
Commun. Math. Phys. 133, 563-615(1990) Communications ΪΠ

Mathematical
Physics

©Springer-Verlagl990

Torsion Constraints in Supergeometry

John Lott*

I.H.E.S., F-91440 Bures-sur-Yvette, France

Received November 9, 1989; in revised form April 2, 1990

Abstract. We derive the torsion constraints for superspace versions of supergravity
theories by means of the theory of G-stmctures. We also discuss superconformal
geometry and superKahler geometry.

I. Introduction

Supersymmetry is a now well established topic in quantum field theory [WB,
GGRS]. The basic idea is that one can construct actions in ordinary spacetime
which involve both even commuting fields and odd anticommuting fields, with a
symmetry which mixes the two types of fields. These actions can then be interpreted
as arising from actions in a superspace with both even and odd coordinates, upon
doing a partial integration over the odd coordinates. A mathematical framework to
handle the differential topology of supermanifolds, manifolds with even and odd
coordinates, was developed by Berezin, Kostant and others. A very readable
account of this theory is given in the book of Manin [Ma].

The right notion of differential geometry for supermanifolds is less clear. Such a
geometry is necessary in order to write supergravity theories in superspace. One
could construct a supergeometry by ΊL2 grading what one usually does in (pseudo)
Riemannian geometry, to have supermetrics, super Levi-Civita connections, etc.
The local frame group which would take the place of the orthogonal group in
standard geometry would be the orthosymplectic group. However, it turns out that
this would be physically undesirable. Such a program would give more fields than
one needs for a minimal supergravity theory, i.e. the fields would give a reducible
representation of the superLorentz group. In order to get around this problem, the
approach of Wess and Zumino [WZ] is to use the standard orthogonal group as the
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structure group, but to choose selected components of the torsion tensor which can
be nonzero. One then uses the Bianchi identities to find the consequences of the
choice. If the choice is too stringent, one only finds flat geometries. If the choice is
too lax, one gets too many fields in the supergravity theory. It is a well-developed
technique to find the right torsion choices, but the geometric meaning is obscure and
the method remains somewhat of an art.

To give an analogy, suppose that one has an almost complex manifold with a
Hermitian structure. Let {£•} be a local unitary basis of the complexified tangent
bundle. If one is told that a desirable set of torsion constraints is given by

Tijk = 0 , (1)

Tijk^Tΰj — T^i , (2)

the geometric meaning of the constraints may not be clear. In fact, they are saying
that the manifold is a Kahler manifold, which means that to first order around a
point, the geometry of the manifold is the unitary geometry of <C".

We wish to give a similar interpretation of the torsion constraints of
supergravity theory. Our approach will be to use Cartan's theory of G-structures
[St, Gu, Kob]. The idea of this theory is as follows. Given a subgroup G of the
invertible endomorphisms of the tangent space and a reduction of the structure
group of a manifold to G, one can ask whether the manifold is locally equivalent to a
flat G- structure. Let us put a G-connection on the reduced frame bundle. Roughly
speaking, the first-order flatness is measured by a combination of the components
of the torsion tensor of the connection, which is constructed in such a way that the
result is independent of the G-connection chosen. (For example, for (pseudo)
Riemannian geometry this combination always vanishes, which gives Einstein's
equivalence principle.) If one has first-order flatness, one can ask if there are higher
order obstructions to flatness. These are given by the Spencer homology groups
[Sp, Gu], which are an algebraic generalization of the Riemann curvature tensor
and its covariant derivatives. By different choices of the group G, one obtains
different geometries.

Our approach to supergeometry is to find the groups G which give the torsion
constraints of supergravity. We consider the geometries which come from these
groups to be preferred, in that they do come from physics. We find that the
appropriate groups have the following structure. If we locally decompose the
tangent space into even and odd subspaces, then the group elements take the matrix

form ( , . ) . Here A is an element of the Spin group, ρί(A) is its
*

representation as an orthogonal matrix, ρ2 is a spinor representation and * lies in a
Spin-invariant subspace Sf of endomorphisms from the even subspace to the odd
subspace. (Different choices of ̂  can give different geometries.) We will show
explicitly that the torsion constraints for supergravity theories (at least those
existing offshell) arise from the requirement of first-order flatness of such G
structures. Such structures have previously occurred in the work of Rosly and
Schwarz in four dimensions [RS] and Giddings and Nelson in two dimensions
[GN]. We also look at the geometric structures underlying superconformal
geometry and superKahler geometry.
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The outline of this paper is as follows:
In Sect. II we collect the needed background on supermanifold theory.
In Sect. Ill we give a digression on the physical interpretation of supermanifold

theory. There seems to be some confusion as to whether the sheaf-theoretic
description of supermanifolds is adequate to describe both classical and quantum
supersymmetric field theories. We show by the specific example of supergeodesic
motion that it is, when properly interpreted. Although this material may be known
to some, we have not seen it in the literature, and so we have included it.

In Sect. IV we define the model flat superspaces. We then define superRie-
mannian structure bundles and superRiemannian geometries in terms of G-struc-
tures. We work out the torsion conditions when the subspace <? is the largest
possible subspace.

In Sect. V we show by explicit calculation that with the right choice of the
subspace ,̂ the torsion conditions of Sect. IV, along with the Bianchi identities,
give the supergravity theories in 2, 3,4, and 6 dimensions. Our purpose here is not to
repeat known expressions for the torsion and curvature tensors, but to show how
they follow from the general framework.

In Sect. VI we compute the Spencer homology groups when the subspace £f is
the largest possible.

Conformal structures have a greater role in supergeometry than in ordinary
geometry. Conformal supergravity theories can be used as a technical tool to
construct Lorentzian supergravity theories [GGRS]. Conformal groups also arise
when one looks at the diffeomorphisms of the flat space which preserve the flat
space torsion tensor and the odd subspace of the tangent space. One finds that the
corresponding Lie algebra is a subalgebra ^(~1)Θ^(~1/2)0^(0) of the superconfor-
mal algebra. This gives a strong analogy between superconformal geometry and the
pseudoconformal geometry of CR manifolds, in which the flat-space torsion tensor
is given by the Levi form of the sphere. In Sect. VII we find the curvature
obstructions to superconformal flatness, in analogy to the work of Chern-Moser on
CR geometry [CM].

Although the local geometry of supermanifolds of one complex dimension is
well understood, it is not a priori clear how to generalize this to more complex
dimensions. In Sect. VIII we look at one approach, which is to extend Kahler
geometry. This can be done following the above approach to superRiemannian
geometry, and using the fact that the spinors have a natural description in terms of
(p, 0) forms on a Kahler manifold. We define three types of such structures, which
we call superKahler, C*-extended superKahler and weak superKahler structures.
We show that in one complex dimension, superKahler structures are always flat,
and both C*-extended superKahler and weak superKahler structures are equiva-
lent to the superRiemannian geometry. In two complex dimensions we show that
the reduced manifold for a superKahler or <C* -extended superKahler structure is
always a locally Hermitian symmetric space (although we do not claim that any such
symmetric space is the reduced manifold for such a structure). We show that a weak
superKahler structure is equivalent to an superRiemannian structure with an H*
internal symmetry group, for which the strictly even part of the curvature form is
u(2) valued. However, our discussion here is incomplete.

In Sect. IX and X we briefly discuss two related topics. In Sect. IX we discuss the
constraints for supergauge theory, and give an example in Riemannian 4-space. In
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Sect. X we discuss when the torsion constraints for superconformal geometry can be
seen as arising from integrability conditions for the local embedding of the
supermanifold in a flat complex or quaternionic superspace, as in the work of
Ogievetsky-Sokatchev [OS] and Rosly-Schwarz [RS] for four-dimensional
supergravity.

Notation. We will follow the notation of [WB], in which letters from the beginning of the alphabet
denote frame indices, letters from the middle of the alphabet denote coordinate indices, small
Latin letters denote even indices, small Greek letters denote odd indices and capital letters denote
even or odd indices.

I wish to thank Dan Burns for helpful explanations of CR geometry, and Ofer Gabber for a
helpful conversation. I thank M. Berger and the IHES for their hospitality while part of this
research was performed.

Note. Spencer homology groups have been previously computed in a supersymmetric case in
[RS2]. I thank the referee for bringing this reference to my attention.

II. Review of Supermanifold Theory

We will assume a knowledge of superalgebra, as given in [Le] or [Ma]. The idea
underlying supermanifold theory is that one can do much of ordinary topology and
geometry by working with the ring of functions on a manifold, instead of the points
of the manifold. A supermanifold is defined by its "ring of functions," which is now
generalized to be a supercommutative ring. Some conditions are put on this idea to
make it workable. Let us recall the definition of a supermanifold [Ma]. (The
definition is the same whether one is working in the smooth, analytic or complex
analytic categories, provided that one makes the obvious changes.) A super-
manifold ^consits of a pair (M, ΘM) such that Mis a smooth manifold, (9M is a sheaf
of supercommutative rings over M and certain conditions are satisfied. To give the
conditions (*), we will need the following notation:

Definition 1. Let 0M>1 denote the sheaf of vector spaces formed by the odd part of
ΘM. Let /M denote the sheaf (9MΛ +&M,I of ideals of nilpotent elements. Then the
conditions (*) are
1 . &MI/M is the structure sheaf of M.
2 /M!/M is a locally free sheaf of GMI/M modules.
3. (9M is locally isomorphic to the sheaf A^M^M(/MI/^) of exterior algebras.

We will call (9M the structure sheaf for X, (M, 0M//M) the reduced manifold of
X, and the sections of Θu will be called the functions on X.

The standard example of a supermanifold is constructed from a smooth vector
bundle E over M. Define the sheaf ΘM by saying that over an open set UaM,(9v is
the ring of smooth sections of the Grassmannian bundle Λ*E\υ. One can show that
any smooth supermanifold arises from such a construction, although not
canonically [Ga, Baj. We will be concerned with smooth supermanifolds in this
paper. For a trivial ]Rβ bundle over 1RP, we will denote the corresponding
supermanifold by Rp|<z.

A supermanifold has both even and odd local coordinates in the following sense.
Let p be the dimension of M and let q be the dimension of the locally free sheaf
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/M!/M- Then for any point neM, we can find a neighborhood U of n with local
coordinates { xm}£=1 and sections {^μ}μ = ι of (9υ such that any function feΘ\υ can
be written as ]Γ f^x^η1, where / is an increasing multi-index from (1, 2, ...,#} and
each /,(*) is in C°°(C7).

Much of the theory of differentiable manifolds goes over to the case of
supermanifolds without trouble [Ma]. In order to fix notation, we will recall some of
this. Let ΠΘM denote the sheaf (9M with the parities reversed. A locally free sheaf
of rank r\s is a sheaf of graded &M modules which is locally isomorphic to
(9$ = or

M 0 (ΠΦMy. The sheaf of tangent vectors TTis the sheaf of local derivations
of &M. It has rank p\q, and has a basis of local sections consisting of the even
derivatives {dxm}^=i and the odd derivatives {<9^}^=1. The sheaf of cotangent
vectors T*Xis the dual of TX, and has rank/?|# and local sections {dxm}%l=ί and
{dημ} *=l . The sheaf of differential forms Λ*Xis the exterior algebra of T*X, and
has the local relations

dxmAdxn=-dxnAdxm , (3)

dxm Λ dημ= -dημ Λ dxm ' (4)

dημΛdηv= dηvΛdημ . (5)

/L* X has an even exterior derivative d. To follow the notation of [WB], we will let
d act from the right, so that

d(ωΛσ) = ωΛdσ + (-l)deg(σ)dωΛ<7 , (6)

where deg(σ) is the degree of σ as a differential form, and for fe CCO(X)9 we have
locally

df = ΣdzM8Mf. (7)
M

Let us note that there are some differences between integration on super-
manifolds and integration of exterior forms on ordinary manifolds. On a
supermanifold, one integrates sections of a rank one sheaf called the Berezinian (see
[Ma]).

A morphism Φ between a supermanifold X and a supermanifold X' is a pair
(</>, \l/\ where φisa. smooth mapping from M to M' and ψ : &M, -*φ* (0M) is an even
morphism of sheafs of rings which is local with respect to φ. If (x, η) are local
coordinates around a point n e Mand ( x ' , η r ) are local coordinates around φ(n) then
Φ is locally given by

Φ*(x'm}= Σ ΛWW and **(,'")= Σ g»(x)rf (8)
/ even I odd

for smooth functions {//m(X)} and {#/(•*)} (where 7 is a multi-index) with

One point of supermanifold theory which may not be familiar is the notion of a
super Lie group. Recall [Ka] that a super Lie algebra ^ is given by an ordinary Lie
algebra (over R or <C) ^0 and a finite dimensional vector space ̂  such that
1 . There is a representation ρ of ̂ 0 on ̂  .
2. There is a ^0-equivariant symmetric map d'.S2^)-*^.
3. V / / 1 9 ^2 and
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The commutation relations are given by
1'. [ X 9 Y ] ,
2'. [X9Y]

One can define a super Lie group to be a supermanifold for which the space of
"distributions of finite support" has a graded Hopf algebra structure with antipode
[Kos]. Let us note that with this definition, what is sometimes called the general
linear group of a graded vector space W, namely the invertible endomorphisms
Aut(PF), is not a super Lie group, but instead gives coordinates for the super Lie
group GL(W}. One way to obtain super Lie groups is as follows.

Proposition 1. Let G be a Lie group and let ρ be a representation of G on a finite
dimensional vector space V. Suppose that there is a G-equivarίant map d : S2 V-*#
which satisfies Condition 3 above. Let E be the trivial vector bundle G x V and let Xbe
the associated supermanifold, with reduced space G. Then X has a super Lie group
structure.

