 1

2
χ(∂Y ) ≤ 0. From [21, Theorem 0.1.1],

b
(2)
1 (Y ) = (r − 1)−

r∑
i=1

1

|π1(Yi)|
− χ(Y ). (5.3)
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As this must vanish, we have χ(Y ) = 0 and either
1. {|π1(Yi)|}ri=1 = {2, 2, 1, . . . , 1} or
2. {|π1(Yi)|}ri=1 = {∞, 1, . . . , 1}.

It follows that ∂Y is empty or a disjoint union of 2-tori. As there are no 2-spheres in ∂Y ,
if |π1(Yi)| = 1 then Yi is a homotopy 3-sphere. Thus Y is homotopy-equivalent to either
1. RP 3#RP 3 or
2. A prime 3-manifold Y ′ with infinite fundamental group whose boundary is empty or a
disjoint union of 2-tori.

If Y is homotopy-equivalent to RP 3#RP 3 then π1(Y ) is amenable, which is a contradic-
tion. So we must be in the second case. Using Property 3, we may assume that Y = Y ′.
Then as Y is prime, it follows from [24, Chapter 1] that either Y = S1 × D2 or Y has
incompressible (or empty) boundary. If Y = S1 × D2 then π1(Y ) is amenable. If Y has
incompressible (or empty) boundary then from [21, Theorem 0.1.5], α2(Y ) ≤ 2 unless Y is
a closed 3-manifold with an R3, R× S2 or Sol geometric structure. In the latter cases, Γ is
amenable. Thus in any case, we get a contradiction.

The next proposition gives examples of big groups.

Proposition 14. 1. A product of two nonamenable groups is big.
2. If Y is a closed nonpositively-curved locally symmetric space of dimension greater than

three, with no Euclidean factors in Ỹ , then π1(Y ) is big.

Proof. 1. Suppose that Γ = Γ1 × Γ2 with Γ1 and Γ2 nonamenable. Then Γ is nonamenable.
Let K1 and K2 be presentation complexes with fundamental groups Γ1 and Γ2, respectively.

Put K = K1×K2. Then Γ = π1(K). Let 4p(K̃), 4p(K̃1) and 4p(K̃2) denote the Laplace-

Beltrami operator on p-cochains on K̃, K̃1 and K̃2, respectively, as defined in Subsection
5.2 below. Then

inf(σ(41(K̃))) = min
(

inf(σ(41(K̃1))) + inf(σ(40(K̃2))), (5.4)

inf(σ(40(K̃1))) + inf(σ(41(K̃2)))
)
> 0.

Using Proposition 11, the first part of the proposition follows.

2. If Ỹ is irreducible then part 2. of the proposition follows from the second remark after

Proposition 7. If Ỹ is reducible then we can use an argument similar to (5.4).

Remark : Let Γ be an infinite finitely-presented discrete group with Kazhdan’s property

T. From [6, p. 47], H1(Γ; l2(Γ)) = 0. This implies that Γ is nonamenable and b
(2)
1 (Γ) = 0.

We do not know if it is necessarily true that α2(Γ) =∞+.

5.2. Two and Three Dimensions. In this subsection we relate the zero-in-the-spectrum
question to a question in combinatorial group theory. Let K be a finite connected 2-

dimensional CW -complex. Let K̃ be its universal cover. Let C∗(K̃) denote the Hilbert

space of square-integrable cellular cochains on K̃. There is a cochain complex

0 −→ C0(K̃)
d0−→ C1(K̃)

d1−→ C2(K̃) −→ 0. (5.5)

Define the Laplace-Beltrami operators by 40 = d∗0d0, 41 = d0d
∗
0 + d∗1d1 and 42 = d1d

∗
1.

These are bounded self-adjoint operators and so we can talk about zero being in the spectrum

of K̃.
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Proposition 15. Zero is not in the spectrum of K̃ if and only if π1(K) is big and χ(K) = 0.

Proof. Suppose that zero is not in the spectrum of K̃. From the analog of Proposition 11,
Γ must be big. Furthermore, from Properties 1 and 7, χ(K) = 0.

