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Pinching in Riemannian geometry

Quarter pinching conjecture: Let (M,g) be a compact
Riemannian manifold. Choose c ∈ (1

4 ,1]. Suppose that the
sectional curvatures lie between c and 1. Then (M,g) is
diffeomorphic to a spherical space form.

Brendle and Schoen proved a version of this that only requires
pointwise pinching.

Theorem
(Brendle-Schoen) Let (M,g) be a compact Riemannian
manifold with positive sectional curvature. Choose c ∈ (1

4 ,1].
Suppose that for each m ∈ M and any two 2-planes
π1, π2 ⊂ TmM, we have K (π1) ≥ c K (π2). Then M is
diffeomorphic to a spherical space form.
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Ricci pinching

Suppose that (M,g) is an n-dimensional Riemannian manifold
with nonnegative Ricci curvature. At each m ∈ M, using the
metric to turn the Ricci curvature into a self-adjoint operator on
TmM, one can diagonalize it to get eigenvalues

0 ≤ r1 ≤ . . . ≤ rn.

Definition
Given c > 0, the metric is c-Ricci pinched if for all m ∈ M, we
have

r1 ≥ crn.
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The conjecture

Let (M,g) be a complete Riemannian 3-manifold with bounded
sectional curvature.

Conjecture A: Suppose that (M,g) has nonnegative Ricci
curvature, and is c-Ricci pinched for some c > 0. Then (M,g)
is flat or M is compact.

Conjecture B: Suppose that (M,g) has positive Ricci curvature,
and is c-Ricci pinched for some c > 0. Then M is compact.

Compare with Myers’ theorem: If Ric ≥ (n − 1)k2g then
diam(M,g) ≤ π

k .

Conjectures A and B are equivalent. First, A implies B. To see
that B implies A, if (M,g) isn’t flat then after running the Ricci
flow, Ric > 0.
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Extensions

One could make more general conjectures:

1. Drop the uniform curvature bound.

2. Allow arbitrary dimension.

One motivation for the conjectures:

Theorem
(Hamilton (1994)) Let Mn be a smooth strictly convex complete
hypersurface bounding a region in Rn+1. Suppose that its
second fundamental form is c-pinched. Then M is compact.
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A special case

Conjecture A: Suppose that (M3,g) has nonnegative Ricci
curvature, and is c-Ricci pinched for some c > 0. Then (M,g)
is flat or M is compact.

Suppose that M is strictly conical outside of a compact set K .

On M − K , we have Ric(∂r , ∂r ) = 0, so Ric = 0 on M − K , so g
is flat on M − K . The link L of the cone has constant curvature
1 and must be connected (Cheeger-Gromoll). So it is S2 or
RP2, but RP2 doesn’t bound, so L = S2. From Bishop-Gromov,
(M,g) = R3.
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Main result

Theorem
Let (M,g) be a complete Riemannian 3-manifold with bounded
sectional curvature. Suppose that (M,g) has nonnegative Ricci
curvature, and is c-Ricci pinched for some c > 0.

Suppose in addition that sectional curvatures satisfy

K (m) ≥ − const.

d(m,m0)2 .

Then (M,g) is flat or M is compact.

Remark : the case K ≥ 0 was claimed by Chen-Zhu (Inv. Math.
(2000)).
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Idea of the proof

We assume that M3 is noncompact with c-pinched positive
Ricci curvature. We obtain a contradiction. There are two parts.

Ricci flow part: This does not use the lower sect. curv. bound.

We study the long-time behavior of a Ricci flow starting from a
complete noncompact Riemannian 3-manifold having
c-pinched positive Ricci curvature.

We find that the original metric had cubic volume growth.

Convergence part: This has nothing to do with Ricci flow. We
look at a noncompact Riemannian 3-manifold with c-pinched
positive Ricci curvature, cubic volume growth and
K (m) ≥ − const.

d(m,m0)2 .

By a rescaling argument, we get a contradiction.



Idea of the proof

We assume that M3 is noncompact with c-pinched positive
Ricci curvature. We obtain a contradiction. There are two parts.

Ricci flow part: This does not use the lower sect. curv. bound.

