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Pinching in Riemannian geometry

Quarter pinching conjecture: Let (M, g) be a compact
Riemannian manifold. Choose ¢ € (3, 1]. Suppose that the
sectional curvatures lie between c and 1. Then (M, g) is
diffeomorphic to a spherical space form.

Brendle and Schoen proved a version of this that only requires
pointwise pinching.

Theorem

(Brendle-Schoen) Let (M, g) be a compact Riemannian
manifold with positive sectional curvature. Choose ¢ € (3, 1].
Suppose that for each m € M and any two 2-planes

m1,m2 C TmM, we have K(m1) > ¢ K(m2). Then M is
diffeomorphic to a spherical space form.



Ricci pinching

Suppose that (M, g) is an n-dimensional Riemannian manifold
with nonnegative Ricci curvature. At each m € M, using the
metric to turn the Ricci curvature into a self-adjoint operator on
TmM, one can diagonalize it to get eigenvalues
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Ricci pinching

Suppose that (M, g) is an n-dimensional Riemannian manifold
with nonnegative Ricci curvature. At each m € M, using the
metric to turn the Ricci curvature into a self-adjoint operator on
TmM, one can diagonalize it to get eigenvalues

0<n < < Inp.
Definition
Given ¢ > 0, the metric is c-Ricci pinched if for all m € M, we
have

ry > cry.
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The conjecture

Let (M, g) be a complete Riemannian 3-manifold with bounded
sectional curvature.

Conjecture A: Suppose that (M, g) has nonnegative Ricci
curvature, and is c-Ricci pinched for some ¢ > 0. Then (M, g)
is flat or M is compact.

Conjecture B: Suppose that (M, g) has positive Ricci curvature,
and is c-Ricci pinched for some ¢ > 0. Then M is compact.

Compare with Myers’ theorem: If Ric > (n — 1)k?g then
diam(M, g) < %.

Conjectures A and B are equivalent. First, A implies B. To see
that B implies A, if (M, g) isn’t flat then after running the Ricci
flow, Ric > 0.
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Extensions

One could make more general conjectures:
1. Drop the uniform curvature bound.

2. Allow arbitrary dimension.

One motivation for the conjectures:

Theorem

(Hamilton (1994)) Let M" be a smooth strictly convex complete
hypersurface bounding a region in R™'. Suppose that its
second fundamental form is c-pinched. Then M is compact.
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A special case

Conjecture A: Suppose that (M2, g) has nonnegative Ricci
curvature, and is c-Ricci pinched for some ¢ > 0. Then (M, g)
is flat or M is compact.

Suppose that M is strictly conical outside of a compact set K.

On M — K, we have Ric(dr,0r) = 0,80 Ric=00on M - K, so g
is flat on M — K. The link L of the cone has constant curvature
1 and must be connected (Cheeger-Gromoll). So it is S? or
RP2, but RP? doesn’t bound, so L = S2. From Bishop-Gromov,
(M7 g) =R3.
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Main result

Theorem

Let (M, g) be a complete Riemannian 3-manifold with bounded
sectional curvature. Suppose that (M, g) has nonnegative Ricci
curvature, and is c-Ricci pinched for some ¢ > 0.

Suppose in addition that sectional curvatures satisfy

const.

KM = = Sm, moye

Then (M, g) is flat or M is compact.

Remark : the case K > 0 was claimed by Chen-Zhu (Inv. Math.
(2000)).
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Idea of the proof

We assume that M® is noncompact with c-pinched positive
Ricci curvature. We obtain a contradiction. There are two parts.

Ricci flow part: This does not use the lower sect. curv. bound.

We study the long-time behavior of a Ricci flow starting from a
complete noncompact Riemannian 3-manifold having
c-pinched positive Ricci curvature.

We find that the original metric had cubic volume growth.

Convergence part: This has nothing to do with Ricci flow. We
look at a noncompact Riemannian 3-manifold with c-pinched
positive Ricci curvature, cubic volume growth and

Km) = = gmmop:

By a rescaling argument, we get a contradiction.



Ricci-pinched

Steps in the proof



Ricci flow |

Theorem

Let (M, go) be a complete noncompact Riemannian 3-manifold
having bounded curvature and c-pinched positive Ricci
curvature.