Proof. See [Kos].

III. Relation of Supermanifold Theory to Physics

There seems to be some confusion in the literature as to whether the above
formalism can handle the supersymmetric theories of theoretical physics (see for
example the discussion in [DS]). Let us give a simple example. The formal
Lagrangian for an N=j supersymmetric theory of maps from IR1'1 to R is

L = J J (x'2 + W)dT9 (9)
R1

where x is an even function and ψ is an odd function. One might wish to interpret x
and φ as functions on IR1'1, in which case

x = /(Γ) and ψ = g(T)η (10)

for functions /^eC00^1). An immediate problem is that ψψ' would then be
identically zero.

There is a natural resolution of this problem. Note that the space Mor (X, X') of
morphisms between two supermanifolds Z and X' is a space, not a superspace. We
want a superspace of maps from R1'1 to IR. More generally, in analogy with the
ordinary case, let us define a superspace M&p(X,X') of maps between super-
manifolds X and X' by requiring that

Mor(Z,Map(Jr,JΠ) = Mor(ZxJr,JΓ) (11)

for all supermanifolds Z. In the case A^IR1'1 and X' = M\ an ordinary manifold,
one finds by taking Z = IR0|° that the base space of Map (R111, AT) is the infinite-
dimensional ordinary space MapζR^M'). By taking Z = R0|1

9 one finds that if
Map (R1'1, AT) comes from a vector bundle E over Map (R1, M') then E must be
the (smooth) cotangent bundle of Map (R1, AT), as defined in [Pa]. In fact,
Map (R1'1, AT) is the superspace whose functions are differential forms on
Map (R1, AT) [Lo].
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Given an ordinary Riemannian metric < , > on M', the Lagrangian

= ' ' (12)

is actually a function on Map (Rl j l, M'), namely the sum of a zero-form and a two-
form on Mapίfl^M') [At]. The quantum theory with Lagrangian L can be
constructed by considering the vacuum expectation as a certain linear functional
acting on functions on Map(R1(1, Mf) [Lo].

One can consider the classical theory with Lagrangian L either from the
Hamiltonian viewpoint or the Lagrangian viewpoint. The Hamiltonian approach is
to consider the supermanifold Y with reduced space T*M' which is constructed
from the vector bundle E=π*T*Mf, where π : T*M'-+M' is the projection map.
Let {xm} be local coordinates for M ', let {ea} be a local orthonormal frame and let
{τα} be the dual coframe. Then there are local coordinates on Γ*M' given by

(m,p)^{ϊ»(m)9<j>,eay} . (13)

There are local sections {η*} of π*Γ*M' given by (m, /?)-»(ra, /?, τα) and so we have
coordinates {*m,;?α,?f} for Y. It is convenient to define a new coordinate πa by

βorfη' . (14)

Consider the local basis of Γ* Y given by

(τ«,Dπa = dπa-Γk

ajπkτJ and Dn« = dη« + Γ«βaτ
a

n

β} . (15)

Proposition 2. The two-form

ω = DπaA τa+±iDηa Dη*+%RΛβάbη
Ληβτ? Λ τb

is super symplectic.

We omit the proof.
From ω we derive a super Poisson algebra {°, °}. There are functions Q = — iηaπa,

the supercharge, and H=^(πa)2, the Hamiltonian, with {Q, Q}=2iH. The time
evolution of a function on Y is given by df/dt = — {H, /}.

From the Lagrangian viewpoint, the equations of motion derived from L are

α/?(^)^V = 0 (16)

and
B (T) = (ή>y + Γ"βmWη' = 0 . (17)

In order to form the superspace ^ of classical solutions, it is necessary to form the
formal quotient of the space of functions on Map (R1'1, M') by the ideal generated
by {Am(T),B(X (T)}m >Λ τ. In order to see the equivalence with the Hamiltonian
approach, recall that in ordinary classical mechanics one can identify the space of
solutions of the equations of motion with the phase space, by evaluating the
solutions at a fixed time. There is a symplectic form on the space of solutions which
becomes identified with the symplectic form on the phase space [Se, Sz, CW]. In our
case one can convince oneself that given a fixed Γ, # has the local coordinates xm(Γ),
(xm}'( Γ), and ηa(T}, which gives the identification with the superphase space of the
Hamiltonian approach. Choosing a different value T' of the time corresponds to a
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different choice of local coordinates of #, which is related to the original choice by
the time evolution operator exp( — (Tr — T){H, °}).

We will be concerned in this paper with super spaces of geometrical structures on
a supermanifold. The idea is to define these superspaces as universal objects with
respect to some pullback property. (For a definition of superTeichmϋller space in
this vein, see [LR].) For example, in the ordinary case, one could define the space
Met (M) of Riemannian metrics on M as a space such that for any manifold Z,
the space Map (Z, Met (M)) is the space of vertical metrics on the fibered space
M->MxZ. Similarly, one can define the space Met (M)/Diff (M) as a space such

I
Z

that for any manifold Z, the space Map(Z, Met(M)/Diff(M)) is the space of
fiber spaces M-»P with vertical Riemannian geometries, i.e. an element of

4
Z

Met(M)/Diff(M) on each fiber.
In the super case, given a notion of a space of geometries on a supermanifold X,

we will define a superspace Geom (X) by requiring that for all supermanifolds Z,
Mor (Z, Geom (X)) is the space of vertical geometries on the fibered supermanifold
X-+XxZ.

I
z

Let Zred denote the base space of Z and let U be an open set in Zred. Then the ring
of functions of the pre-image of Uin(Xx Z)red will be (9X®ΘV. That is, to do local
calculations we can deal with functions on X which take value in the superalgebra
B = ΦU. If {x, η} are local coordinates for Zthen the even functions have the form

/ = £ //(•*) *7J> where //(*) is an (even or odd) element of B if /is an (even or odd)
I

multi-index. In what follows, we will omit explicit mention of the algebra B, but all
local calculations are to be understood in this way.

IV. SuperRiemannian Structures

Let us define the super Euclidean group. Let χ be the nondegenerate quadratic form
on Rp = R(|l+)φR(p-) given by

(t?0w,t/ew') = <^ιO-<wX> . (18)

For simplicity of notation, we will let SO(p + ,p_) denote the connected component
of the identity of the corresponding special orthogonal group. Let π denote the
standard representation of SO(p+9pJ) on IRΛ Let Spin(/?+,/?_) denote the spin
group, a double cover of SO(p+,/?_). Let Fbe a real vector space of dimension q on
which Spin (/?+,/?_) has a faithful spinor representation Q. That is, there are
matrices {yα}^=1eEnd(F) which satisfy

2χβb»(y«) t=Xαα<)'α (19)
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Put σab = [γa9γb]/4. Suppose that there is an invertible matrix CeEnd(F) which
satisfies

CyβC-1=αyβ

τ,C'τ = α C , (20)

with α = ± 1 . Then there is an Spin (/?+,/?_) invariant charge conjugation operator
on V given by ψ-*ψc = C~1ψ.

Definition 2. The super Euclidean algebra e on Rp |Fis the super Lie algebra with
even part s0 (/? + ,/?_) 0IRP and odd part F, with commutation relations

(21)

] = 0000ρ(Af)β , (22)

[β,β'] = 00βτ(yC-1)β'00 . (23)

In terms of components,

[Mμv,Mστ] = ηvσMμτ-ημσMvτ-ηvτMμσ + ημτMvσ , (24)

[MMV,P,] = f/wPM-^Pv , (25)

[Mμv,ββ] = (σμv)β*βb , (26)

[Pμ,Pv] = [Pμ,Qa] = 0 , (27)

[Qa,Qb}=nμv(yμc-\bpv . (28)
The super Euclidean group S on Rp| F is the corresponding super Lie group, as
defined in Proposition 1, with reduced manifold Spin(/?+ ,/?_) x IRΛ This acts on
Rp | F, and the corresponding representation of e by vector fields on Rp| Fis given by

Pμ(x,η) = dμ , (29)

Mμv(x,η) = xvdμ-xμdv , (30)

We can define a model geometry on Rp| F with S as an automorphism group by
writing RP |F as <f/Spin(/? + ,/?_) and using the decomposition

^ = spin(^+,/7_)0(lR^eF) (32)

to put a canonical connection on IR/| F [KN]. To make this more explicit, let 5- be a
global section of the frame bundle of RP |F given by

s(x9η) = (Da9D^ = (da9dΛ^(ytC^ηpd^ , (33)

and let P0 be the Sρin(/?+ ,/?_) subbundle of the frame bundle which includes the
section s. Let π denote the projection map from P0 to RP|F Let ω be the
Spin(/7+ ,p_) connection on P0 which vanishes when pulled back to IR/|F by s.
Then one can verify that δ acts by automorphisms on P0 and preserves the
connection ω.

In order to discuss when another Spin (/?+,/?_) structure is approximated by the
model geometry, let us recall the notion of a torsion tensor for a G-structure [St]. Let
M be a manifold whose tangent space at a point is isomorphic to a vector space W
and let P be a reduction of the frame bundle of M to a group G. Let τ denote the
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canonical form of P, an W- valued horizontal 1 -form on P. Given a connection ω on
P, the torsion T is an W-valued horizontal 2-form on P defined by

TA = dτA + τBΛωB

A . (34)

Let ω' = ω + Δω be another G-connection on P, where Aω is a ̂ -valued equivariant
horizontal 1-form on P. Then

(35)

Let δ : W*®#-+Hom(WΛ W, W} be defined by

) . (36)

Let /1} denote Ker δ. Let #°'2 denote Hom(PFΛ PF, ^)/Imδ. Then to each point
p E P there is associated a class C(p) e /f °'2, defined independently of ω. There is an
action of G on 7/°'2, and if pg~l denotes a point in the same fiber of P as p then
C(pg~l) differs from C(p) by a g action.

Now suppose that there is a diffeomorphism </>: M->IRm|F for which the
pushforward of the frame bundle induces a diffeomorphism φ^: P-»P0. Then it
follows that for any point p e P, C(j?) must equal C(φ(p)\ which lies in the G-orbit
of C(s(π(φ (/?)))). Thus the G-orbit ofC(φ(p)) gives an obstruction to the first-order
flatness of M. If C(p) equals C(φ(p)) then we can choose a connection form ω at/>
so that the torsion of ω at/? equals the torsion of the model space at φ(p). There is a
freedom of ^(1) in determining ω.

In the supersymmetric case, if we write the torsion tensor in the form

TA=^τcAτBTBC

A , (37)

then one finds that in the model geometry, along the section s, the only
nonvanishing components of the torsion tensor 7^ are

In order to see the consequences of first-order flatness, let us first look at the case
of the smallest possible structure group consistent with a Riemannian structure on
the reduced space, mainly G = Spin (/?+,/?_).

Proposition 3. For Spin (/?+,/?_) acting on M^=IRP|F, ^(1) = 0. A tensor
W, W) lies in the same orbit of HQ'2 as T0 if and only if

2^ = 0 , (39)

V = Jτ(Γ«* - Γαc, - Γbcfl)(σ<V , (41)

(^Cfl)αy - (42)

Proof. Let M denote an element of W* (x)^, whose image in W* (x) (W* (x) Ψ) we will
write as (MA)B

C. If S denotes the image of M in Hom(J^Λ JF, W) then the
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components of S are

Sab

c = (Ma)b

c-(Mb)a

c , (43)

Sab

y = 0 , (44)

Saβe=-(Mβ)ae , (45)

v=(M«v ' (46)

- (48)

Because the representation ρ is assumed to be faithful, it follows from (45) and (46)
that ^(1) = 0. From (43), (Ma)b

c can be written in terms of Sab

c. Using the fact that

(Mβy=HMβy(σ«V (49)
and

(MJ/ = KMβ)b'(σcV > (50)

and the Spin (/?+,/?_) invariance of the equations, the result follows. Π

Proposition 4. Assume that the bundle P satisfies the torsion conditions of
Proposition 3, and choose a connection ω so that the torsion Tofω equals T0 . Suppose
that there is an inυertible Spin (p+ , p _)-invariant operator D e End (F), such that for
all X < Ξ s o ( p + , p _ ) , Q(X}D is symmetric. (If a of (20) is — 1, we can take D = C~ί.)
Then ω is flat.

Proof. From the Bianchi identities, we have

Ωb

a , (51)

Ωβ

a . (52)
As

and the other components of T vanish, it follows that the left-hand sides of (51) and
(52) vanish. Let us write Ωb

a as

Ωb

a=^τd Λ τcΩcdb

a + τδ Λ τcΩcδb

a +^τδ Λ τ?Ωγδb

a , (54)

and similarly for Ωβ*. From (51) follows

Ωcdb° + Ωdbc

a + Ωbcd

a = Q , (55)

Ωcδb

a-Ωbδc« = 0 , (56)

Ωyδb

a = 0 . (57)
From (52) follows

««/ = <> , (58)
β = 0 . (59)

Because ρ is faithful, (58) implies that Ωcdb

a vanishes.
Let us use D to lower the last index on Ω^. Then ΩcδβΛ is symmetric in β and α,

and antisymmetric in δ and β. It follows that ΩcδβΛ vanishes, and so ω is flat. Π
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For four-dimensional Minkowski space, we have α= — 1. Proposition 4 shows
that the assumption that P is a first-order flat Spin (/>+,/?_) bundle is too restrictive,
as one would like to deal with nonflat geometries. We will also want to allow for a
larger structure group than Spin (p +,/?_) in order to deal with gauged extended
supersymmetries. The correct assumption is as follows:

Definition 3. Let j^be a Lie group. Suppose that Fbreaks up as V= V® V" and that

ρ = ρ®ρ' : Spin(> + ,/?_) x K-+Enά (V® V") (60)

is a tensor product representation. (K is the symmetry group for an extended
supersymmetry.) Let £f be a subspace of End(IRp, V) which is Spin(/? + , p_) x K
invariant. A superRiemannian structure bundle P is given by a reduction of the
frame bundle of X to the subgroup

,p_}xK}x^ (61)

which is first-order flat.