We study the long-time behavior of a Ricci flow starting from a
complete noncompact Riemannian 3-manifold having
c-pinched positive Ricci curvature.

We find that the original metric had cubic volume growth.

Convergence part: This has nothing to do with Ricci flow. We
look at a noncompact Riemannian 3-manifold with c-pinched
positive Ricci curvature, cubic volume growth and
K (m) ≥ − const.

d(m,m0)2 .

By a rescaling argument, we get a contradiction.



Idea of the proof

We assume that M3 is noncompact with c-pinched positive
Ricci curvature. We obtain a contradiction. There are two parts.

Ricci flow part: This does not use the lower sect. curv. bound.

We study the long-time behavior of a Ricci flow starting from a
complete noncompact Riemannian 3-manifold having
c-pinched positive Ricci curvature.

We find that the original metric had cubic volume growth.

Convergence part: This has nothing to do with Ricci flow. We
look at a noncompact Riemannian 3-manifold with c-pinched
positive Ricci curvature, cubic volume growth and
K (m) ≥ − const.

d(m,m0)2 .

By a rescaling argument, we get a contradiction.



Ricci-pinched

Statement of results

Steps in the proof

Details of the proof



Ricci flow I

Theorem
Let (M,g0) be a complete noncompact Riemannian 3-manifold
having bounded curvature and c-pinched positive Ricci
curvature.

The ensuing Ricci flow solution (M,g(·)) exists for all t ≥ 0 and
satisfies

‖Rm(g(t))‖∞ ≤
const.

t
.



Ricci flow II

Theorem
Let (M,g(·)) be a Ricci flow on a noncompact Riemannian
3-manifold that exists for all t ≥ 0, with complete time slices.

Suppose that Ric > 0 and

‖Rm(g(t))‖∞ ≤
const.

t
.

Then (M,g(·)) is noncollapsing for large time. That is,

vol(Bg(t)(m0,
√

t)) ≥ const. t
3
2 .

This result does not need c-pinching. Examples of such flows
come from asymptotically conical expanding Ricci solitons,
which exist in abundance (Deruelle).
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Ricci flow III

Corollary
Let (M,g) be a complete noncompact Riemannian 3-manifold
having bounded curvature and c-pinched positive Ricci
curvature.

Then (M,g) has cubic volume growth, i.e.

lim inf
r→∞

r−3 vol(B(m0, r)) > 0.
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Proof when K ≥ 0

Suppose that (M,g) has nonnegative sectional curvature and is
c-Ricci pinched. For s ≥ 1, put gs(u) = s−1g(su). Let
g∞(u) = limj→∞ gsj (u) be a pointed blowdown limit.

It will be a Ricci flow solution coming out of a cone, namely the

tangent cone at infinity T∞M = limj→∞(M,m0, s
− 1

2
j d).

By Simon-Schulze, g∞(·) is an expanding gradient soliton.

Lemma
A three dimensional expanding gradient soliton that is c-Ricci
pinched must be flat.
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Proof when K ≥ 0

Now the tangent cone at infinity of (M∞,g∞(u)) is also equal to
T∞M. The first is flat and the second is three dimensional, so
the latter must be R3.

Theorem
(Colding) If a complete Riemannian n-manifold (M,g) has
Ric ≥ 0, and a tangent cone at infinity isometric to Rn, then
(M,g) is isometric to Rn.
Thus (M,g) is flat, which contradicts our assumption that
Ric > 0.
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Quadratic decay of negative curvature

Theorem
There is no complete noncompact Riemannian 3-manifold
(M,g) with c-pinched positive Ricci curvature and cubic volume
growth, that satisfies

K (m) ≥ − const.

d(m,m0)2 .

Idea of proof: Upon rescaling, we pass to the tangent cone at
infinity T∞M, a metric cone with Alexandrov curvature locally
bounded below. From Lebedeva-Petrunin, the rescaled
curvature operators have a weak limit in an appropriate sense.
Using the cone structure and the c-Ricci pinching, one shows
that T∞M = R3. Then M = R3, which is a contradiction.
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Noncollapsing for large time

Theorem
Let (M,g(·)) be a Ricci flow on a noncompact Riemannian
3-manifold that exists for all t ≥ 0, with complete time slices.