The ensuing Ricci flow solution (M, g(-)) exists for all t > 0 and
satisfies

| Rm(g(t)lloe < <.




Ricci flow Il

Theorem

Let (M, g(-)) be a Ricci flow on a noncompact Riemannian
3-manifold that exists for all t > 0, with complete time slices.

Suppose that Ric > 0 and

const.
t

Then (M, g(-)) is noncollapsing for large time. That is,

[IRm(g(1))[loc <

vol(Bgy(ty(mo, v/1)) > const. 2.



Ricci flow Il

Theorem
Let (M, g(-)) be a Ricci flow on a noncompact Riemannian
3-manifold that exists for all t > 0, with complete time slices.

Suppose that Ric > 0 and

const.

| Ren(g(8)) o < 3

Then (M, g(-)) is noncollapsing for large time. That is,

vol(Bgy(ty(mo, v/1)) > const. 2.

This result does not need c-pinching. Examples of such flows
come from asymptotically conical expanding Ricci solitons,
which exist in abundance (Deruelle).
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Corollary

Let (M, g) be a complete noncompact Riemannian 3-manifold
having bounded curvature and c-pinched positive Ricci
curvature.



Ricci flow Il

Corollary

Let (M, g) be a complete noncompact Riemannian 3-manifold
having bounded curvature and c-pinched positive Ricci
curvature.

Then (M, g) has cubic volume growth, i.e.

L -3
I|er>Lrgfr vol(B(mo, r)) > 0.
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Proof when K > 0

Suppose that (M, g) has nonnegative sectional curvature and is

c-Ricci pinched. For s > 1, put gs(u) = s~ 'g(su). Let

9oo(U) = lim;_,, gs;(u) be a pointed blowdown limit.

It will be a Ricci flow solution coming out of a cone, namely the
_1

tangent cone at infinity TooM = lim;_, (M, mo, 5 2d).

By Simon-Schulze, g-(+) is an expanding gradient soliton.

Lemma
A three dimensional expanding gradient soliton that is c-Ricci
pinched must be flat.
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Proof when K > 0

Now the tangent cone at infinity of (M, go(U)) is also equal to
T oM. The first is flat and the second is three dimensional, so
the latter must be R3.

Theorem

(Colding) If a complete Riemannian n-manifold (M, g) has
Ric > 0, and a tangent cone at infinity isometric to R", then
(M, g) is isometric to R".

Thus (M, g) is flat, which contradicts our assumption that
Ric > 0.
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Quadratic decay of negative curvature

Theorem

There is no complete noncompact Riemannian 3-manifold

(M, g) with c-pinched positive Ricci curvature and cubic volume
growth, that satisfies

const.
K > -
(M) = = Gm, mo)

Idea of proof: Upon rescaling, we pass to the tangent cone at
infinity T.oM, a metric cone with Alexandrov curvature locally
bounded below. From Lebedeva-Petrunin, the rescaled
curvature operators have a weak limit in an appropriate sense.
Using the cone structure and the c-Ricci pinching, one shows
that T,,M = R3. Then M = R3, which is a contradiction.
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Noncollapsing for large time

Theorem
Let (M, g(-)) be a Ricci flow on a noncompact Riemannian
3-manifold that exists for all t > 0, with complete time slices.

Suppose that Ric > 0 and

const.

| Ren(g(8)) o < 3

Then (M, g(-)) is noncollapsing for large time. That is,

vol(Bgy(ty(mo, v/1)) > const. 2.

ldea: Put gs(u) = s~'g(su). It's enough to show that there is a
sequence s; — oo so that {(M, mg, gs;(1))}7°, has a three
dimensional pointed Gromov-Hausdorff limit. Suppose not.
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Noncollapsing for large time |l

Then any pointed GH-limit is one or two dimensional.
Claim: There cannot be a one dimensional limit.

If gs(1) is approximately one dimensional then one shows that
as s increases, it goes to something two dimensional. At the
interface, one gets a contradiction between the two types of
topologies.

So any pointed GH limit is two dimensional. For large s, the unit
ball around mg in (M, gs(1)) is Seifert-fibered.