Now suppose that π1(K) is big and χ(K) = 0. From the analog of Proposition 11,
0 /∈ σ(40) and 0 /∈ σ(41). In particular, Ker(40) = Ker(41) = 0. From Properties 1 and

7, Ker(42) = 0. As C2(K̃) = Ker(42)⊕ d1C1(K̃), we conclude that 0 /∈ σ(42).

Let Γ be a finitely-presented group. Consider a fixed presentation of Γ consisting of
g generators and r relations. Let K be the corresponding presentation complex. Then

χ(K) = 1 − g + r. Thus zero is not in the spectrum of K̃ if and only if π1(K) is big and
g − r = 1.

Recall that the deficiency def(Γ) is defined to be the maximum, over all finite presentations

of Γ, of g − r. If b
(2)
1 (Γ) = 0 then from the equation

χ(K) = 1− g + r = b
(2)
0 (Γ)− b(2)

1 (Γ) + b
(2)
2 (K), (5.6)

we obtain def(Γ) ≤ 1. This is the case, for example, when Γ is big or when Γ is amenable
[5].

As any finite connected 2-dimensional CW -complex is homotopy-equivalent to a presen-
tation complex, it follows from Proposition 15 that the answer to the zero-in-the-spectrum
question is “yes” for universal covers of such complexes if and only if the following conjecture
is true.

Conjecture 1. If Γ is a big group then def(Γ) ≤ 0.

Remark : If π1(K) has property T then the ordinary first Betti number of K vanishes

[6], and so χ(K) = 1 + b2(K) > 0. Thus zero lies in the spectrum of K̃.

Now let Y be a 3-manifold satisfying the conditions of Proposition 13. If ∂Y 6= ∅, we

define 4p on Ỹ using absolute boundary conditions on ∂Ỹ .

Proposition 16. Zero lies in the spectrum of Ỹ .

Proof. This is a consequence of Propositions 11 and 13.

5.3. Four Dimensions. In this subsection we relate the zero-in-the-spectrum question to
a question about Euler characteristics of closed 4-dimensional manifolds.

If M is a Riemannian 4-manifold then the Hodge decomposition gives

Λ0(M) = Ker(40)⊕ Λ0(M)/Ker(d), (5.7)

Λ1(M) = Ker(41)⊕ dΛ0(M)⊕ Λ1(M)/Ker(d),

Λ2(M) = Ker(42)⊕ dΛ1(M)⊕ ∗dΛ1(M),

Λ3(M) = ∗Ker(41)⊕ ∗dΛ0(M)⊕ ∗(Λ1(M)/Ker(d)),

Λ4(M) = ∗Ker(40)⊕ ∗(Λ0(M)/Ker(d)).

Thus for the zero-in-the-spectrum question, it is enough to consider Ker(40), Ker(41),
σ(40 on Λ0/Ker(d)), σ(41 on Λ1/Ker(d)) and Ker(42).
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Let Γ be a finitely-presented group. Recall that Γ is the fundamental group of some closed
4-manifold. To see this, take a finite presentation of Γ. Embed the resulting presentation
complex in R5 and take the boundary of a regular neighborhood to get the manifold.

Now consider the Euler characteristics of all closed 4-manifolds X with fundamental
group Γ. Given X, we have χ(X#CP 2) = χ(X) + 1. Thus it is easy to make the Euler
characteristic big. However, it is not so easy to make it small. From what has been said,

{χ(X) : X is a closed connected oriented 4-manifold with π1(X) = Γ} = {n ∈ Z : n ≥ q(Γ)}
(5.8)

for some q(Γ). A priori q(Γ) ∈ Z ∪ {−∞}, but in fact q(Γ) ∈ Z [17, Théorème 1]. (This
also follows from (5.9) below.) It is a basic problem in 4-manifold topology to get good
estimates of q(Γ).

Suppose that π1(X) = Γ. From Properties 4, 7 and 8 above,

χ(X) = 2 b
(2)
0 (Γ)− 2 b

(2)
1 (Γ) + b

(2)
2 (X). (5.9)

In particular, if b
(2)
1 (Γ) = 0 then χ(X) ≥ 0 and so q(Γ) ≥ 0. This is the case, for example,

when Γ is big or when Γ is amenable [5].