The reduction of the frame bundle to the structure group G has the consequence
that there is a well-defined subbundle Γodd of the tangent bundle, given by the odd
directions. In this sense a superRiemannian structure is like a foliation of an
ordinary manifold. However, even for a flat superspace, instead of being integrable
the distribution Γodd is maximally nonintegrable. The requirement of first-order
flatness has as a consequence that this will also be true for a supermanifold with a
superRiemannian structure.

For simplicity, in the rest of this section we will only consider the case of
unextended supersymmetry, i.e. K={e}. The model (/-geometry is given by the
reduction (of the frame bundle of Rp| V to G) which contains the section s. At s, the
torsion tensor again has only (TQ)Λβ

a = (yaC~l)Λβ as a nonzero component.

Proposition 5. For Spin (p + , / * _ ) x ̂  acting on W= Rp| K, /1} £ R* <g) y . Necessary
conditions for a tensor Te Horn (W/\ W, W} to lie in the same orbit in H°'2 as T0 are

V -ωo/ -^αc(OJ = - (fc-^xj
(7cC-1V(σ-)J (63)

for some
If y = End(lRί', V) then these are also sufficient conditions.

Proof. With the notation of the proof of Proposition 3, we have

Sab

c = (Ma)b<-(Mb)a< , (64)

V = (Mey-(Mby , (65)

(67)

(68>

(69)
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Suppose that Me^(1). From (64), (Ma\c is symmetric in a and b, and
antisymmetric in b and c, and so vanishes. Then (Ma)β

y also vanishes, and so from
(67), (Mβ\

y vanishes. From (66), (Mβ)a

c vanishes, and so (Mβ\
y vanishes. Thus

AfeR'®^, and satisfies (Afβy = (Afft)β

y.
To show that (62) and (63) are necessary conditions it suffices to show that both

{g-TQ:geG} and 7^ + Im δ satisfy the conditions (62) and (63). For 7^ + Im <5, this
follows from (64-69). For g - T Q 9 the fact that

(9 TΌ\f = (fC-\β (70)

is satisfied follows from Spin (p + ,/?_) invariance of (γcC~1)Λβ. It now suffices
to consider g = \ xZ with Ze^. If one writes out the left-hand side of (63) for
T=g T0, one finds exactly the right-hand side of (63) with X—Z.

If^ = End (IRΛ V) and the conditions (62) and (63) are satisfied, put g = 1 x X,
where X is given on the right-hand side of (63). If we put

S=T-g TQ , (71)

then SΛβ

c and SΛβ

y -^Saac(σca)β

y -^Sβac(σca\y vanish. It suffices to show S=δ(M)
for some

MeW*®(so(p+,p_}®Enά(1kp, V)) . (72)
Take

) , (73)

(MαV=4V , (75)

(Mp)S = (Ma)f-Saf , (76)

(Mβ)a

c=-Saβ

e , (77)

(Mβ)J = ϊ(Mβ)a

c(σc )S . D (78)

In the physics literature one does not talk about Spin (p+,p_)x^ structures,
but instead about Spin (p+,p-) structures. To make the comparison, suppose that
we have a super Riemannian structure bundle. If we write the torsion equations, we
can transfer the £f part of the connection to the other side of the equation and
consider that we have torsion equations for a Spin (p+ ,/?_) geometry, but now with
a nonflat torsion. Thus the first-order flatness of a Spin(j?+,^_)x & structure
becomes translated into the nonvanishing of certain components of the torsion
tensor of a Spin (/?+,/?_) structure.

To formalize this, suppose that we have a super Riemannian structure bundle P.
We can then find a local section σ of P such that along σ, Te 7^ + Im<S.

Definition 4. A superRiemannian geometry is a reduction of P to a Spin (/?+ , / ? _ _ )
subbundle Q such that TeT0-\-lmo on Q.

Proposition 6. There is a connection ω on Qfor which the only nonzero components of
the torsion T are

V = (rcc~ V TΛ

If these components are given then ω is unique.
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Proof. We have that there is a G-connection ω' on P such that when restricted to Q,

(T0)°=dτa+τbΛω'b° , (79)

(ro)
α = ί/τα + τ / ! Λω7 + ταΛcC . (80)

Define a Spin(p+,p_) connection ω by

< = <,cV = ω^ = <(σαV . (81)
Then

, (82)

x = (Toγ-τa Λ ω'a'

= (Toγ- τ° Λ τ*ωla - τ" Λ τ'ωtf . (83)

The uniqueness of ω follows as in the analogous uniqueness of the Levi-Civita
connection. Π

Proposition 7 (Dragon's theorem [Dr]). Under the hypotheses of Proposition 4, the
curvature Ω of ω can be written explicitly in terms of T and VT.

Proof. The left-hand side of (51) and (52) can be written in terms of T and VT. The
proposition follows from the proof of Proposition 4. Π

V. Examples

We will show that the above definition of a superRiemannian geometry gives the
minimal supergravity theories in 2, 3, 4, and 6 dimensions. We will assume that we
have a superRiemannian structure bundle for the group (Spin (p+ ,p_)xK)x^
and find the consequences of the torsion equations of a supergeometry. We will
do this by writing the torsion equations for a first-order flat (Spin (p+ ,p_)xK)x^
structure in the form of torsion equations for a non-first-order flat
Spin(p+,p_)xK structure. We will also look at the different geometries which
arise from different choices of the subspace .̂

A. One Dimension

Let Fbe R1. The torsion equations become

dτx=-τθΛτe , (84)

dτθ = TτθAτx (85)

for some even torsion component T. Taking the exterior derivative of (84) gives

Q=-2TτθΛτθΛτx , (86)

and so T= 0. By the super Poincare lemma [Ma], we can locally write τθ as dη, where
η is an odd 0-form. Then (84) becomes

Q , (87)
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and so locally we can find an even 0-form z so that

τθ = dη . (88)

Thus, a one-dimensional supergeometry is locally equivalent to the flat super-
geometry

τx = dx + θdθ , τθ = dθ . (89)

B. Two Dimensions

I. (1,0) Supergeometry. Let us take SO(p+, p_) = 5(9(1, 1)^1R+ and F=IR. (In
the two-dimensional case we will define Spin (1,1) to be 1R+, with the "double
cover": Spin(l, 1)->SΌ(1, 1) given by c(x) = x2.) Let x± denote the light cone

coordinates x± =(x°±x1}/]/2 and let θ denote the odd coordinate. Take £f to be
the subspace of End (IRΛ F) which vanishes on dx- , i.e. has the matrix form M+

θ.
The torsion equations become

+ = -τθΛτθ , (90)

dτ~+τ~ Λ ω _ ~ = 0 , (91)

dτθ + τθΛωθ

θ = Sτ+ Λτθ + Tτ+ Λ T " , (92)

where S is an even function, T is an odd function and

ω+ + = -ω_-=2ωβ

θ . (93)

Proposition 8. *S = 0.

Proof. The exterior derivatives of (90) and (91) give

τ + Λ Ω + + = τ + Λ ( 2 S τ θ Λ τ θ - 2 7 τ θ Λ θ , (94)

τ- Λ β _ ~ = 0 . (95)

For these to be consistent, S must vanish. Π

Thus the above choice of the subspace ̂  gives the heterotic geometry described
by Moore and Nelson [MN]. The Bianchi identities give

)τ+ Λ T ~ , (96)
where

VΘT=eθT-Tωθθ

Θ . (97)

II. (1,1) Super symmetry. Let us take SO(p+,p_} = SO(2) and F=IR2 with the
spinor representation of Spin (2), the double covering of SO (2). Let both IR/ = IR2

and Fhave the standard complex structure, and let £f be the space of complex-linear
maps from R2 to V. It is convenient to complexify both R2 and F, in which case the
torsion equations become

-τθΛτθ , (98)

dτ z + τz~ Λ ω/= - / Λ / , (99)

dτθ + τθ/\ ωθ

θ = Sτz Λ τθ + Tτz Λ /+ Uτz Λ τz~ , (100)

~ ~ Λ τ z , (101)
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where τz is the complex conjugate of τz, Γis the complex conjugate of T, etc., ωz

z is
purely imaginary and

ωz

z = 2ωθ

θ . (102)

Proposition 9. S=0, Γ+f =0 and U= V$T, where

reT=esT-ωffz*T . (103)

Proof. The exterior derivative of (98) gives

τz/\Ωz

z = τzΛ(2Sτθ/\τθ + 2TτθΛτ°-2UτθΛτz) , (104)
and so

Ωz

z = 2SτθΛτθ + 2TτΘΛτ°-2UτθΛτzmoάτz . (105)
Similarly,

Ω/=2Sτ°Λτ° + 2Tτ°Λτθ-2Uτ°Λτzmoάτz . (106)
Because

= 0 , (107)

it follows that S = 0 and Γ+ Γ= 0. Using this information, the exterior derivative of
(100) gives

τθ Λ Ωθ

θ = τθ Λ [(VΘU- T2)τz Λ τz~+ Tτθ Λ τθ~

Λ τ' + (7τz~Λ τθ] + (PΘ-Γ- C/)τz

Λ/Λτ θ"+(P θ-ί/-P z-Γ)/Λτ zΛτ z" . (108)

Thus C/= Fρ T. D

Thus the restriction to the subspace £f gives the TV = 1 supergeometry described
by Howe [Hoi]. The Bianchi identities give

Λτ θ>P θ-Γτ zΛτ θ . (109)

Suppose that we take £f to be the space of all linear maps from R2 to V. The
torsion equations become

= - τ θ Λ τ θ , (110)

= -/Λ/ , (111)

dτθ + τθ Λ ω/ = Sτz Λ τθ + Γτz Λ τθ~+ t/τz

Λ τ z + ρτ JΛτ θ + j R τ z Λ / , (112)

dτ» + τ° Λ ω/= 5τz" Λ τθ~+ f ?" Λ τθ + ΌT*

/\τz + QτzΛτ° + RτzΛτθ . (113)

The exterior derivative of (110) gives

τz Λ β/ = τz Λ (25τθ Λ τθ-f2Γτθ Λ τ*-2Uτθ Λ τz)

- 2 β τ θ Λ τ z Λ τ θ - 2 ^ τ θ Λ τ z Λ τ ^ . (114)

Thus Q = ̂  = 0, and we are back to the case of y consisting of complex-linear maps.
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///. (2,0) Super symmetry. Let us take SO(p+,p-) = SO(l9l), F=C and

K=SO(2). Let x± denote the light cone coordinates x± =(x°±x1)/]/2 and let θ
denote the odd coordinate, with complex conjugate θ. Take £f to be the C1 subspace
of End (Rp, V) which vanishes on dx- , i.e. has the form M+

θ. The torsion equations
become

dτ++τ+ Λω+

 + = -τ°Λτθ , (115)

dτ'+τ~ Λ ω _ ~ =0 , (116)

Λτ~ , (117)

Λ T " , (118)

where R and S are even functions, T is an odd function and

Reωθ

θ=ϊω+

 + = -ϊω_- , ω/=(ωθ

9)* . (119)

£ is the complex conjugate of 7?, etc. By using the freedom in Im δ from redefining
the connection, we can assume that S = S.

Proposition 10. R = S=Q and V$T=Q, where

VΐT=eϊT-Tωβ« . (120)

Proof. The exterior derivatives of (115) and (116) give

Λ /+ Tτ~ Λ τθ~+ Tτ~ A τθ) (121)
and

τ - Λ Ω _ - = 0 . (122)

For these to be consistent, R and S+S must vanish. Thus

7? = S = 0 . (123)

The exterior derivative of (117) gives

-f F V Γ τ + Λ τ - Λ / . (124)

Thus VQ T must vanish. Π

The curvature is given by

Ωθ

e=ΫθTτ+ Λ τ ' + Γτ- ΛTΘ~ , (125)

Ω/=(Ωβ

β)* , (126)

Ω+

+ = -Ω_-=Ωβ

β + β/ . (127)

7F. (2,1) Super symmetry. Let us take SΌ(p+,/?_) = SO(l, 1), F=-C01R and

;= SO (2). Let ** denote the light cone coordinates x± = (x° ± x1)//^ and let θ and
σ denote the odd coordinates, where θ has complex conjugate θ. Take ̂  to be the

subspace of End(Rp, V) which has the matrix form M+

θ@M_σ. The
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torsion equations become

(128)

(129)

Λτσ , (130)

Λτσ , (131)

/\τ+ , (132)

where R, S, U, TV, and P are even functions, T and Q are odd functions, N=N*,
Q = Q* and

ω/ = Reω/ = ±-ω+

 + = -4ω_- , ω/=(ωe

θ)* . (133)

As for the (2,0) geometry, we can assume ImS=0.