One gets larger and larger Seifert-fibered regions in (M, go).
One shows that they can be fitted together to get a Seifert
fibering of M. But by Schoen-Yau, M is diffeomorphic to R3.
Contradiction.
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Approaches to the general conjecture |

The blowdown limit g (U) = lim;_., gs;(u) is a Ricci flow
solution coming out of a cone, namely the tangent cone at
infinity TooM.

Question: Can we show that (M, g-(-)) is an expanding
gradient soliton solution?

If so, this would prove the general conjecture.
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The tangent cone at infinity 7T..M has “nonnegative Ricci
curvature”.

So its link has “Ricci curvature bounded below by 1”.

Since the link is a surface it has Alexandrov curvature bounded
below by 1 (Lytchak-Stadler).

So T.M has nonnegative Alexandrov curvature.
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Approaches to the general conjecture |l

Fact: A three dimensional Ricci flow solution starting from a
smooth Riemannian manifold of nonnegative sectional
curvature still has nonnegative sectional curvature.

Question: Can we show that for u > 0, (M, g~ (u)) has
nonnegative sectional curvature, even though the initial time
slice is a cone with nonnegative Alexandrov curvature?

If so, from the previous result it must be flat, so T.,M = R3, so
M = R3, contradiction.
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Approaches to the general conjecture lll

Question: Is there a notion of a measurable Ricci tensor on a
noncollapsed Ricci limit space?

We want that Gromov-Hausdorff convergence of manifolds
implies weak convergence of Ricci tensors.

If so, we can use this instead of the Lebedeva-Petrunin results
to prove the general conjecture.
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Theorem

Let (M, go) be a complete noncompact Riemannian 3-manifold
having bounded curvature and c-pinched positive Ricci
curvature.

The ensuing Ricci flow solution (M, g(-)) exists for all t > 0 and
satisfies

| Rm(g(t)lloe < <.
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Theorem

Let (M, go) be a complete noncompact Riemannian 3-manifold
having bounded curvature and c-pinched positive Ricci
curvature.
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Ricci flow |

Theorem

Let (M, go) be a complete noncompact Riemannian 3-manifold
having bounded curvature and c-pinched positive Ricci
curvature.

The ensuing Ricci flow solution (M, g(-)) exists for all t > 0 and
satisfies

const.

| Rm(g(t)ll < <3

2
Put o = (zic) € (0, 4] and

1 2
_ po—2 oo 1
f=R )R.c 3Ff’g‘.
One finds that

15) 1 2 .2
_ _ o < — —fo.
(2_a)it <2
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Ricci flow |

From the weak maximum principle,

1 3
sup fo(m,t) < —,
meM ( ) 2t

1_12 _(3\°
R ‘R|c SRg‘ 5<2m> . (1)

Suppose that there is a singularity at time T < oo. There is a
sequence {;}%°, of times increasing to T, and points {m;}?°, in
M so that I|mHOO | Rm(x;j, tj)| = oo and

| Rm(m, )| > 3 suP(mtyemx (o, | Rm(m, B)].

SO

Put Q; = |[Rm(m;, ;)] and gi(x, u) = Qig(x, t; + Q'u). Then g;
is a Ricci flow solution with curvature norm equal to one at
(m;,0), and curvature norm uniformly bounded above by two
for u € [-Qit;,0].
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Suppose first that for some iy > 0 and all /, we have
Qi injg(t,,)(m,-)2 > lp. After passing to a subsequence, there is a
pointed Cheeger-Hamilton limit
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where g (u) is defined for u € (—o0, 0].
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The property of having nonnegative Ricci curvature passes to
the limit. By construction, g, has curvature norm one at
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the strong maximum principle, it follows that g.. has positive
scalar curvature everywhere.



Ricci flow |

Suppose first that for some iy > 0 and all /, we have
Qi injg(ti)(m,-)2 > lp. After passing to a subsequence, there is a
pointed Cheeger-Hamilton limit

Jim (M, gi(), m;) = (Moo, o (), =),
where g (u) is defined for u € (—o0, 0].