Proposition 17. Let X be a closed 4-manifold. Then zero is not in the spectrum of X̃ if
and only if π1(X) is big and χ(X) = 0.

Proof. Suppose that zero is not in the spectrum of X̃. Then from Proposition 11, π1(X)
must be big. Furthermore, Ker(42) = 0. From Property 1 and (5.9), χ(X) = 0.

Now suppose that π1(X) is big and χ(X) = 0. From Proposition 11, 0 /∈ σ(40) and
0 /∈ σ(41). From Property 1 and (5.9), Ker(42) = 0. Then from (5.7), zero is not in the

spectrum of X̃.

Remark : If zero is not in the spectrum of X̃ then it follows from Property 9 that in
addition, τ(X) = 0. Also, as will be explained later in Corollary 4, if π1(X) satisfies the
Strong Novikov Conjecture then ν∗([X]) vanishes in H4(Bπ1(X);C).

In summary, we have shown that the answer to the zero-in-the-spectrum question is “yes”
for universal covers of closed 4-manifolds if and only if the following conjecture is true.

Conjecture 2. If Γ is a big group then q(Γ) > 0.

We now give some partial positive results on the zero-in-the-spectrum question for uni-
versal covers of closed 4-manifolds. Recall that there is a notion, due to Thurston, of a
manifold having a geometric structure. This is especially important for 3-manifolds. The
4-manifolds with geometric structures have been studied by Wall [32].

Proposition 18. Let X be a closed 4-manifold. Then zero is in the spectrum of X̃ if
1. π1(X) has property T or
2. X has a geometric structure (and an arbitrary Riemannian metric) or
3. X has a complex structure (and an arbitrary Riemannian metric).

Proof. 1. If X has property T then the ordinary first Betti number of X vanishes [6]. Thus
χ(X) = 2 + b2(X) > 0. Part 1. of the proposition follows.
2. The geometries of [32] all fall into at least one of the following classes :
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a. b
(2)
0 6= 0 : S4, S2 × S2, CP 2.

b. 0 ∈ σ(40 on Λ0/Ker(d)) : R4, S3 × R, S2 × R2, Nil3 × R, Nil4, Sol40, Sol41, Sol4m,n.

c. b
(2)
1 6= 0 : S2 ×H2.

d. 0 ∈ σ(41 on Λ1/Ker(d)) : H3 × R, S̃L2 × R, H2 × R2.
e. χ > 0 : H4, H2 ×H2, CH2.
Part 2. of the proposition follows.

3. Suppose that zero is not in the spectrum of X̃. From Properties 7 and 9, χ(X) = τ(X) =
0. From the classification of complex surfaces, X has a geometric structure [32, p. 148-149].
This contradicts part 2. of the proposition.

5.4. More Dimensions. In this subsection we give some partial positive results about the
zero-in-the-spectrum question for covers of compact manifolds of arbitrary dimension. Let
us first recall some facts about index theory [18]. Let X be a closed Riemannian manifold. If
dim(X) is even, consider the operator d+ d∗ on Λ∗(X). Give Λ∗(X) the Z2-grading coming
from (3.12). Then the signature τ(X) equals the index of d + d∗. To say this in a more
complicated way, the operator d + d∗ defines a element [d + d∗] of the K-homology group
K0(X). Let η : X → pt. be the (only) map from X to a point. Then η∗([d+ d∗]) ∈ K0(pt.).
There is a map A : K0(pt.)→ K0(C) which is the identity, as both sides are Z. So we can
say that τ(X) = A(η([d+ d∗])) ∈ K0(C).

We now extend the preceding remarks to the case of a group action. Let M be a normal
cover of X with covering group Γ. The fiber bundle M → X is classified by a map ν :

X → BΓ, defined up to homotopy. Let d̃ be exterior differentiation on M . Consider the

operator d̃ + d̃∗. Taking into account the action of Γ on M , one can define a refined index

ind(d̃+ d̃∗) ∈ K0(C∗rΓ), where C∗rΓ is the reduced group C∗-algebra of Γ.
We recall the statement of the Strong Novikov Conjecture (SNC). This is a conjecture

about a countable discrete group Γ, namely that the assembly map A : K∗(BΓ)→ K∗(C
∗
rΓ)

is rationally injective. Many groups of a geometric origin, such as discrete subgroups of
connected Lie groups or Gromov-hyperbolic groups, are known to satisfy SNC. There are
no known groups which do not satisfy SNC.