Proposition 11.̂  = ̂ =5 = 0, FβP = 0, T= -2VσP, U= -2P, Q= -(F0

Proof. The exterior derivatives of (128) and (129) give

+ Γτ~ Λ /+ fτ" Λ τθ+ C/τσ Λ /+ E/τθ Λ τσ) (134)
and

τ - Λ ί 2 _ - = 2 τ - Λ ( J V τ σ Λ τ σ + P τ σ Λ τ θ + Pτ σ Λτ β "-ρτ σ Λτ + ) . (135)

For these to be consistent, R,S+S, U+2P and Λf must vansih. Thus S=0. We have

Ω+

 + = 7τ" Λ τθ~+ fτ" Λ τθ-2Pτσ Λ τθ~-2Pτσ Λ τθ

- 2 β τ σ Λ τ + ( m o d τ + Λ τ - ) . (136)

The exterior derivative of (130) gives

Λ T ~ +Tτ~ Λτ°-2FθPτ+ Λ τ σ

. (137)
Thus

Γ=-2P σ P, P,-P = 0 , and (138)

. (139)

The complex conjugate of (139) gives

Ω/= -(2P^P7

σP + 2PP)τ+ Λτ" -2PσPτ- Λ T Θ

-2P^Pτ + Λτ σ -2Pτ σ Λτ θ . (140)

Using the fact that

, (141)
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we obtain
,P) . (142)

The exterior derivative of (132) gives no further information. Π

V. (2, 2) Super symmetry. Let us take SO(p+,p_) = SO(2\ V- C2, each C with the
spinor representation of Spin (2), the double covering of SO (2), and K= <C*. Let ίf
be the space of complex-linear maps from IR2 to V. The torsion equations become

β l Λ τ β 2 , (143)

Λ τ?1 + Γ12 τ
z Λ τθ~2 + Uί τ

z Λ τz , (1 44)

/2 = S21 τ
z Λ τθ' + S22 τ

z Λ τ"2 + T21 τ
z

Λ τ ' + Γ22τ
z Λ τβ"2 + t/2τ

z Λ τz~ , (145)

along with the complex conjugates, where

ωβl

βl = ωβ/I = ω.1 ' ωz

z + ω/=0 - (146)

In this case we can use the freedom in Im δ [for the structure group Spin (2) x <C*] to
setSn = S22.

Proposition 12.

Sn = sί2 = S2i=S22 = 0 , (147)

=() , (148)

T12 = Vθ2 Tn = Fβι Γ22 = Fβl Γ21 = 0 , (149)

Proof The exterior derivative of (143) gives

Λ τ+ 722τ
βl Λ τ+ U2τ*Λ τβί + Snτ

βί

Λ τ"2 + 512 τθ2 Λ τθ2 + Γu τ
57 Λ τ"2 + T12 τ^

*Λτβ2) . (151)

Along with the complex conjugate equation, and the fact that Ω/+(Ω/)* = 0, we
obtain

SU=512 = S21=S22 = 0 , (152)

Γ22 + 7^=^+^=7^ + 7,7=0 , (153)
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and _ _ _ _
βz* = T2ί τ

θl Λ τθl - Tn τ
θl Λ τθ2 + Tn τ

θ2 A τθl

+ T12τ
θ2 Λ τ**- U^2 Λ τ*- U2τ

θί Λ τz~+ t/ΐ~τ^Λ τz

H-C^τ^Λτ^modτ^τ2") . (154)

Using this information, the exterior derivative of (144) gives

τ Λ ββ* = τ"' Λ [(Fβl U, + Tn T^+ Tί2 7^)τz Λ τz

βl Γn τz Λ τ^ + Fβl Γ12 τ
z Λ τ^ - tft τ"2 Λ τr

Λ τ ?Λ τ^ + CF^^ - Pz-Γ12)τ2 Λ τ?Λ I51

F 5 Γ 7 1 2 ) τ z Λ τ Λ τ . (155)

Thus

^T^^T^^Tn-^T^O (156)and
U^V^Tίl + VwTί2 . (157)

Similarly, the exterior derivative of (145) gives

P f l lΓ21 = ̂ ^22 = >767^2= ̂ SΓ^i =0 (158)
and

^ = (7erΓ22+F5ΓΓ21 . D (159)

Thus the restriction to the subspace 9* gives the N= 2 supergeometry described
by Howe and Papadopoulos [HP].

C. Three Dimensions

Let us take SO(p+, p-) = 5(9(2,1), F=R2 with the spinor representation of
Spin(2,l) = SL(2,R). Following the notation of [GGRS], we will denote the
matrix representation of an element M of sl(2, R) by (M)±

 ± with Tr M = 0. Using
the invariant symplectic form ε on Fto raise and lower indices, we can consider Mas
an element of ,S2(R2), i.e. of the form M+ ± with Mα/j = M/?α. We will also identify
,$7(2, R) with the Minkowski 3-space, to write an element of R3 in the form
PeS2(R2).

Let us first take ί9^ = End(R3, V). The torsion equations become

where ω/ is sl(2, Revalued and ΓφMy

α£Hom(/l2(S2(R2)), R2). It is known that
the Bianchi identities imply that one can express the torsion and curvature in terms
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of a function R and a tensor GΛβy which is totally symmetric in its indices [GGRS]. A
calculation gives

Tε,δy« = R(εεδδy« + εεyδ«ϊ , (162)

-εδφδγΎER-εγφδδΎεR-εδεδγΎφR-εyεδδΎφR

%, + Gεy«εφδ) , (1 63)

with the constraint
VΛGβf+VβVΊR+V,VβR = Q . (164)

There are two SL(29 IR)-invariant subspaces of End(lR3, V) = End (S2 ( V\ V\
namely

5^ = {M e End (S2 ( V\ V} : for all v e V, Tr My = 0, where

Mυ: F->Fis given by Mv(w) = M(v®w + w®v)} (165)
and

^2 - (M E End (S2 ( F), F) : 3 z e F* such that

M(υ,w) = z(v)w + z(w)v} . (166)

Proposition 13. The supergeometry corresponding to &Ί has vanishing R.

Proof. In matrix form,

î = {MeEnd(S2(n»0:^./ = 0} . (161)

Thus the torsions must be writable as

T*,*y* = (MJδ7

Λ and Tφε,δy« = (Mφε)δy«-(Mδy)φ« , (168)
where

(Mε),α

α = 0 and (MΦX" = 0 . (169)

The condition (7^)5α

α=:0 gives 7^ = 0. Let us guess that (Mφε)δya has the form

for some symmetric tensor P. This has the required symmetry that (Mφε)δyΛ be
symmetric in both (φε) and (<5 yα). Then

a + 2 e^y P£(5a + 2 εε

+ εφa^>εδy + εεa^>φ(5y~~ε5a^>yφε~εya^φε (171)

One can check that if P = G/5 this equals H^αεεy + ̂ αεφγ + ̂ φyαε

ε)5 + ^εyαεφδ)
Note that G must still satisfy FαG0/ = 0. D

Proposition 14. Γ/ze supergeometry corresponding to ^2 is the same as the
supergeometry corresponding to ̂  = End (JR.3, V).

Proof. In matrix form

δ* for some Z} . (172)
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Thus the torsions must be writable as

TBtΛS = (ZJΛδS + (ZJyδΛ* (173)
and

We can do this by putting (Zε)δ to be jRεε(5 and (Zφε)δ to be -H
+ Gφεδ, thanks to the identity

εεy + Gεδ«sφy + Gφy

αεε, + Gεy«εφδ) = Gφεδδy«

-Gδyφδ«-Gδyεδφ«. D (175)

Z). Four Dimensions

/. jv=l Super symmetry. Let us take SO(p+,p_) = SO(3, 1), F=R4 with the
spinor representation of Spin (3, 1) = *SX(2, (C). This representation is complex-
equivalent to the representation on (C2©C2 which is the direct sum of the
fundamental representation of SL(2, C) and its complex conjugate. Following the
notation of [WB], we will denote the matrix representation of an element M of
sl(2, €) by (M)/Θ(M)/ with Tr M=0 and (M)/ = ((M)/)*. Using the invariant
symplectic form ε on (C2 to raise and lower indices, we can consider M as an element
of S2((C2), i.e. of the form MΛβ with Maβ = Mβθί. We will also identify

(C):P=-P^} (176)

with the Minkowski 4-space, to write an element of 1R4 in the form P^ with

PΛf=-(PβΛr.
Let us first take 5̂  = End (R4, V). The torsion equations become

dτΛ* + τα* Λ ω/ + τ9* Λ ωy* = - τ« Λ τ^ , (1 77)

^ , (178)

^ΛτέTεJγ

d

y

d , (179)

where ω/ is j/(2, C)-valued and Γφ ε^y

α e Horn (/L2 (̂ f ), (C2).
It is well known that the Bianchi identities imply that one can express the torsion

and curvature in terms of a complex function R, a hermitian tensor G^ and a
complex tensor Waβy which is totally symmetric in its indices. We refer to [WB] for
the expressions for the components of the torsion tensor, as well as the constraints
among R, G, and W.

There are two SL(2, (C)-invariant subspaces of End (R4, V) = End (Jf, F),
namely

):Mα/ = 0} and (180)

&2 = {MeEnd(3P,V):3Nf such that MΛf* = δa

yNf} . (181)

Proposition 15. The super geometry corresponding to Sf^ has vanishing R and G.
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Proof. Using the notation of [WB], the torsions must be writable as

, (182)
and

W = (^).<β-(^«V - (183)
where

ί« = 0 and (M^)βί« = 0 . (184)

The condition 7Jfβέ

α = 0 gives G = 0. The condition Γ^αa

α = 0 gives Λ = 0. If we take
(M^ X/ to be -ε^Hy then

W = (M^Xεα-(^εε)./ and (̂ ).<" = 0 - D (185)

Proposition 16. 77ze super geometry corresponding to £f2

 nas vanishing G and W and
constant R.

Proof. The torsions must satisfy

7j..i = ty,Aβ , (186)

Ts,t? = Nίftδε (186')
and

W = ̂ .A"-^V (187)

for some 7V^, TV^ and Λ/^j. Equation (186) is always satified. Equation (186')
implies that

for some H. Contracting with εαε gives Hδi = Gδi and so
Contracting with εδα gives G = Q. Equation (187) gives

(188)

(189)

Contracting with <Sα

ε gives N= 0, so W= 0. The constraints on R, G and J^give that
F α J R=F ά Λ = 0, which implies that Γα /jΛ = 0.

//. N =2 Super symmetry. Letus take *SίO(^+?jp_) = »SfO(4), F=R8with the spinor
representation of Spin (4) - SΈ/(2) x SU(2) and ̂ -H* = R+ x 5C/(2). Thinking of
V as H2, the representation of Spin (4) x K on V is given by

Q(g,g\k)(vlίv2) = (gvίk-\kv2(gTί) , (190)

where 0 and g' are unit quaternions, &eIH* and (ι;1,f2)eIH2. The action of
Spin (4) x^ on R4=IH is given by v-+gv(g')~1.lt is convenient to use the
identification

M = {PeM2(€):F=-εPε} , (191)

where ε is a symplectic form on <C2. Using this identification, we will write an
element M of su(Ί)®su(Ί)®k as (M)/ ® (M)/ ® (M V with (M)β

β = (M)/ = 0.
Similarly, we will write an element P of 1R4 as P/ and an element Q of F as

' ©(£?')/• We will use the symplectic form ε to raise and lower indices.
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Let us first take y = End (R4, V). The torsion equations become

dτ/ + τα" Λ co/ + co/ Λ τ/ = - τ.' Λ τ'f , (1 92)

dτJt + ω/ Λ τ/' + τj A ω/ = τ/ Λ τ/7/, s\' + τ/

Λ τ V V / '+K^τ/W ' , (193)

ek'f + τΊ* Λ co/ + co/ A τ'/ = τ/ Λ τJTfjf+τ*

The solution to the Bianchi identities is given in the Minkowski case in [Ho2]. In
our case a tedious calculation shows that the solution is given by superfields U^,
U'φ Ttj, T'ij, W/, W'J1, K// and L//. Here U, V, Γand T are symmetric and W
and W are traceless. The fields satisfy the Hermiticity conditions

(U*)* = Uaβ, (U'-t)* = U**,^)* = Γ", (T"γ = Γ'υ>

'ff and

(195)

One finds

(196)

(I97)
δS , (198)

Λ . (199)

By the freedom in Im <5, we may assume that L vanishes.
For future use, we will give the curvatures modulo τ/. They are

Ω> = - τ.' Λ τε £7

-K/Λτ'.V'β^V1 , (200)

wl-tϊ Λ τ'/^,ά«+K'

+ τ'/Λτ'/ i(β J 'C/'« + β4£Γ" ') , (201)

/'" + e"Ttt) - τ'/ Λ τβ

k^, /

, AJ-τ/ A τ'/LΛ /-τ/

(202)

The superfields will have to satisfy further first order differential equalities,
which we will not bother to derive here (see Sect. VIII).

E. Six Dimensions

Let us take SO(p+,p_) = SO(5, 1), F=R8 with the spinor representation of
Spin (5, 1) = £L(2,IH). This representation is the fundamental representation of
SL(2,H) onH2. Following [KT], it turns out to be most convenient to use another
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equivalent form of Spin (5, 1), which is SU*(4). Let / be a real skew-symmetric
operator on (C4, J2= — 1, and let ε be a real skew-symmetric operator on C2,
ε 2=-l. Then

(203)
Put

(204)

Then SU*(4) acts on Fby ρ(A)υ = Av. We can identify IR6 with

):JB=-BJ, BT=-B} , (205)

with the SU* (4) action given by B^ABAT. There is a map from S2(V) to 2? given
by (v,v')-+vεv/τ + vfεvτ, which gives a super Euclidean algebra on R6|F.

Let us denote the components of Aesu*(4) by Aβ

Λ, BeM(4, (C) by Baβ and
ι;eM(4,2,<C) by t f .