Suppose that Ric > 0 and

‖Rm(g(t))‖∞ ≤
const.

t
.

Then (M,g(·)) is noncollapsing for large time. That is,

vol(Bg(t)(m0,
√

t)) ≥ const. t
3
2 .

Idea: Put gs(u) = s−1g(su). It’s enough to show that there is a
sequence si →∞ so that {(M,m0,gsi (1))}∞i=1 has a three
dimensional pointed Gromov-Hausdorff limit. Suppose not.
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Noncollapsing for large time II

Then any pointed GH-limit is one or two dimensional.

Claim: There cannot be a one dimensional limit.

If gs(1) is approximately one dimensional then one shows that
as s increases, it goes to something two dimensional. At the
interface, one gets a contradiction between the two types of
topologies.

So any pointed GH limit is two dimensional. For large s, the unit
ball around m0 in (M,gs(1)) is Seifert-fibered.

One gets larger and larger Seifert-fibered regions in (M,g0).
One shows that they can be fitted together to get a Seifert
fibering of M. But by Schoen-Yau, M is diffeomorphic to R3.
Contradiction.
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Approaches to the general conjecture I

The blowdown limit g∞(u) = limj→∞ gsj (u) is a Ricci flow
solution coming out of a cone, namely the tangent cone at
infinity T∞M.

Question: Can we show that (M∞,g∞(·)) is an expanding
gradient soliton solution?

If so, this would prove the general conjecture.
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Approaches to the general conjecture II

The tangent cone at infinity T∞M has “nonnegative Ricci
curvature”.

So its link has “Ricci curvature bounded below by 1”.

Since the link is a surface it has Alexandrov curvature bounded
below by 1 (Lytchak-Stadler).

So T∞M has nonnegative Alexandrov curvature.
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Approaches to the general conjecture II

Fact: A three dimensional Ricci flow solution starting from a
smooth Riemannian manifold of nonnegative sectional
curvature still has nonnegative sectional curvature.

Question: Can we show that for u > 0, (M∞,g∞(u)) has
nonnegative sectional curvature, even though the initial time
slice is a cone with nonnegative Alexandrov curvature?

If so, from the previous result it must be flat, so T∞M = R3, so
M = R3, contradiction.
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Approaches to the general conjecture III

Question: Is there a notion of a measurable Ricci tensor on a
noncollapsed Ricci limit space?

We want that Gromov-Hausdorff convergence of manifolds
implies weak convergence of Ricci tensors.

If so, we can use this instead of the Lebedeva-Petrunin results
to prove the general conjecture.
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Ricci-pinched

Statement of results

Steps in the proof

Details of the proof



Ricci flow I

Theorem
Let (M,g0) be a complete noncompact Riemannian 3-manifold
having bounded curvature and c-pinched positive Ricci
curvature.

The ensuing Ricci flow solution (M,g(·)) exists for all t ≥ 0 and
satisfies

‖Rm(g(t))‖∞ ≤
const.

t
.

Put σ =
(

c
2+c

)2
∈ (0, 1

9 ] and

f = Rσ−2
∣∣∣Ric−1

3
Rg
∣∣∣2.

One finds that (
∂

∂t
−4

)
f

1
σ ≤ − 2

3
f

2
σ .
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Ricci flow I

From the weak maximum principle,

sup
m∈M

f
1
σ (m, t) ≤ 3

2t
,

so

R−2
∣∣∣Ric−1

3
Rg
∣∣∣2 ≤ ( 3

2tR

)σ
. (1)

Suppose that there is a singularity at time T <∞. There is a
sequence {ti}∞i=1 of times increasing to T , and points {mi}∞i=1 in
M so that limi→∞ |Rm(xi , ti)| =∞ and
|Rm(mi , ti)| ≥ 1

2 sup(m,t)∈M×[0,ti ] |Rm(m, t)|.