Proposition 19. Let X be a closed Riemannian manifold with a surjective homomorphism
π1(X) → Γ. Let M be the induced normal Γ-cover of X. Suppose that Γ satisfies SNC.
Let L(X) ∈ H∗(X;C) be the Hirzebruch L-class of X and let ∗L(X) ∈ H∗(X;C) be its
Poincaré dual. Then if ν∗(∗L(X)) 6= 0 in H∗(BΓ;C), zero lies in the spectrum of M . In

fact, 0 ∈ σ
(
4 dim(X)

2

)
if dim(X) is even and 0 ∈ σ

(
4 dim(X)±1

2

)
if dim(X) is odd.

Proof. Suppose first that dim(X) is even. Suppose that zero does not lie in the spectrum of

M . Then the operator d̃+ d̃∗ is invertible. (More precisely, it is invertible as an operator on

a Hilbert C∗rΓ-module of differential forms on M .) This implies that ind(d̃+ d̃∗) vanishes in
K0(C∗rΓ).

The higher index theorem says that

ind(d̃+ d̃∗) = A(ν∗([d+ d∗])). (5.10)
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Let AC : K0(BΓ)⊗C→ K0(C∗rΓ)⊗C be the complexified assembly map. Using the isomor-
phism K0(BΓ)⊗C ∼= Heven(BΓ;C), the higher index theorem implies that in K0(C∗rΓ)⊗C,

ind(d̃+ d̃∗)C = AC(ν∗(∗L(X))). (5.11)

By assumption, AC is injective. This gives a contradiction.

Let T be the operator obtained by restricting d̃+ d̃∗ to

Λ
dim(X)

2 (M)⊕ d̃Λ
dim(X)

2 (M)⊕ ∗d̃Λ
dim(X)

2 (M).

One can show that the other differential forms on M cancel out when computing the rational

index of d̃ + d̃∗, so T will have the same index as d̃ + d̃∗. Then the same arguments apply

to T to give 0 ∈ σ
(
4 dim(X)

2

)
.

If dim(X) is odd, consider the even-dimensional manifold X ′ = X × S1 and the group
Γ′ = Γ× Z. As the proposition holds for X ′, it must also hold for X.

Corollary 4. Let X be a closed Riemannian manifold. Let [X] ∈ Hdim(X)(X;C) be its
fundamental class. Suppose that there is a surjective homomorphism π1(X) → Γ such that
Γ satisfies SNC and the composite map X → Bπ1(X)→ BΓ sends [X] to a nonzero element

of Hdim(X)(BΓ;C). Let M be the induced normal Γ-cover of X. Then on M , 0 ∈ σ
(
4 dim(X)

2

)
if dim(X) is even and 0 ∈ σ

(
4 dim(X)±1

2

)
if dim(X) is odd.

Proof. As the Hirzebruch L-class starts out as L(X) = 1 + . . . , its Poincaré dual is of the
form ∗L(X) = . . .+ [X]. The corollary follows from Proposition 19.

Corollary 5. Let X be a closed aspherical Riemannian manifold whose fundamental group

satisfies SNC. Then on X̃, 0 ∈ σ
(
4 dim(X)

2

)
if dim(X) is even and 0 ∈ σ

(
4 dim(X)±1

2

)
if

dim(X) is odd.

Proof. This follows from Corollary 4.

Examples :
1. If X = T n then Corollary 5 is consistent with Example 2 of Section 2.
2. If X is a compact quotient of H2n then Corollary 5 is consistent with Example 3 of
Section 2.
3. If X is a compact quotient of H2n+1 then Corollary 5 is consistent with Example 4 of
Section 2.
4. If X is a closed nonpositively-curved locally symmetric space then Corollary 5 is consis-
tent with the second remark after Proposition 7.