Let us first take 5̂  = End(R6, F). The torsion equations become

dfβ + ταy Λ ω/ + τ^ Λ ωy

β = - ε°τ? Λ τf , (206)

rfτ? + τf Λ ω/ - τ" Λ τj Γε%y« +^ Λ τε*Tφε^« . (207)

The solution for the Bianchi identities is given in terms of a tensor Mβy which is
symmetric in βy and satisfies Ϋ/jMβy = Q [ST]. Explicitly,

Tίtj-BwM' δJ , (208)

Tφε, ύ = εv [βφεδσ P/M- - εφεyσ P/M- - εδγφσ V^M™ + εδyεσ F/M™] . (209)

There are two SU* (4)-invariant subspaces of End (IR6, V) = End (3? , F),
namely

^ = {Me End (Jf , F) : Maβf = 0} and , (210)

y2 = {MeEnd(tf9V):3Nβi such that MΆβJ = δ^Nβi-δβ

yNΆi} . (211)

Clearly the geometry corresponding to ̂  is the same as that corresponding to &*.
On the other hand, the geometry corresponding to £f2 ^s easily seen to have
vanishing M, and so is flat.

VI. Higher Order Obstructions to Integrability

The torsion tensor of a (j-structure gives a first-order obstruction to the flatness of
the G-structure. There are also higher order obstructions, which are given by the
Spencer homology groups. An elegant exposition of this theory is given in [Gu]. We
will briefly review [Gu] in order to fix notation. (We will consider everything to be
Z2 graded, without writing so explicitly.)

Given the Lie algebra ^c#/(JF) of G, define /1}c:End(PF,0) as in Sect. IV.
Define ^(k} inductively by

(k-1}}:S(\v)(w') = S(w')(w) for all w,w'eW} . (212)

There is a Lie group $k whose Lie algebra is ^Θ^(1)® Θ^(k)

? with an
appropriately defined bracket. Given a G-structure which is kih order flat, one can
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define a principal bundle Ek over M with structure group ̂ k. There is a canonically
defined 1-form Γk on Ek with value in Fφ^0...e/c~1). We will denote its
homogeneous parts by τ, ω°,...,ωfc"1.

(In the special case k = 0, one has that ̂ ° = G, £° is the usual frame bundle and
Γ° is the canonical 1-form τ. The case fc>0 is a generalization of this.)

Let us define

(213)

1 . (214)

One can verify that for ί<k — 1, rfω* is canonically given on Ek, and so Ωl has the
corresponding flat space value. On the other hand, dωk~ l is not canonically given if
the G-structure is not (k + l)th order flat. Let us choose a ^k-equivariant horizontal

1-form ωk and define

[ωk

9τ]) . (215)

The exterior differentiation of

1

9 τ ] ) (216)
gives

FΩk"2 = [τ,Ωk"1] , (217)

where ΫΩk~2 = dΩk~2° H denotes the covariant exterior derivative. As Ωk~2 is
canonically given, if VΩk~2 vanishes in the flat geometry then [τ, Ω*"1] vanishes
onEk.

Let us define the chain group

W*) . (218)

There is a boundary map

δ:Ck l-+Ck-l l + l [Gu] . (219)

Then given a choice of ωk, the condition [τ, Ωk~1] = 0 implies Ωk~1eZk'2. The
freedom of choosing ωk means that there is a well-defined element of Hk'2 which
gives an obstruction to the (k + l)th order flatness of the G-structure. The group Hk'2

is the Spencer homology group [Sp, Gu].
Let us consider the setup of Sect. IV with unextended super symmetry. That is,

the structure group G is Spin(/?+,/?_)x^, where ̂  is a Spin(/>+,/>_)-invariant
subspace of End(IRp, F).

Proposition 17. Ifk>0 then ̂  = (¥®Sk((^p)*)}π(V®Sk+\(^p}*}).

Proof. In components, an element M of ̂ (k) can be written as a tensor MAl .,.Ak+l

B

which is graded symmetric in (Al9...9Ak+1) and is such (MA^_Ak)Ak+l

B

= MAl>^Ak+l

B denotes an element MAltttAk of #. First suppose that B is an even
index. For (MAl_ Ak)Ak + 1

B to be nonzero, Ak+1 must also be an even index. By the
symmetry in the lower indices, for (MAί ...Ak)Ak+ ^ to be nonzero, each At must be an
even index. Then we are reduced to the case ofso(p+ , p-)(k\ which is known to be
zero if k > 0.
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Now suppose that B is an odd index. If Ak+ί is an odd index then

MAl...Ak+1

B = (MAl...Ak)Ak+

B=ϊ(MAl^Ak)a<>(σb")Ak+

B (220)

vanishes. By the symmetry of the lower indices, for MAί m..Ak+

 B to be nonzero, each
AI must be an even index. Π

In components, an element of CM has the form MCl ClfAl Ak

B, where M is
graded skew symmetric in the C indices and graded symmetric in the A indices. The
boundary map δ:Ck'l-+Ck~ltl+ί is given by

(δM)Cl...Cl + ί,Aί...Ak_
B = (M)lCί^CttCι + ι]Aι^Ak_

B , (221)

where [] denotes antisymmetrization.
The group HQ'2 gives the torsion obstruction which we have already discussed.

Proposition 18. 7/'^ = End(lR|1, V) then Hk>2 = Qfor k>\.

Proof. Hk'2 is the middle homology of the sequence

W*)-->... . (222)

If k>\ then by Proposition 17, /-1 = K®Sk((R*)*). Suppose that MCίC2iAί Ak

B

denotes an element M of ̂  ~ 1 (x) A2 ( W* ) with δM = 0. If both C indices are odd then

, . Cl,C2...Ak

B = 0 , (223)

which implies that MCίC2 Al Ak

B vanishes. If Q is odd and C2 is even then

MClC2,j4l...^ + Mc^lιCl...^
B + M^Cι>C2...^

β = 0 , (224)

which implies

MClc2,Λl...Λ*B = MclΛl,c1...Λk

I> (225)

Then M=δN, where TVe/Θ/l^fF*) is given by

^Cl,x1...x l t+1

β = Λ/c1x1.x I...xk + I

B (226)

If Cx and C2 are both even then

ί,c^Ak

B = 0 . (227)

In this case one can show that Me Im δ by the same agument as is used to show that
the Spencer homology vanishes for the group GL(n, R). Π

Proposition 19. If ^ = End(lRp, V) then the homology group H1'2 is ίsomorphic to
that of a usual SO(p+ ,/>_) Riemannian geometry.

Proof. The group Hί>2 is the middle homology of the sequence

... . (228)
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If Mep®Λ2(W*) then the component equations of δM = ΰ become

l>E°>=0 , (229)

lrE°ι = 0 , (230)

2r0°ι = 0 , (231)

θl,θ2

0< = 0 , (232)

l,E2

E< = 0 , (233)

M0lE2,El

El-M0lEl,E

E* = 0 , (234)

M0lθ2>El

£' = 0 , (235)

where E or O denotes an even or odd index.
Note that because of the spinor representation of SO (/?+,/?_), Eq. (230) is

related to Eq. (233), Eq. (231) is related to Eq. (234) and Eq. (232) is related to
Eq. (235). Because ̂  = End(IRΛ V) as in the proof of Proposition 18, Eq. (229)
gives no contribution to H1'2. Equation (235) implies that Eq. (232) has no content.
Equation (233) gives the same contribution to H1>2 as in ordinary Riemannian
geometry, that is, a tensor with the symmetries of the Riemannian curvature tensor
of an SO(p+,p_) geometry. Equation (230) implies that there is a tensor P such
that

M0lEί,E2

θ2= 'ίMEίE2tE^(σE^)0ί°^P0ίEί ,E2°> , (236)

where P is symmetric in Eί and E2. Then P lies in Im<S, and so Eq. (230) gives
no new contribution to H1'2. Because s o ( p + , p _ _ ) ( i ) vanishes, Eq. (234) implies
M0ιEι E2

E* = Q. Then Eq. (231) becomes M0lθ2?£l°
3 = 0. D

Propostion 19 shows that flatness of a superRiemannian structure with no internal
symmetry group is given by flatness of the reduced space, i.e. there is no new
curvature in the odd directions.

Let us now consider the case when G = Spin (/?+,/?_) and W=JB^P®V. We
know that when the hypotheses of Proposition 4 are satisfied, first order flatness
implies second order flatness. Let us show more generally that there are no formal
obstructions to flatness other than the torsion.

Proposition 20. For G = Spin(p+,p_\ acting faithfully on V, we have ^{k} = 0
fork>Q.

Proof. This follows from the proof of Proposition 17. D

Proposition 21. For G = Spin (/?+,/?_), acting faithfully on F, we have Hk'2 = Qfor

Proof. Because ^(/c) vanishes for fc>0, Hk>2 automatically vanishes for k >1. If
δ\p®Λ2(W*)-+ W®Λ*(W*} is the boundary map then H1-2 = Ker δ. Written in
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components, this becomes

M£lE2,0l°
2 = 0 , (237)

(238)

Ol,02°
4 = 0 , (239)

,.B/4 = 0 » (24°)

M E

El — M El = 0 (241)

^0lo2,£,
E2 = 0 , (242)

where E or 0 denotes an even or odd index.
Equation (237) implies that Eq. (240) has no content, and Eq. (242) implies that

Eq. (239) has no content. Because so (p+,p _)(1) = 0, Eq. (241) implies M0lEl>2

£3 = 0.
Then Eq. (238) has no content. Π

VII. Superconformal Geometry

The superconformal Lie algebras tend to be simple super Lie algebras (a
classification of which is given in [Ka]). They have a filtration

where
^(-i) = ̂ (i) = ]RP , (244)

^(-ι/2) = ̂ (i/2)=κ (245)

and
?(0) = so(p+,p_)®Vί®k , (246)

with k being a Lie algebra which represents an additional symmetry. The even part
of g, is so(p+ + 1, p_ + 1)0 fc, which is the usual conformal Lie algebra plus k. The
commutator of ̂ (~ 1/2) and ̂ (1/2) is nonzero in ̂ (0) and is given by the model torsion.
This is similar to what happens in CR geometry, in which the nonzero torsion
corresponds to a nondegenerate Levi form [CM].

We will need the superconformal Lie algebras for the following spacetimes,
where TV denotes the extended supersymmetry index :

Signature

(?+)
(4- + + +)

Lie algebra

osPc(7V|l)
slM(2\N) if TV φ 2

k

so*(N)

gh(N)

ospR(7V12)
su(N\2,2)ΊΐNή=4 u(N}
5w(4|2,2)/IRif7V=4 su(4)
hosp(7V|2) ho(N)
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If we consider /~1} to be the even tangent space and ̂ (~1/2) to be the odd tangent
space, then the subspace ^(0)0^(1/2) of ^ acts on ̂ (~1)0/~1/2) by

:̂ -1^-1' , ad^V^-V172' and

2':/-1^/-1/2) . (247)

Let G denote a super Lie group with Lie algebra ̂  and let G0 denote a subgroup with
Lie algebra

- (248)

Note because the adjoint action of G0 on ̂  preserves ^0 , there is a representation ρ of
G0 into End(^/^0). Let G' denote the image ρ(G).

The model spaces for a superconformal structure will be homogeneous spaces of
the form G/G0 . These will turn out to be Grassmannian manifolds or subspaces
thereof on which a quadratic form vanishes. The reduced spaces will be conformal
compactifications of the flat Lorentzian (or Euclidean) spaces.

We will consider a superconformal geometry to be given by a Cartan connection
[Kob] on a supermanifold X. That is to say, we have a ^-valued connection ω on a
principal G0 bundle such that
1. ω is G0 equivariant.
2. For all Xep0, ω(Vx)=X, where Vx is the vertical vector field corresponding to X.
3. ω gives an isomorphism between the tangent space of a point in the bundle and
the Lie algebra .̂

Suppose that we can write ^(0) as the direct sum h@k of two Lie subalgebras.
[We will take h to be so(p+ ,;?_)0IR and k to be the additional symmetry group.]
Suppose that we are given the g(~l\ ^(~1/2) and ^ parts of a putative Cartan
connection, denoted by P, Q and M. We will want to be able to find the k, ̂ (1/2) and
£?(1) parts to complete a Cartan connection ω. The 1 -forms P, Q and M will have to
satisfy some conditions, namely
1'. For all Xe^9 P(VX) = Q(VX) = 0 and M(Vx) = (X)h.
2'. P0g©M is GO equivariant, where G0 acts on /"1)Θ^ (~1/2)ΦA
=^/(fcθ^(1/2)Θ^(1)) via the adjoint action on .̂
3'. A tangent vector V on the principal bundle is vertical if P(V) = Q(V) = Q.
The idea is to find curvature obstructions to the conformal flatness of a space. To do
so, we will find the curvature of some specified Cartan connection ω. In order to
specify ω, we will want to put some conditions on its curvature Ω. These conditions
should be weak enough so that a superRiemannian geometry also has a
superconformal structure.

Given a G0 principal bundle, the homomorphism ρ gives a G' principal bundle.
G ' can be written as

,^_)xIR + x^)x^ ? , (249)

where the subspace Sf of End(ΪRp, V) is given by

^^K*=^(1/2) . (250)

Here the inclusion F* cEnd (Rp, V) is given by the Clifford multiplication of Rp

on F*. The principal G 7 bundle coming from a G0 bundle will inherit the canonical
forms P and Q. If we reduce a first order fiat superRiemannian structure with
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connection, having £f = End (Rp, V\ to a super Riemannian structure with Sf = V*,
then the induced Spin ( j? + ,/?_)xV* connection will generally have nonzero torsion,
which lies in Horn (Λ2(RP), F)φHom (RPΘ V, V). Consequently, it would be too
stringent to require first order flatness of the G ' structure over X. In order to specify
the Cartan connection, we will require that the ^(~1) part of Ω vanishes, that the
^(-1/2) part of β lies in a certain subspace of Hom(Λ2(Rp), F)0Hom(R17e F, V)
and that the ^(0) part of Ω satisfy a tracelessness condition analogous to the
vanishing of the Ricci part of a curvature tensor. These conditions must be invariant
under the action of G0. As the super Lie groups change very much with the
spacetime dimension, we will have to look at the cases individually.