Put Qi = |Rm(mi , ti)| and gi(x ,u) = Qig(x , ti + Q−1
i u). Then gi

is a Ricci flow solution with curvature norm equal to one at
(mi ,0 ), and curvature norm uniformly bounded above by two
for u ∈ [−Qi ti ,0].
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Ricci flow I

Suppose first that for some i0 > 0 and all i , we have
Qi injg(ti )(mi)

2 ≥ i0. After passing to a subsequence, there is a
pointed Cheeger-Hamilton limit

lim
i→∞

(M,gi(·),mi) = (M∞,g∞(·),m∞),

where g∞(u) is defined for u ∈ (−∞,0].

The property of having nonnegative Ricci curvature passes to
the limit. By construction, g∞ has curvature norm one at
(m∞,0). Hence g∞ has positive scalar curvature at (m∞,0). By
the strong maximum principle, it follows that g∞ has positive
scalar curvature everywhere.

Given m′ ∈ M∞, the point (m′,0) is the limit of a sequence of
points {(m′i ,0)}∞i=1 with limi→∞Rgi (m

′
i ,0) = Rg∞(m′,0) > 0. As

limi→∞Qi =∞, after undoing the rescaling it follows that
limi→∞Rg(m′i , ti) =∞. As limi→∞ ti = T , we also have
limi→∞ tiRg(m′i , ti) =∞.
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Ricci flow I

Equation (1) implies that the metric g∞(0) satisfies
Ric−1

3Rg∞(0) = 0. As g∞(0) has positive scalar curvature at
(m∞,0), it follows that M∞ is a spherical space form. Then M is
compact, which is a contradiction.

Even if there is no uniform lower bound on Qi injg(ti )(mi)
2, after

passing to a subsequence we can take a limit to get a Ricci flow
on an étale groupoid. By the same argument, the metric g∞(0)
on the unit space of the groupoid has constant positive
sectional curvature. Then by a Bonnet-Myers argument, the
orbit space of the groupoid is compact. It follows that M is
compact, which is a contradiction.



Ricci flow I

Equation (1) implies that the metric g∞(0) satisfies
Ric−1

3Rg∞(0) = 0. As g∞(0) has positive scalar curvature at
(m∞,0), it follows that M∞ is a spherical space form. Then M is
compact, which is a contradiction.

Even if there is no uniform lower bound on Qi injg(ti )(mi)
2, after

passing to a subsequence we can take a limit to get a Ricci flow
on an étale groupoid. By the same argument, the metric g∞(0)
on the unit space of the groupoid has constant positive
sectional curvature. Then by a Bonnet-Myers argument, the
orbit space of the groupoid is compact. It follows that M is
compact, which is a contradiction.



Ricci flow I

We claim now that there is some C <∞ so that for all t > 0, we
have ‖Rm(g(t))‖∞ ≤ C

t .

Suppose not. After doing a type-II point picking, there are
points (mi , ti) so that limi→∞ ti |Rm(mi , ti)| =∞ and
|Rm | ≤ 2|Rm(mi , ti)| on M × [ai ,bi ], with
limi→∞ |Rm(mi , ti)|(ti − ai) = limi→∞ |Rm(mi , ti)|(bi − ti) =∞.
Put Qi = |Rm(mi , ti)| and gi(x ,u) = Qig(x , ti + Q−1

i u).

Suppose first that for some i0 > 0 and all i , we have
Qi injg(ti )(mi)

2 ≥ i0. After passing to a subsequence, we get a
limiting Ricci flow solution
limi→∞ (M,gi(·),mi) = (M∞,g∞(·),m∞) defined for times
u ∈ R. Here M∞ is a 3-manifold and |Rm(m∞,0)| = 1. As
before, for each m′ ∈ M∞, the point (m′,0) is the limit of a
sequence of points (m′i ,0) with limi→∞ tiRg(m′i , ti) =∞, where
the latter statement now comes from the type-II rescaling.
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Ricci flow I

From (1), we get Ric−1
3Rg∞ = 0. Then (M∞,g∞) has constant

positive curvature time slices, which implies that M∞ is
compact. Then M is also compact, which is a contradiction.

If lim inf i→∞Qi injg(ti )(mi)
2 = 0, we can still take a limit in the

sense of étale groupoids. As before, we conclude that M is
compact, which is a contradiction.
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Distance distortion estimates

Let dt : M ×M → R be the distance function on M with respect
to the Riemannian metric g(t). In particular, d0 be the distance
function with respect to g0.