If X is a closed aspherical manifold, it is known that SNC implies that the rational Pon-
tryagin classes of X are homotopy-invariants [18] and that X does not admit a Riemannian
metric of positive scalar curvature [29]. Thus we see that these three questions about aspher-
ical manifolds, namely homotopy-invariance of rational Pontryagin classes, (non)existence
of positive-scalar-curvature metrics and the zero-in-the-spectrum question, are roughly all
on the same footing.
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IfX is a closed aspherical Riemannian manifold, one can ask for which p one has 0 ∈ σ(4p)

on X̃. The case of locally symmetric spaces is covered by the second remark after Propo-
sition 7. Another interesting class of aspherical manifolds consists of those with amenable
fundamental group. By [5], Ker(4p) = 0 for all p. By Corollary 3, 0 ∈ σ(40).

Proposition 20. If X is a closed aspherical manifold such that π1(X) has a nilpotent

subgroup of finite index then 0 ∈ σ(4p) on X̃ for all p ∈ [0, dim(X)].

Proof. First, X is homotopy-equivalent to an infranilmanifold, that is, a quotient of the
form Γ\G/K where K is a finite group, G is the semidirect product of K and a connected
simply-connected nilpotent Lie group and Γ is a discrete cocompact subgroup of G [12,
Theorem 6.4]. We may as well assume that X = Γ\G/K. By passing to a finite cover,
we may assume that K is trivial. That is, X is a nilmanifold. From [27, Corollary 7.28],
Hp(X;C) ∼= Hp(g,C), the Lie algebra cohomology of g. From [7], Hp(g,C) 6= 0 for all
p ∈ [0, dim(X)]. Thus for all p ∈ [0, dim(X)], Hp(X;C) 6= 0.

Now let ω be a nonzero harmonic p-form on X. Let π∗ω be its pullback to X̃. The idea is
to construct low-energy square-integrable p-forms on X by multiplying π∗ω by appropriate
functions on X. We define the functions as in [2, §2]. Take a smooth triangulation of

X and choose a fundamental domain F for the lifted triangulation of X̃. If E is a finite
subset of π1(X), let χH be the characteristic function of H = ∪g∈E g · F . Given numbers
0 < ε1 < ε2 < 1, choose a nonincreasing function ψ ∈ C∞0 ([0,∞)) which is identically one

on [0, ε1] and identically zero on [ε2,∞). Define a compactly-supported function fE on X̃
by fE(m) = ψ(d(m,H)). Then there is a constant C1 > 0, independent of E, such that∫

X̃

|df |2 ≤ C1 area(∂H). (5.12)

Define ρE ∈ Λp(X̃) by ρE = fE · π∗ω. We have dρE = dfE ∧ π∗ω and d∗ρE = −i(dfE) π∗ω.
As fE is identically one on H, it follows that there is a constant C > 0, independent of E,
such that ∫

X̃
[|dρE|2 + |d∗ρE|2]∫

X̃
|ρE|2

≤ C
area(∂H)

vol(H)
. (5.13)

As π1(X) is amenable, by an appropriate choice of E this ratio can be made arbitrarily
small. Thus 0 ∈ σ(4p).

Question : Does the conclusion of Proposition 20 hold if we only assume that π1(X) is
amenable?

6. Topologically Tame Manifolds

Another class of manifolds for which one can hope to get some nontrivial results about the
zero-in-the-spectrum question is given by topologically tame manifolds, meaning manifolds
M which are diffeomorphic to the interior of a compact manifold N with boundary. If M
has finite volume then Ker(40) 6= 0, so we restrict our attention to the infinite volume case.
A limited result is given by Corollary 2.

An interesting class of topologically tame manifolds consists of those which are radially
symmetric. This means that M is diffeomorphic to Rn, with a metric which is given on
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R
n − {0} ∼= (0,∞)× Sn−1 by

g = dr2 + φ2(r) dΩ2. (6.1)

Here dΩ2 is the standard metric on Sn−1, r ∈ (0,∞), φ ∈ C∞([0,∞)), φ(0) = 0, φ′(0) = 1
and φ(r) > 0 for r > 0.

Proposition 21. Suppose that there is a constant c ≥ 0 such that RicciM ≥ −c2. Then
0 ∈ σ(4p) for some p.