B. Two Dimensions

As is well known, conformal flatness is somewhat different in two dimensions as
compared to higher dimensions. We will only discuss case II of (1,1) super-
symmetry. The other two-dimensional cases are similar. The global superconformal
algebra is osp(C(l|l). The model space X is a supermanifold arising from a
homogeneous R2 vector bundle over S2. In the two-dimensional case it would be
wrong to construct a Cartan connection with values in osρ(C(l|l), as the Cartan
connection is a local construction, and the local automorphism group ^ is much
larger than osp(C(l |1). In fact, ^ is a subalgebra of the Z0(Z+ 1/2) graded Neveu-
Schwarz superextension of the Virasoro algebra [NS], with even generators
U-m}m=-oo> odd generators {Gr}r

1L2_00 + 1/2 and relations

[Lm,Ln] = (m-n)Lm+n , (251)

[Lm,Gr] = (m/2-r)Gm+r , (252)

{Gr,G5} = 2Lr+β . (253)

There is an induced grading

1/2)® (254>
with ^(m) generated by L_ m and ^<m+1/2> generated by G_ w _ 1 / 2 .

A ^-valued Cartan connection can be written in the form

ω= 0 ω(m) Θ 0 ω(m) , (255)
\ m = - l / \ m = - l / 2 /

where {ω(m)}£= ̂  are even C-valued 1 -forms and {ω(m)}~J £f/2 are odd C-valued 1-
forms. Let us take h = <C and fc = 0. Here P is ω(~1}, Q is ω(~1/2) and M is ω(0).

Proposition 22. Given P, Q and M satisfying l',2\3f andΩp = Q, there is a Cartan
connection ω extending PφQφM such that ω is flat.

Proof. First, let us take any Cartan connection ω extending P 0 Q © M. Writing the
curvature Ω as

Ω= 0 Ω(mΛ®( © Ω(m} , (256)
m = - l / \ m = - l / 2
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we find

Σ ω( r)Λω(β) f o r m e d ,
p+q=m r+ s=m

f o r m e Z +

The Bianchi identity is

p+q=m r+s=m

r)(ω(p}/\Ω(r)-Ω(p}/\ω(r]) for

By hypothesis, we have that Ω(-1) vanishes. Formed, m^ — 1, we will assume that
Ω(~υ, ί2(~1/2),...,β(m) vanish and show that it is possible to modify ω(m+3/2) and
ω(m+2) SQ that Q(m+ι/2) and Q(m+i) vanish βy the Bianchi identity, we have

0 = 2(2 + m)ω (-1 )ΛΩ ( m + 1 ) + 4ω (-1 / 2 )ΛΩ ( m + 1 / 2 ) . (257)

Thus Ω(m+1/2) must be proportionate to ω(~1} and so it is possible to modify ω(m+3/2)

in order to make Ω(m+1/2) vanish. By the Bianchi identity, we then have

0 = 2(m + 2)ω (-1 )ΛΩ ( m + 3 / 2 ) + 2(m/2 + l)Ω ( m + 1 )Λω (-1 / 2 ) . (258)

Thus Ω(m+1} must be proportionate to ω(~1} and so it is possible to modify co(m+2) so
that Ω(m+1} vanishes. By induction, we can complete ω so as to make Ω vanish. D

In order to clarify the question of superconformal structures in two dimensions,
suppose that Xis a real supermanifold of dimension 2|2 and that the frame bundle of
X has a reduction to a subbundle with the structure group (IR+ x Spin (2)) x (C
= C* x <C which is first-order flat. One can check [GN] that the torsion conditions
for this are

(259)

(260)

(261)

Q , (262)

Tθθ

z = l , (263)

along with the complex conjugate equations. Suppose that these are satisfied. Let P
and Q denote the canonical forms on the reduced frame bundle. Then by choosing a
C0C connection with flat space torsion, it follows from Proposition 22 that it is
possible to extend the connection to a flat Cartan connection. Suppose on the other
hand that we have a reduction of the frame bundle of X to a subbundle with
structure group C* which is not necessarily first-order flat, but satisfies the torsion
conditions

T,θ

z = Tw

z = Tθi = TW* = 0 , (264)

Tθθ

z = l , (265)
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along with the complex conjugate equations. Let us choose a C* connection M on
the reduced frame bundle so that the torsion components TzΞ

z, Tzθ

z and TZQ
Z vanish

(this can always be done). Then by Proposition 22, it is still possible to extend
P®Q®M to a flat Cartan connection.

C. Three Dimensions

The superconformal algebra for three dimensional Minkowski space is osp^(l|2).
The model space X is a supermanifold arising from a homogeneous R2 vector
bundle over

M= (real 2-planes P in IR4 : the form ώf Λ dx2 + dx* Λ dx3

vanishes when pulled back to P} . (266)

More specifically, X can be given by

planes P in 1R1'4: the quadratic form

on R114 vanishes on P} . (267)

In order to construct a Cartan connection, let us take h = so (2, 1) 0 IR and k = 0.
A Cartan connection can be written in the form

/ O Qτ -Sτ

ω= S M K

\Q P -Mτl

where P and ̂  are real symmetric even 2 x 2 matrices, Mis an real even 2 x 2 matrix
and Q and S are real odd 2 x 1 matrices.

Proposition 23. Given P, Q and M satisfying Γ, 2;, 3' andΩp = Q, there are unique S
and K such that ΩQ = ΩM = Q.

Proof. First let us take any Cartan connection ω with the given P, Q and M. The
curvature Ω = dω + ω Λ ω of ω has components

P-0 , (268)

(269)

P , (270)

(271)

τ . (272)

The Bianchi identity gives

Q=QΛ(ΩQ}T+P/\ΩM-ΩQΛQT+(ΩM)T Λ P , (273)
. (274)
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Let us write P as τaβ, Q as τα and Mas ω/. Then (268), (269), (270), (273), and (274)
become

0 = dτ*β + τα Λ τβ + ταy Λ ω/ - ω/ Λ τyβ , (275)

, (276)

(277)

\ΛAτγβ , (278)

= τ*β Λ (Ω5)^ - ω/ Λ (ΩQ)β + (ΩM)/ Λ τ* . (279)

Let us write (ΩQ)α as

Λ τβ(ββ)βiί/
α . (280)

From (278) and (279) one can show that ΩQ has the form

(281)

(282)

for symmetric tensors R and V. One can redefine *S so as to make (ΩQ)ε >(5y

α vanish.
The general form for (ΩQ)φBfδy

Λ is

+ Gφδ*sεy + Gε/εφy + Gφy%, + Gεv%, (283)

for some symmetric tensors D and G. As in the proof of Proposition 14, by
redefining S we can make ΩQ vanish.

The Bianchi identity (273) now becomes

) Γ Λ P . (284)

In components,

0 = τα yΛ(βA ί)/ + (βM)y

αΛτy / ϊ . (285)

This gives

τ α y Λτ ε Λτ 5 (Ω M ), s ε s / + τ^Λτ ε Λτ d (Ω M ), > ε > / = 0 , (286)

which implies that (ΩM)δ>ε>y

β vanishes. Also,

τ«? A τ** Λ τ\ΩM)δ^y

β + τ" Λ τ*ε Λ τδ(ΩM )δ>εφ>y" = 0 . (287)

It can be verfied that the most general solution to (287) is of the form

(ΩM)δ,εφ,γ

β = Nδyφδε

β + Nδyεδφ

β (288)

for some tensor Nδyφ which is symmetric in the last two indices. From Eq. (277),
KδtΛy can be redefined in order to make (ΩM )δίBφί / vanish. Finally, because the Weyl
tensor vanishes in three dimensions, KδεtΛy can be redefined in order to make
(ΩM)δε,φρ>y

β vanish. D
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Note that the remaining curvature components, Ωs and Ωκ are uniquely
determined and generally nonvanishing. For a superRiemannian geometry, they
give the supersymmetric analog of the three-dimensional conformal tensor [Ei].

D. Four Dimensions

The superconformal algebra for four dimensional Minkowski space is su(\\2, 2).
The model space X is a supermanifold arising from a homogeneous 1R4 vector
bundle over

M= {complex 2-planes P in C4: the form

dx0 Λ dx2 — dx2 Λ dx0 + dxί Λ dx3 — dx3 Λ dxί

vanishes when pulled back to P} . (289)

More specifically, X can be given by

X={€°12 planes P in C1'4: the quadratic form

on C114 vanishes on P} . (290)

In order to construct a Cartan connection, let us take h = so(3, 1)01R and
= u(\). A Cartan connection can be written in the form

where A is imaginary, P and K are Hermitian even 2 x 2 matrices, M is a complex
even 2 x 2 matrix and Q and S are complex odd 2 x 1 matrices.

Proposition 24. Given P, Q and M satisfying 1 ', 2', 3f andΩp = 0, there are unique A, S
and K such that ΩQ has the form

, (291)

where O^εy

a is skew in <f> and δ, symmetric in ε and y and Oj$εo? = 0, and ΩM has the

fθrm (ΩM)a

β = τ** Λ τ'X^ + τ^ Λ τε%;εy/ , (292)

where X«β = 0, Z = -Z and

Proof. First let us take any Cartan connection ω with the given P, Q and M. The
curvature Ω = dω + ω Λ ω of ω has components

Λ P = 0 , (293)

Q , (294)

Pτ , (295)

(296)

* , (297)

ϊ . (298)
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The Bianchi identity gives

0 = Q Λ (βO)1 + P Λ (ΩM)* - ΩQ Λ βt + (ΩMY Λ P , (299)

dΩQ = QΛΩA + PΛ(Ωs)*-MτΛΩQ-ΩQΛA + (ΩM)τΛQ . (300)

Let us write P as i""', Q as τα and M as ω/. Then (293), (294), (295), (299), and (300)
become

' (301)

(302)

(303)

)/Λτ^ , (304)

) / Λ τ " . (305)

Let us write (Ωβ)α as

+τ Λ τ ( Ω ) ί > / + τ Λ τ flβ>ίy + Λ

+^Λτ^(βfl)^.ίy« . (306)

From (304) one can show

(Ω%/=0 , (ΩQ)^=V^δf and (Ωδ)v,/= F,V+ Vfδ" , (307)

where (Fy.)*= — VΓ Then by redefining A we can assume

(θe)Λ4« = (βC),ι/,« = (ΩC)?>/ = 0 . (308)

The general forms for (ΩQ)εJy" and (Ωβ)ε.^/ are

(309)
and

+UaS , (310)

where /^εv

α is symmetric in ε and y and H$εΛ

Λ = 0, and f/^α

α = 0. We can redefine S in
order to make /and T vanish. We can redefine A to make the skew-Hermitian part
of / vanish.

The general form for (ΩQ)^ε^y

Λ is

where B^ε is skew in φ and 6, N^ε is symmetric in φ and 6, O^f is skew in φ and £',
symmetric in ε and y and O^εα

α = 0. By redefining S, we can make B and TV vanish. A
and 5 are now uniquely determined.

The general forms for (ΩM\^yJ and (ΩM)έ>6yJ are

(QMU./=ΛΛV+W ' (312)
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where V^βΛ

β = X^βΛ

β = 0. By redefining K, we can make R and Evanish. The general
form for (ΩM)^yJ is

, (314)

where Z^ey/= -ZWye/ and Z^εβΰl

β = 0. By redefining A:, we can make 7 vanish.
K is now uniquely determined.

From the Bianchi identities (304) and (305) one finds that H, J, £7 and V vanish.
Thus ΩQ and ΩM are as stated in the proposition. D

Let us note that using the Bianchi identities, X and Z can be given explicitly in
terms of O (see [Ho2]). O is the super analog of the Weyl tensor.