Lemma
There is some C′ <∞ so that whenever 0 ≤ t1 ≤ t2 <∞, we
have

dt1 − C′
(√

t2 −
√

t1
)
≤ dt2 ≤ dt1 . (2)

Fix m0 ∈ M. Given s > 0, put gs(u) = s−1g(su). Its distance
function at time u is d̂s,u = s−

1
2 dsu. From (2), we have

1√
s

d0 − C′
√

u ≤ d̂s,u ≤
1√
s

d0. (3)

Also, ‖ Rm(gs(u)) ‖≤ C
u .
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Ricci flow II

Theorem
Let (M,g(·)) be a Ricci flow on a noncompact Riemannian
3-manifold that exists for all t ≥ 0, with complete time slices.

Suppose that Ric > 0 and

‖Rm(g(t))‖∞ ≤
const.

t
.

Then (M,g(·)) is noncollapsing for large time. That is,

vol(Bg(t)(m0,
√

t)) ≥ const. t
3
2 .



Ricci flow II

Given a sequence {si}∞i=1 tending to infinity, after passing to a
subsequence we can assume that there is a pointed
Gromov-Hausdorff limit limi→∞(M,gsi (1),m0) = (X∞,dX∞ , x∞).

Since M is noncompact, X∞ is also noncompact. In particular,
dim(X∞) > 0.

We want to show that there is some sequence with a three
dimensional Gromov-Hausdorff limit. Suppose not. Then for
large s, (M,gs(1),m0) is almost one dimensional or almost two
dimensional. We will eventually get a contradiction to the fact
that M is diffeomorphic to R3 (Schoen-Yau).

Suppose first that there is some sequence {si}∞i=1 so that there
is a one dimensional limit. We will show that this leads to a
contradiction.
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Ricci flow II

If there is some one dimensional limit then there is some s0 > 1
so that (M, d̂s0,1,m0) is very close to a line or a ray in the
pointed Gromov-Hausdorff topology. Using the theory of
bounded curvature collapse, given L <∞, we can assume that
there is a pointed possibly-singular fibration
π : B(m0,L)→ B(x∞,L) so that

I The generic fiber is T 2,
I C = π−1(x∞) is S1 or T 2, with small diameter, and
I The inclusion C → B(m0,L) induces a nonzero map on π1.

Since M is diffeomorphic to R3, there is some σ <∞ so that
the inclusion C → Bd0(m0, σ) vanishes on π1. Let ∆ be the
infimum of such σ’s.
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Ricci flow II

Let µ(s) be the infimum of the numbers l so that the inclusion
C → Bd̂s,1

(m0, l) vanishes on π1.

Lemma
µ is continuous in s.

We have µ(s0) ≥ L. From the distance distortion estimate, if s
is sufficiently large then µ(s) ≤ 1

2 . Let s1 be the smallest s ≥ s0
so that µ(s) = 1.

The space (M, d̂s1,1,m0) must be almost two dimensional.
There is some r << 1 (which can be chosen uniformly) so that
Bd̂s1,1

(m0, r) is a solid torus, and C ⊂ Bd̂s1,1
(m0, r). Since

µ(s1) = 1, the inclusion C ⊂ Bd̂s1,1
(m0, r) must be nontrivial on

π1.



Ricci flow II

Let µ(s) be the infimum of the numbers l so that the inclusion
C → Bd̂s,1

(m0, l) vanishes on π1.

Lemma
µ is continuous in s.
We have µ(s0) ≥ L. From the distance distortion estimate, if s
is sufficiently large then µ(s) ≤ 1

2 . Let s1 be the smallest s ≥ s0
so that µ(s) = 1.

The space (M, d̂s1,1,m0) must be almost two dimensional.
There is some r << 1 (which can be chosen uniformly) so that
Bd̂s1,1

(m0, r) is a solid torus, and C ⊂ Bd̂s1,1
(m0, r). Since

µ(s1) = 1, the inclusion C ⊂ Bd̂s1,1
(m0, r) must be nontrivial on

π1.



Ricci flow II

Let µ(s) be the infimum of the numbers l so that the inclusion
C → Bd̂s,1

(m0, l) vanishes on π1.