Proof. We may assume that vol(M) = ∞. Suppose first that lim infr→∞ φ(r) < ∞. Then
there is a constant C > 0 and a sequence {rj}∞j=1 such that limj→∞ rj =∞ and φ(rj) ≤ C.

Let Dj be the domain in M defined by r ≤ rj. Then area(Dj) ≤ Cn−1 vol(Sn−1) and
limj→∞ vol(Dj) =∞. Thus M is not open at infinity. By Proposition 6, 0 ∈ σ(40).

Now suppose that lim infr→∞ φ(r) =∞. We want to show that M is hyperEuclidean and
apply Proposition 7. Consider a map F : M → R

n given in polar coordinates by

F (r, θ) = (s(r), θ), (6.2)

for some s : [0,∞)→ [0,∞). The condition for F to be distance-nonincreasing is

|s′(r)| ≤ 1, s(r) ≤ φ(r). (6.3)

If limr→∞ s(r) = ∞ then F is a proper map of degree one. It remains to construct s
satisfying (6.3).

Put

φ̃(r) = inf
v∈[r,∞)

φ(v). (6.4)

Replacing φ by φ̃, we may assume that φ is monotonically nondecreasing. Thinking of φ(r)
as representing the trajectory of a car in front of us which is blocking the road, with our car’s
velocity bounded above by one, it is intuitively clear that we can find a trajectory s(r) for
our car such that limr→∞ s(r) = ∞. More precisely, let ρ ∈ C∞([0, 2]) be a nondecreasing
function which is identically zero near 0, identically one near 2 and satisfies ρ′(x) ≤ 1 for
all x ∈ [0, 2]. Put r0 = 0 and define {r′j}∞j=0 and {rj}∞j=1 inductively by

r′j = inf{r : r ≥ rj + 2 and φ(r) ≥ j + 1}, (6.5)

rj+1 = r′j + 2.

Define s by

s(r) =

{
j if r ∈ [rj, r

′
j]

j + ρ(r − r′j) if r ∈ [r′j, rj+1].
(6.6)

Then s satisfies (6.3) and limr→∞ s(r) =∞.

Question : What can one say in the radially symmetric case without the assumption of
a lower bound on the Ricci curvature?

Another interesting class of topologically tame manifolds consists of those which are
hyperbolic, that is, of constant sectional curvature −1. Complete hyperbolic manifolds are
divided into those which are geometrically finite and those which are geometrically infinite.
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Roughly speaking, M is geometrically finite if its set of ends consists of a finite number of
standard cusps and flares.

Proposition 22. (Mazzeo-Phillips [23, Theorem 1.11]) Let M be an infinite-volume ge-
ometrically finite hyperbolic manifold. If dim(M) = 2k then dim(Ker(4k)) = ∞. If
dim(M) = 2k + 1 then σ(4k) = σ(4k+1) = [0,∞).

The paper [23] also computes dim(Ker(4p)) for such manifolds.
In general, geometrically infinite hyperbolic manifolds can have wild end behavior. How-

ever, in three dimensions one can show that the ends have a fairly nice structure. This is
used to prove the next result.

Proposition 23. (Canary [4, Theorem A]) If M is a geometrically infinite topologically
tame hyperbolic 3-manifold then 0 ∈ σ(40).

Proof. The method of proof is to show that M is not open at infinity and then apply
Theorem 6. See [4] for details.

Thus zero lies in the spectrum of all topologically tame hyperbolic 3-manifolds. From
Proposition 2, the same statement is true for compactly-supported modifications of such
manifolds.
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Riemannienne”, J. Math. Pures et Appl. 54, p. 259-284 (1975)
[15] M. Gromov, “Asymptotic Invariants of Infinite Groups”, Geometric Group Theory, Vol. 2, ed. by

Graham Niblo and Martin Roller, London Math. Soc. Lecture Notes 182, Cambridge University Press,
Cambridge (1993)



24 JOHN LOTT

[16] M. Gromov and H. B. Lawson, “Positive Scalar Curvature and the Dirac Operator on Complete Rie-
mannian Manifolds”, Publ. Math. IHES 58, p. 83-196 (1983)
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