The property of having nonnegative Ricci curvature passes to
the limit. By construction, g, has curvature norm one at

(M-, 0). Hence g, has positive scalar curvature at (m,0). By
the strong maximum principle, it follows that g.. has positive
scalar curvature everywhere.

Given m' € M, the point (n7,0) is the limit of a sequence of
points {(m},0)}5°, with lim;_,o, Rg,(m;,0) = Ry (m',0) > 0. As
lim;_,, Q; = oo, after undoing the rescaling it follows that
limj_o0 Rg(m, t;) = co. As lim;_,, i = T, we also have

lim;_ oo t,-Rg(mj, t,') = Q.
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Equation (1) implies that the metric g..(0) satisfies

Ric —%Rgoo(O) = 0. As g-(0) has positive scalar curvature at
(M, 0), it follows that M, is a spherical space form. Then M is
compact, which is a contradiction.



Ricci flow |

Equation (1) implies that the metric g..(0) satisfies

Ric —%Rgoo(O) = 0. As g-(0) has positive scalar curvature at
(M, 0), it follows that M, is a spherical space form. Then M is
compact, which is a contradiction.

Even if there is no uniform lower bound on Q; injg(tl,)(m,-)z, after
passing to a subsequence we can take a limit to get a Ricci flow
on an étale groupoid. By the same argument, the metric g.,(0)
on the unit space of the groupoid has constant positive
sectional curvature. Then by a Bonnet-Myers argument, the
orbit space of the groupoid is compact. It follows that M is
compact, which is a contradiction.
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We claim now that there is some C < o so that for all t > 0, we
have || Rm(g(t))|ls < <.

Suppose not. After doing a type-ll point picking, there are
points (m;, t;) so that lim;_, . t;j| Rm(m;, t;)| = oo and

| Rm| < 2| Rm(mj, ;)| on M x [a;, bj], with

limj o0 | Rm(m;, )[(& — &;) = lim;o0 | Rm(my, )|(b; — §;) = oo.
Put @Q; = |Rm(m;, )| and g;(x, u) = Qg(x, t; + Q; 'u).



Ricci flow |

We claim now that there is some C < o so that for all t > 0, we
have || Rm(g(t))|ls < <.

Suppose not. After doing a type-ll point picking, there are
points (m;, t;) so that lim;_, . t;j| Rm(m;, t;)| = oo and

| Rm| < 2| Rm(mj, ;)| on M x [a;, bj], with

limj o0 | Rm(m;, )[(& — &;) = lim;o0 | Rm(my, )|(b; — §;) = oo.
Put @Q; = |Rm(m;, )| and g;(x, u) = Qg(x, t; + Q; 'u).

Suppose first that for some iy > 0 and all /, we have

Qi injg,(ti)(m,-)2 > ip. After passing to a subsequence, we get a
limiting Ricci flow solution

limj o0 (M, gi(+), M) = (M, 95(+), M) defined for times

u € R. Here M, is a 3-manifold and | Rm(m..,0)| = 1. As
before, for each m’' € M, the point (n7,0) is the limit of a
sequence of points (m;, 0) with lim;_,, t;Rg(m, t;) = oo, where
the latter statement now comes from the type-Il rescaling.
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From (1), we get Ric —1Rg.. = 0. Then (Mx, g=) has constant
positive curvature time slices, which implies that M, is
compact. Then M is also compact, which is a contradiction.
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From (1), we get Ric —1Rg.. = 0. Then (Mx, g=) has constant
positive curvature time slices, which implies that M, is
compact. Then M is also compact, which is a contradiction.

If liminf;_oc Qjinjg(s)(mM;)? = 0, we can still take a limit in the
sense of étale groupoids. As before, we conclude that M is
compact, which is a contradiction.
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to the Riemannian metric g(t). In particular, dy be the distance
function with respect to gp.
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Distance distortion estimates

Let di : M x M — R be the distance function on M with respect
to the Riemannian metric g(t). In particular, dy be the distance
function with respect to gp.