E. Six Dimensions

The superconformal algebra for six dimensional Minkowski space is hosp (112). The
model space X is a supermanifold arising from a homogeneous H2 vector bundle
over

M={quaternionic 2-planes P in H4: the form

dx° Λ dx2 — dx2 Λ ώ

vanishes when pulled back to P} . (315)

More specifically, X can be given by

X={Ή°12 planes P in H1'4: the quadratic form

on Ή1'4 vanishes on P} . (316)

For calculations, it is convenient to use an equivalent form of hosp (1|2). Let /be a
real skew-symmetric operator on C4, J2 = — 1 , and let ε be a real skew-symmetric
operator on C2, ε2 = — 1. Let B and C be the operators

on <C20(C4Θ<C4. Then

0} . (317)

In order to construct a Cartan connection, let us take h = so(5, 1)0R and
k = su(2). A Cartan connection can be written in the form

I A εQτ sST

ω=ls M K
\Q P -Mτl

where A is a skew-Hermitian 2 x 2 matrix, P and K are complex skew-symmetric
even 4 x 4 matrices such that PJ— — JP and KJ— — JK, M is an complex even 4 x 4
matrix such that MJ=JM, and Q and S are complex odd 4 x 2 matrices such that
Qε= -JQ and Sε= -JS.
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Proposition 25. Given P, Q, and M satisfying Γ, 2', 3 ' andΩp — 0, there are unique A,
S and K such that ΩQ has the form

« = τ?δ Λ τϊN^+ϊτ^ Λ τε%ε^ , (318)

where N^* is skew in sδy,

ΛUα = 0 , (319)

Rφεδyi = - Rεφδy" = ~ &φε yδ* = ~ Rδyφε* an^ Rφεδod = 0 >

and ΩM has the form

(ΩM)/ = τ** Λ τJTl + τ* Λ τJZV + τ"

/ , (321)
where

TL = TL , (322)

Dφεδβ/ = 0 . (325)

Proof. First let us take any Cartan connection ω with the given P, Q and M. The
curvature Ω = dω + ωΛωofω has components

, (326)

(327)

(328)

(329)

(330)

(331)

The Bianchi identity gives

(332)

}τΛQ . (333)

Let us write P as τα^, β as τ? and Mas ω/. Then (326), (327), (328), (332), and (333)
become

0 = dτ*β + εyτf Λ τ/ + ταy Λ ω/ - ωy

α Λ τv/? , (334)

^ i-ω/Λτ/ ϊ-fτβ^Λ5 / κ , (335)

(ί2M)/ = rfω/ + ε'X Λ τf + ω/ Λ co/ + ̂ αy Λ τ^ , (336)

0 - είjτ? Λ (ΩQ)f + ταy Λ (ί2M)/ - ε^ Λ τ

(337)

(338)
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Let us write (ΩQ)f as

+hϊ5 Λτ**(Ω%£,^ . (339)

From (337) one can show that (βQ),,̂  has the form

where F^ is symmetric in fc and j, and V^j = 0. By redefining X, we can make
vanish.

The general form for (ΩQ)/>(S>, is

— δ^Xj 4-MJ * ? (341")uδ jΛεγι'^-iε,δγι > V~^Λ/

where
w l = λ/fj α = MJ α =o y = — yr r<5y i α,^yί ίε,δa.i w ' ^^δy y^ '

M j * * = — Mj s* (342]-ίK1ε,δ)Ί ^^ε, yδi V-7^^/

By redefining v4 and 5, we may assume that W and Z vanish. A is now uniquely
determined. From (337) and (338), one can show that Y vanishes and that

Mj <X=N "δj Π41Ϊε,<5>Ί εδy i \ /

for some tensor Nεδ* which is completely antisymmetric in εδy and satisfies

The general form for (O%£>(5)? is

. ^ , (344)
where

RΦ*S=0 (345)
By redefining 5, we may assume that O vanishes. 5 is now uniquely determined. One
can show that (337) and (338) give no further conditions on R.

The general form for (ΩM)ίtδytiΛ

β is

(ΩM)U.Λ

p = 71V - T&f + ̂ i. V - ̂  V + ZM , (346)

where
7 j? yj β — (]

~

We can redefine K in order to make U vanish.
The general form for (ΩM)φBtδyJ is

(348)
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where
D _ _ D _ _ D S~^ _ _ (~ι _ (^

^φεγoc. ^εφytx. ^φε&γ ' ^φεyα ^εφyα ^φεαy >

*W = - £W = - ̂ W = - £Wβ/ , Dφβδβgf = 0 . (349)

We redefine K in order to make B vanish. K is now uniquely defined. Π

We note that using the Bianchi identities, Γ, Z, C, and D can be given in terms of
TV and R, although we do not bother to do so explicitly.

VIII. SuperKahler Manifolds

Suppose that we have a supermanifold Xvtith a reduction of its frame bundle to a
super Riemannian structure bundle. If we want to define a super Kahler structure on
X, a reasonable necessary condition is that the reduced manifold M2n should have a
Kahler structure, that is, the frame bundle of M should have a reduction to a first-
order flat U(n) subbundle. Thus the structure group of a super Kahler structure
should be a subgroup of (Spin (2n) x K} x £f whose even part is [7(1) x SU(n) x K,
the double cover of U(n) x K. A natural such subgroup can be constructed by using
the fact that the spinors on a Kahler manifold can be identified with twisted Λ*'°
forms [Hi]. The spinor representation

ρ: [/(l)xS[7(fl)-+End(Λp'°<C) (350)

is the tensor product of the representation of [7(1) on (C given by e

iθ-+e

2(p-ni2ϊίθ

and the representation of SU(n) on Λp'° which is derived from the representation
onΛ 1 ' 0 .

Let π denote the standard representation of u(ri) on (Cn. Let (eα}"=ι be the
standard basis for C", with dual basis {τα}" = 1 . Let {770} be a standard basis for Λ*'°,
where a runs over a set of 2" multi-indices. Given an element Q of Λ*'°, let us write it

Definition 5. The superunitary algebra w on C"'2" is the real super Lie algebra with
even part w(n)φC" and odd part C2", with commutation relations

'] = [Λf,M']φ(π(M)P'-π(M')P)ΘO , (351)

[MφP,ρ]=OφOφρ(M)β , (352)

[β,β'] = O φ Σ Σ (αδ'τ Λ f l+δ^δτ ΛαK®0 . (353)
α = l a

If we denote the corresponding superunitary Lie group by 91 then there is a
model geometry on C"'2" with fy as an automorphism group. This geometry will be
given by a reduction of the frame bundle to a [7(1) x SU(n) subbundle, along with a
flat connection on this subbundle, and can be written down explicitly as in Sect. IV.

The spinor space Λ*'° has a decomposition into its chiral subspaces ΛQven'° and
ylodd'°. C* acts as automorphisms on u by the transformations

Q even _^.ZQ even ζ} odd _^ ̂  - 1 £) odd (354)
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Thus there is a natural extension (C* x % of ̂  with even part C* x C/(l) x SU(n).
The (C* can be thought of as an internal symmetry group which generates complex
chiral transformations with respect to the decomposition of the spinor space.

In analogy with the definition of a super Riemannian structure bundle, we define
a super Kahler structure bundle as follows.

Definition 6. Let X be a real supermanifold of dimension 2«|2Π+1. Let £f be a
subspace of End(R2",R2/l+1) which is U(ί)xSU(n) invariant. A superKahler
structure bundle P is given by a reduction of the frame bundle of Xto the subgroup
(Z7(l) x SU(n)) x Se which is first-order flat. If y is (C* x J7(l) x SU(n) invariant
then a <C*-extended superKahler structure bundle P is given by a reduction of the
frame bundle of X to the subgroup (C* x t/(l) x SU(ή)) x 5̂  which is first-order
flat.

Given a superKahler structure bundle P, we can find local sections σ of P such
that along σ, ΓeT^-f Im<5.

Definition 7. A ((C* -extended) superKahler geometry is a reduction of P to a
(C*x)E/(l) x SU(ri) subbundle Q such that Γe Γ0 + Im<5 on β.

Note in particular that a superKahler structure is automatically a super-
Riemannian structure, and that the reduced manifold is Kahler. As calculations for
superKahler structures rapidly become very complicated, we will only discuss the
cases of n = 1 and n = 2.

A. One Complex Dimension

Suppose that X is a real supermanifold of dimension 2|4 whose complexified
cotangent bundle has a local coframe {τz, τz, τ0, τ®,τdz, τdz}. Let us put

τβl=^ 5 τθ* = τdz . (355)

Let us first consider a C*-extended superKahler geometry with ίf = End (R2, IR4).
The representation M: C©w(l)-»End (C1'2) can be written in matrix form as MA

B

where the nonzero components are M/, Mθί

θl and M02

02, and

Mθί

Θ> + MΘ2

Θ> = Mz

z , M/ + M/=0 . (356)

Let us assume that the torsion conditions are satisfied for a C*-extended
superKahler geometry (we will not work out these conditions, although it is
straightforward to do so). The torsion equations become

dτz + τz Λ ω/ - - τθl Λ τ02 , (357)

dτθί + τθί Λ ωθl

θί = S^τz Λ τθl + Sl2τ
z Λ τθ2 + Tnτ

z

Λ τ*1 + Γ12 τ
z Λ /2 + C/i τz Λ τz> Fn τz~

(358)
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τ01 + T22 τ
z Λ τ02 + U2 τ

z

Λτ 0 1 + ^22τ
z~Λτ02 . (359)

We can use the freedom in Im δ (for the structure group (C* x Spin (2)) to set
Sn=S22and Fn = F22.

Proposition 26. A <C*-extended super Kdhler geometry with 5̂  = End (R2, R4) is
equivalent to one with ê  = End(C(C, C2). That is,

^11=^2=^=^22=^11=^2=^21 = ^22 = 0 - (360)

Proof. The exterior derivative of (357) gives

Λ τ01 + ̂ 22 τ01 Λ τβ~2 + Kn τ
θl Λ τ*2 + F12 τ

02

Λτ 0 2 +P^ 1 1 τ 0 1 Λτ 0 2 +]PΓ 1 2 τ 0 2 Λτ 0 2 )(modτ z ) . (361)

The proposition follows. Π

It follows from Proposition 26 that we have the geometry considered in
Sect. V.B.V. On the other hand, unextended superKahler geometries are less
interesting, as the next proposition shows.

Proposition 27. An unextended superKahler geometry has aflat connection, regardless
of the U(V)-invariant subspace ^ of End (R2, R4).

Proof. Let us consider the most general possibility for & ', namely ̂  = End (IR2, IR4).
We can consider an unextended superKahler geometry with connection to be an
extended superKahler geometry with connection, whose curvature will then have to
satisfy

Ωeι

e* = Ωθ2

β* = l/2Ωx* . (362)

From Proposition 26, we can assume that c9
9 = Endc(C, C2). From the results of

Sect. V.B.V., we have that the relation Ωθί

θί = Ωθ2

θ2 implies

2 - Ul τ
02 Λ τz + Tn τ

02 Λ τ

0 1 Λ τ 0 1 . (363)

Thus

711 = ̂ 2 = ̂ 21 = ̂ 2 = 0 , (364)
and so

[7=0 and Ωβι

θ' = Ω^ = Ωz

z = 0 . (365)
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B. Two Complex Dimensions

Suppose that X is a real supermanifold of dimension 4(8 whose complexified
cotangent bundle has a local coframe

|τzι τz2 τzι τZ2^τ0^τdz1^τdz2^τdzίΛdz2^τ^τdz^τdz2^τdz1Λdz2}

Let us put

Let us consider a <C*-extended superKahler geometry with ¥ = End (1R4, IR8). The
representation M: C0w(l)©sw(2)-»End(C214) can be written in matrix form as
MA

B where the nonzero components are {Mzft, Mθa

θb}, and

, M,;« - M ,5* = Mzι- - MZ2

Z2 ,

3)*=0 . (361)

Let us assume that the torsion conditions are satisfied for a C*-extended
superKahler geometry. The torsion equations become

dτzι + τzι Λ ω2ί

zι + τ*2 Λ ωZ2

Zl

= - (τθ"3 Λ τ04 + τθ"5 Λ τθe) , (368)

= - (/3 Λ τ05 - /4 Λ τ06) , (369)

- τz ι Λ 3 -f τz2 Λ 52

3 + τzι Λ ̂  + τz~2 Λ S2-
3 , (370)

+^τθ* Λ (ωzι

zι - ωZ2

Z2 - 7) + τβs Λ ωZ2

Zl

= τzι Λ V + τz2 Λ 52

4 + τ2"1 Λ Sf4 + τz~2 Λ Sf

4 , (371)

= τzι Λ S1

 5 + τz2 Λ S2

5 + τ2'1 Λ 5f

5 + τz~2 Λ S/ , (372)

dτθ* +^τθ* Λ (ωzι

zι + ωZ2

Z2 + F)

- τzι Λ 5Ί6 + τz2 Λ ,S2

6 + τzι Λ Ŝ -6 + τz~2 Λ Sf , (373)

where Y represents the <C* part of the connection.

Proposition 28. With the above torsion conditions, the reduced Kάhler manifold M is
locally Hermίtian symmetric.

Proof. As the proof consists mostly of tedious calculations, we will only give a
sketch. As a C*-extended superKahler geometry is also a superRiemannian
geometry, we can use the results of Sect. V.D.II. In particular, the torsion equations
for a (C*-extended superKahler geometry are the same as those of a superRie-
mannian structure with ω/ a diagonal matrix and ω/ a diagonal matrix. Then Ω/
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and Ωj will also be diagonal. The condition that Ω/ be diagonal gives

Wi

ί=W2

ί=K=Uf

ii = Uf

i2 = Tf = ΰ . (374)

The condition that Ω/ be diagonal gives

U=Tn = T22=U' = Q . (375)

Thus the possible nonzero superfΐelds are T12 = T2i, W^ = - w} and W. To be
slightly more general for a moment, let us consider the consequences of the Bianchi
identities for the superRiemannian geometry of Sect. V.D.II, under the assumption
K=0. One finds

PWd = 0 , (376)

(377)

, (378)

, (379)

(380)

(381)

F^r(V)a = 0 , (382)

F,*lf = 0 , (383)

rφ*Wf = Q , (384)

fytfί/ = 0 , (385)

W*A)a = 0 . (386)

We now use that U=U' = 0. If we use the fact that the only nonvanishing
component of Γis Γ12, (386) implies that T12 is covariantly constant. Similarly, (378)
implies that W is covariantly constant. One finds from further Bianchi identities
that W must be covariantly constant. Then the Γ*even Λ Γ*even part of the
curvature will be quadratic in the covariantly constant fields J1, W and W and so
will be covariantly constant. Thus the reduced space is a locally symmetric
space. Π

Proposition 28 shows that the assumption of a first-order flat (C*-extended
superKahler structure is too strong to have interesting geometries. A similar
situation is known to occur for N>2 extended supergravity theories in four
dimensions [Ho2]. There it is found that it is necessary to allow a torsion T with
respect to the structure group (Spin (3, l)xK)x ^ which is different from the
model space torsion T0, in order to write the corresponding supergravity theory.