Lemma
µ is continuous in s.
We have µ(s0) ≥ L. From the distance distortion estimate, if s
is sufficiently large then µ(s) ≤ 1
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Ricci flow II

However, Bd̂s1,1
(m0,2) is the total space of a Seifert fibration on

a noncompact base, so π1 of the regular fiber injects. This
contradicts that µ(s1) = 1.

Thus for all large s, (M, d̂s,1,m0) is almost two dimensional.

Given ρ > 0, there is a Seifert fibering of Bd̂s,1
(m0, ρ). Using the

distance distortion estimates, this gives a Seifert fibering of a
region in the time-zero manifold(M,g) that is close to a ball of
radius comparable to ρ

√
s. In itself, this does not contradict that

M is diffeomorphic to R3. However, we can fit these Seifert
fiberings together, as s varies, to get a Seifert fibering of R3,
which is a contradiction.
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Ricci flow III

Corollary
Let (M,g) be a complete noncompact Riemannian 3-manifold
having bounded curvature and c-pinched positive Ricci
curvature.

Then (M,g) has cubic volume growth, i.e.

lim inf
r→∞

r−3 vol(B(m0, r)) > 0.

This follows from the fact that the blowdown limit is three
dimensional, along with the distance distortion estimates.
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Quadratic decay of negative curvature

Theorem
There is no complete noncompact Riemannian 3-manifold
(M,g) with c-pinched positive Ricci curvature and cubic volume
growth, that satisfies

K (m) ≥ − const.

d(m,m0)2 .



Results of Lebedeva-Petrunin

Given an n-dimensional Riemannian manifold (M,g), let Riem
be the curvature operator of M and let
?M : Λn−2(TM)→ Λ2(TM) be Hodge duality.

Given C1-functions {fj}n−2
j=1 on M, put

σ = ?M(∇f1 ∧∇f2 ∧ . . . ∧∇fn−2) (4)

and define

rM(f1, . . . , fn−2) = 〈σ,Riem(σ)〉 dvolM , (5)

a measure on M.
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Results of Lebedeva-Petrunin

Suppose that {Mi ,gi}∞i=1 is a sequence of compact
n-dimensional pointed Riemannian manifolds with sectional
curvatures uniformly bounded below, that converges to a
compact n-dimensional pointed Alexandrov space X∞ in the
Gromov-Hausdorff topology.

Given C1-functions {fi}∞i=1, there is a notion of the sequence
C1-converging to a function f∞ on X∞ [LP]. A function f∞ on
X∞ is called Alexandrov smooth if it arises as the limit of such a
sequence. Averaged distance functions are Alexandrov
smooth.
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Results of Lebedeva-Petrunin

The main result of [LP] is the following. Suppose that for each i ,
{fi,j}1≤j≤n−2 is a collection of C1-functions on Mi . Suppose that
for each j , there is a C1-limit limi→∞ fi,j = f∞,j , where f∞,j is a
function on X∞. Then there is a weak limit

lim
i→∞

rMi (fi,1, . . . , fi,n−2) = rX∞(f∞,1, . . . , f∞,n−2). (6)

Furthermore, the measure rX∞(f∞,1, . . . , f∞,n−2) is intrinsic to
X∞. It vanishes on the strata of X∞ with codimension greater
than two, and has descriptions on the codimension-two stratum
and the set of regular points.



Quadratic decay of negative curvature

Let X∞ be a tangent cone at infinity of (M,g), with link Y . The
latter is a two dimensional length space with Alexandrov
curvature bounded from below, because of the curvature decay
assumption.

Lemma
Let ∂r denote the radial vector field on X∞. Then

rX∞(f ) = (∂r f )2dr ∧ (dωY − dvolY ), (7)

where dωY is the curvature measure of the Alexandrov surface
Y and dvolY is the two-dimensional Hausdorff measure of Y .



Quadratic decay of negative curvature

Using the c-Ricci pinching and the weak convergence of the
curvature measures, one shows that dωY = dvolY . Then one
shows that this implies that Y is a round S2. Hence X∞ = R3.

By Colding, (M,g) isometric to the flat R3, which is a
contradiction.
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