Lemma
There is some C' < co so that whenever0 < t; < b, < 0o, we

have
o~ C' (Ve - V) < dy, <. (2)

Fix mg € M. Given s > 0, put gs(u) = s~ 'g(su). lts distance
. . a. =7 1
function at time u is ds , = S~ 2dsy. From (2), we have

s

:
NG —=0p. 3)

dO_ C,\mgas,u < \@

Also, || Rm(gs(u)) [I< €.



Ricci flow Il

Theorem

Let (M, g(-)) be a Ricci flow on a noncompact Riemannian
3-manifold that exists for all t > 0, with complete time slices.

Suppose that Ric > 0 and

const.

t

Then (M, g(-)) is noncollapsing for large time. That is,

[IRm(g())[loc <

vol(Bgy(ty(mo, V1)) > const. te.
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Given a sequence {s;}7°, tending to infinity, after passing to a
subsequence we can assume that there is a pointed
Gromov-Hausdorff limit lim;_, (M, gs;(1), mMo) = (Xoo, dx., Xo0)-
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We want to show that there is some sequence with a three
dimensional Gromov-Hausdorff limit. Suppose not. Then for
large s, (M, gs(1), mo) is almost one dimensional or almost two
dimensional. We will eventually get a contradiction to the fact
that M is diffeomorphic to R® (Schoen-Yau).



Ricci flow Il

Given a sequence {s;}7°, tending to infinity, after passing to a
subsequence we can assume that there is a pointed
Gromov-Hausdorff limit lim;_, (M, gs;(1), mMo) = (Xoo, dx., Xo0)-

Since M is noncompact, X is also noncompact. In particular,
dim(Xx) > 0.

We want to show that there is some sequence with a three
dimensional Gromov-Hausdorff limit. Suppose not. Then for
large s, (M, gs(1), mo) is almost one dimensional or almost two
dimensional. We will eventually get a contradiction to the fact
that M is diffeomorphic to R® (Schoen-Yau).

Suppose first that there is some sequence {s;}7°, so that there
is a one dimensional limit. We will show that this leads to a
contradiction.



Ricci flow Il

If there is some one dimensional limit then there is some sp > 1
so that (M, ds, 1, M) is very close to a line or a ray in the
pointed Gromov-Hausdorff topology. Using the theory of
bounded curvature collapse, given L < oo, we can assume that
there is a pointed possibly-singular fibration
7 B(mg, L) — B(Xw, L) so that

» The generic fiber is T?,

» C =7 "(Xs) is S' or T2, with small diameter, and

» The inclusion C — B(mg, L) induces a nonzero map on 7.
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If there is some one dimensional limit then there is some sp > 1
so that (M, ds, 1, M) is very close to a line or a ray in the
pointed Gromov-Hausdorff topology. Using the theory of
bounded curvature collapse, given L < oo, we can assume that
there is a pointed possibly-singular fibration
7 B(mg, L) — B(Xw, L) so that

» The generic fiber is T?,

» C =7 "(Xs) is S' or T2, with small diameter, and

» The inclusion C — B(mg, L) induces a nonzero map on 7.
Since M is diffeomorphic to R3, there is some o < oo so that

the inclusion C — By, (mp, o) vanishes on 1. Let A be the
infimum of such ¢’s.
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We have pu(sp) > L. From the distance distortion estimate, if s
is sufficiently large then u(s) < 1. Let sy be the smallest s > sp
so that p(s) = 1.



Ricci flow Il

Let u(s) be the infimum of the numbers / so that the inclusion
C— BBS 1 (mg, I) vanishes on .

Lemma

u s continuous in s.

We have pu(sp) > L. From the distance distortion estimate, if s
is sufficiently large then u(s) < 1. Let sy be the smallest s > sp
so that p(s) = 1.

The space (M, 83171 , My) must be almost two dimensional.
There is some r << 1 (which can be chosen uniformly) so that

Ba (mo, r) is a solid torus, and C C & (mo,r). Since
s1,1

u(s1) =1, the inclusion C C BA (mo, ) must be nontrivial on
T .
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However, B; 1(mo, 2) is the total space of a Seifert fibration on
59,

a noncompact base, so w1 of the regular fiber injects. This
contradicts that u(s1) = 1.
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Ricci flow Il

However, B; 1(mo, 2) is the total space of a Seifert fibration on
59,

a noncompact base, so w1 of the regular fiber injects. This
contradicts that u(s1) = 1.