In analogy, let us allow for a torsion with respect to the structure group ((C*
xU(l)xSU(n))x^ which is different from the model space torsion. One

condition on the torsion is that we want the torsion of the reduced space to vanish.
That is, letting V denote C2" and W denote <Cn|F, we will want to allow the tor-
sion T to lie in a subspace of Hom(W/\ W, W} which has zero intersection with
Hom(CwΛ C", C"). The following definition seems to be appropriate.
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Definition 8. A weak superKahler geometry is given by the definitions 6 and 7, where
the subspace ^ is now a £7(1) x SU(n) invariant subspace of End(W, F).

(We do not consider <C* -extended weak superKahler geometries because by
writing out the torsion equations, one can see that a <C*-extended weak superKahler
geometry would be the same as an unextended weak superKahler geometry.)

We will look at weak superKahler geometries in one and two complex
dimensions.

C. One Complex Dimension

Proposition 29. A weak superKahler geometry in one complex dimension is equivalent
to a C*-extended superKahler geometry in one complex dimension.

Proof. The torsion equations for a weak superKahler geometry can be written in the
form

-τ θ l Λτ θ 2 . (387)

-τ^^i+τ^Λ^+τ^ΛΓ^+τ 0 2

Λ ^ + τ ^ Λ T j Ή τ ^ Λ Γ j 1 , (388)
2 = τzΛA2 + τzΛB2 + τθiΛT1

2 + τθ2

Λ T2

2 + τ°ϊ Λ Γf

2 + τ^ Λ Tf

2 , (389)

where ω/ is imaginary and

<V1 = <V2 = ̂ / . (390)

Without loss of generality we may assume that each T term has no τz or τz

component. Modulo τz and τz, the exterior derivative of (387) gives

Λ Γ 2 1 ) Λ τ θ 2 . (391)

As the Γ's have no τz or τz components, it follows that (391) is also true without the

congruence condition. Taking (391) modulo τ02 gives that τθl Λ 7j2 + τθl Λ ΓΓ

2

+ τθ2ΛT22 is proportionate to rθ2. Similarly, τ θ 2 Λ T2

l+τθί Λ T^+τ*2 Λ T2

l is
proportionate to τθ l. Thus we can write the torsion equations in the form

dτz + τz Λ ω/ - - τθl Λ τθ2 , (392)

dτθl + τ θ l Λ ω θ l

θ l = τ z Λ ^ 1 + τ J Λ ^ 1 + τ θ l Λ C 1 , (393)

dτθ2 + τθ2 Λ ωθ/
2 - τz Λ A2 + τz Λ B2 + τ02 Λ C2 . (394)

Equation (391) becomes

. (395)
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Thus C1 + C2 = 0. We can now change the connection so that the torsion equations
become

dτz + τz Λ ω/ = - τθί Λ τθ2 , (396)

^τ'Λ^+τ2"^ , (397)

= τz/\A2 + τz/\B2 , (398)

where ωβl

θl + ωθ/
2 = ωz

2. These are exactly the torsion equations for a C*-extended
superKahler geometry. Π

D. Two Complex Dimensions

Proposition 30. A weak superKahler geometry in two complex dimensions is
equivalent to a super Riemannian geometry in the sense of Sect. V.D.IIin which ω/ is a
diagonal matrix.

Proof. The torsion equations for a weak superKahler geometry in two complex
dimensions are

dτzί + τ21 Λ ωzι

21 + τ22 Λ ωZ2

21

(399)

ωz/
2

= - (τβ~3 Λ τθ5 - τ'4 Λ τ06) , (400)

dτ22 + τ21 Λ ωzι

z2 + τ22 Λ ωz/
2

= τ21 Λ 5Ί3 + τ22 Λ S2

3 + τ21 Λ Ŝ -3 + τ22 Λ S2-
3

+ τ03 Λ Γ3

3 + τ04 Λ Γ4

3 +τ05 Λ Γ5

3 +τ*6 Λ Γ6

3

+ τ^ΛΓ33 + τ^Λ74;3 + τ^ΛΓ5 3-fτ^ΛΓ6 3 , (401)

dτθ4 +±τθ4 Λ (ωzι

21 - ωZ2

22) + τθs Λ ωZ2

21

= τ21 Λ V + τ22 Λ S2

4 + τZί Λ V + τ2'2 Λ ̂ 4

+ τ*3 Λ Γ3

4 + τθ4 Λ Γ4

4 + τ05 Λ Γ5

4 + τ06 Λ Γ6

4

+ τ^ΛΓ34 + τ^ΛΓ44 + τ^ΛΓ54 + τ^ΛΓ64 , (402)

dτθ5 -f τ04 Λ ωzι

22 -h^τ05 Λ ( - ωzι

22 + ωz/
2)

= τzι Λ 5Ί5 +τ22 Λ 52

5 + τ21 Λ SΓ

5 + τ2"2 Λ %5

+ τθ3 Λ T3

5 + τθ4 Λ Γ4

5 + τθ5 Λ Γ5

5 +τ06 Λ Γ6

5
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= τzι Λ Sf + τ22 Λ S2

6 + τJl Λ ST

6 + τ*2 Λ

Λ7g6 . (404)

Without loss of generality, we may assume that each Γterm has no τ21, τ22, τzι or τZ2

component. Taking the exterior derivatives of (399) and (400) and using congru-
ences shows that we may assume that the only nonzero entries of Tare 7^3, Γg3, T^4,
7j4, Γ5

5, T^5, 7^6, and F/, where we no longer assume that Tab

c=Tba

c. The exterior
derivatives of (399) and (400) then give

= τ 3 Λ τ 4 Λ Γ4 + 7 + τ 3 Λ τ Λ

+ τ06 Λ τθ4 Λ (7p~+ 77) + τθ6 Λ τθ~5 Λ (Γ6

6 + T ) (405)

and

-Γ6

6-Γ4

4) . (406)

From (405) it follows that there are functions V, W, X, and Y such that

T4*+J^ = τ°iX+τβ*Y , (407)

Γj4 + Γj6 = - τβ'X+ τβ* W , (408)

" " (409)

(410)

Similarly, it follows from (406) that there are functions A, B, C and D such that

(411)

(412)

(414)

It follows from (407) and (411) that

Γ4

4 - T5

5 = τ°*X+ τθ« Y- τ°*A - τθ*B , (415)

and from (410) and (414) that

(416)
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Then from (415) and (416) we have that X-D = Q, Y-B = Q, A+V=Q and
?=0. If we put

T'4
4 = T4

4-τ°5X , (417)

r3

3-Γ3

3-τ^F , (418)

(415)

(420)

(421)

(422)

(423)

(424)

then we have

and

One can check that replacing Γby 7" does not change the torsion Eqs. (399)-(404).
After moving the T terms to the left-hand side of the torsion equations, on can
check that the torsion equations become equivalent to those of Sect. V.D.II,
provided that ω/ is diagonal matrix. Π

We have not analyzed the consequences of the Bianchi identities for a weak
superKahler geometry in two complex dimensions. However, the following seems
reasonable:

Conjecture. There are solutions of the Bianchi identities for a weak superKahler
geometry in two complex dimensions which give a non-covariantly-constant-
curvature reduced space.

IX. Gauge Theory

In order to give a space of superconnections suitable for gauge theory, it is necessary
to put some constraints on the curvature of a connection. From the discussion of
Sect. IV, we know that if X is a supermanifold with a reduction of the frame bundle
to the group G = (Spin (p+,p_)xK}x£f then there is a well defined odd subbundle
Todd X of TX with an action of Spin (p +, p _) x K via the representation ρ. Let H be
an ordinary Lie group and let A be an //-connection on a vector bundle over X.
The curvature constraints can be summarized by saying that the curvature F of A
vanishes on some subspace V of TQddX /\ ToddX which is Spin(/? + ,/?_)xK in-
variant. We must admit that we do not have any general way to determine the
appropriate F, a maximal subspace such that Fis not implied to vanish identically.
(For example, for N=4 gauge theory in four dimensions, there is a self-duality
condition on the curvature [So], which does not occur for 7V<4. This condition
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exists because the internal symmetry group of the superconformal group for N=4
is SU(4) rather than £7(4).) The curvature constraints for extended supergauge
theory in four-dimensional Minkowski space can be found in [So]. Let us note that
it is often the case that there is a subspace W of ToάάX (or ToάάX® C) such that
W 'Λ Wei F(or F®(C). Then A \ wcan be locally written in the form g~ldg\w, where g
takes value in H (or # €). The field g is the prepotential in physics [GGRS]. Let us
also note that it seems to be necessary to have at least a superconformal structure on
X, i.e. a reduction of the frame bundle of X to (R+ x Spin (p+ , /?_) xK)x£f, in
order to define the space of connections for a supergauge theory.

As an example, let H be a Lie group and consider a gauge theory on Euclidean
R4/8 with structure group H. The Yang-Mills action was given in components in
[Zu] as

]\2] . (427)

Here A is an //-connection on 1R4, B and C are cross-sections of the ad (//) bundle,
ψ is a cross-section of the S® ad (//) bundle (where S denotes the complex spinor
bundle) and γ5 is the Hermitian chirality matrix.

In order to write the superspace version, let us note that the representation of
Spin (4) on IR8 is quaternionic. Let IR4/8=H112 have quaternionic coordinates x, θ

//-connection on R4/8 and let .Fdenote its curvature. The right constraints for Fturn
out to be

F= Re (W'Q Λ Q + WQ' Λ Q ') (mod />) (428)

for some A-valued superfunctions W and W. Let DQ denote the H-valued
differential operator

DQ = Deo + iDθι+jDθ2+kDθ3 , (429)

and similarly for DQ> . The Bianchi identities imply that

DQW = DQ,W=Q and DQDQW-DQ,DQ,Wf = Q , (430)

and that F can be completely expressed in terms of W and W by

) . (431)

The Yang-Mills equations become

DQDQW=DQ,DQ,W' = 0 . (432)

Self-dual solutions correspond to W = 0 and anti-self-dual solutions correspond to
W=0. One could also work out the superspace Yang-Mills equations for a gauge
theory on a general super Riemannian manifold of dimension 4|8, the geometry of
which was given in Sect. V.D.II.
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X. Supergeometries as Submanifolds

We will briefly sketch the relationship between the present paper and the work of
[OS, RS, Ma]. We have seen that an important feature of a superRiemannian or
superconformal geometry is the existence of an well-defined odd subspace of the
tangent space. One way to construct supermanifolds with such subspaces is the
following. Suppose that X is a real submanifold of a complex (or quaternionic)
affine superspace Γ. Then the tangent space to X will inherit a subspace which is
invariant under the complex (or quaternionic) structure. If this subspace is an odd
subspace of maximal dimension then one has a candidate for a superconformal
structure on X. (One also needs a nondegeneracy condition on the commutator of
the subspace.) Conversely, given an odd subspace with a complex (or quaternionic)
structure on a general superconformal manifold X, the appropriate integrability
conditions will give necessary conditions for X to be locally realizable as a
submanifold of an affine space. The torsion equations for a superconformal
structure can be interpreted as the integrability conditions for the complex (or
quaternionic) subspace of the tangent space, in analogy to what happens for CR
manifolds. This was shown for N= 1 supergravity in Minkowski 4-space in [RS]. (A
superRiemannian geometry can be considered to be the analogue of the pseudo-
Hermitian geometry of Webster [We].)

When we have such an extrinsic description of conformal supergeometry, one
can ask which submanifold corresponds to the model geometry. It turns out that the
model submanifold is given locally as the zero set of a set of real quadratic equations
in the complex (or quaternionic) affine superspace. Thus the superconformal
curvature tensor measures whether a given submanifold X is locally equivalent to
the model submanifold with respect to complex-analytic (or quaternionic-analytic)
maps of the affine superspace.

One finds such a description of the model supermanifold when it is given as the
subspace of a complex (or quaternionic) Grassmannian supermanifold on which a
quadratic form vanishes. We find in particular the following cases.

/. (2,2) Super symmetry in Minkowski 2-Space

The model space is

X={(Γ?\ί planes P in C1'2: the quadratic form

on C112 vanishes on P} x {(C011 planes Q in <C112 :

the quadratic form xx + ηί η2-η2 */ι on C1'2 vanishes on Q} . (433)

If we parametrize a subspace of X by

P = span ((c, 1, *)) , Q = span ((d, 1, *)) (434)

then X is locally described as

(435)
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//. N=2 Super symmetry in Euclidean 3-Space

The model space is

^={H110 planes P in H2'2: the quadratic form

x1 x2 + x2 *! + ηί η2 - η2 η1 on H2'2

vanishes on P} . (436)

If we parametrize a subspace of X by

/> = span((l,aAO) , (437)

then X is locally described as

cb = ΰ} . (438)

///. N=l Super symmetry in Minkowski 4-Space

The model space is

X={<£°{2 planes P in (C114: the quadratic form

vanishes on P} . (439)

If we parametrize a subspace of X by

P = span((*,flAl,OUj^XO,l)) , (440)

then X is locally described as

{(a,6,c,rf,x,3;)6(C4|2:a-a = Jcx, -c + δ~=.xy, 3-d=yy} . (441)

/K Λ^=l Super symmetry in Minkowski 6-Space

The model space is

planes P in H1'4: the quadratic form

vanishes on P} . (442)

If we parametrize a subspace of X by

/> = span((Λ,α,6,l,0),(^c,rf,0,l)) , (443)

then X is locally described as

=xy, 3-d=yy} . (444)
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