Thus for all large s, (M, 3371 , Mp) is almost two dimensional.

Given p > 0, there is a Seifert fibering of &ds 1 (mg, p). Using the

distance distortion estimates, this gives a Seifert fibering of a
region in the time-zero manifold(M, g) that is close to a ball of
radius comparable to py/s. In itself, this does not contradict that
M is diffeomorphic to R3. However, we can fit these Seifert
fiberings together, as s varies, to get a Seifert fibering of R3,
which is a contradiction.
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Let (M, g) be a complete noncompact Riemannian 3-manifold
having bounded curvature and c-pinched positive Ricci
curvature.
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Corollary

Let (M, g) be a complete noncompact Riemannian 3-manifold
having bounded curvature and c-pinched positive Ricci
curvature.

Then (M, g) has cubic volume growth, i.e.

lim inf r=3vol(B(mg, r)) > 0.

r—oo

This follows from the fact that the blowdown limit is three
dimensional, along with the distance distortion estimates.



Quadratic decay of negative curvature

Theorem

There is no complete noncompact Riemannian 3-manifold

(M, g) with c-pinched positive Ricci curvature and cubic volume
growth, that satisfies

const.
> -
KIm) = = Gim, moye
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Results of Lebedeva-Petrunin

Given an n-dimensional Riemannian manifold (M, g), let Riem
be the curvature operator of M and let
*p o N'=2(TM) — A2(TM) be Hodge duality.

Given C'-functions {f}7-Z on M, put
o= sm(VEAVhA ... AVE ) (4)
and define
tu(fi, ... fr2) = (0, Riem(c)) dvoly, (5)

a measure on M.
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Suppose that {M;, g;}7°, is a sequence of compact
n-dimensional pointed Riemannian manifolds with sectional
curvatures uniformly bounded below, that converges to a
compact n-dimensional pointed Alexandrov space X, in the
Gromov-Hausdorff topology.



Results of Lebedeva-Petrunin

Suppose that {M;, g;}7°, is a sequence of compact
n-dimensional pointed Riemannian manifolds with sectional
curvatures uniformly bounded below, that converges to a
compact n-dimensional pointed Alexandrov space X, in the
Gromov-Hausdorff topology.

Given C'-functions {f;}2°,, there is a notion of the sequence
C'-converging to a function £, on X, [LP]. A function £, on
X is called Alexandrov smooth if it arises as the limit of such a
sequence. Averaged distance functions are Alexandrov
smooth.



Results of Lebedeva-Petrunin

The main result of [LP] is the following. Suppose that for each i,
{fi;}1<j<n—2 is a collection of C'-functions on M;. Suppose that
for each j, there is a C'-limit lim;_,, f;j = £, where f, j is a
function on X.. Then there is a weak limit

lim g (Fiase s fin2) = rxo (Botseo o Frop2).  (6)
[—00
Furthermore, the measure rx_(fx 1, . ., fxo,n—2) is intrinsic to

X It vanishes on the strata of X,, with codimension greater
than two, and has descriptions on the codimension-two stratum
and the set of regular points.



Quadratic decay of negative curvature

Let X be a tangent cone at infinity of (M, g), with link Y. The
latter is a two dimensional length space with Alexandrov
curvature bounded from below, because of the curvature decay
assumption.

Lemma
Let 0, denote the radial vector field on X5,. Then

rx..(f) = (8:f)2dr A (dwy — dvoly), 7)

where dwy is the curvature measure of the Alexandrov surface
Y and dvoly is the two-dimensional Hausdorff measure of Y.



Quadratic decay of negative curvature

Using the c-Ricci pinching and the weak convergence of the
curvature measures, one shows that dwy = dvoly. Then one
shows that this implies that Y is a round S?. Hence X, = R3.



Quadratic decay of negative curvature

Using the c-Ricci pinching and the weak convergence of the
curvature measures, one shows that dwy = dvoly. Then one
shows that this implies that Y is a round S?. Hence X, = R3.

By Colding, (M, g) isometric to the flat R3, which is a
contradiction.
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