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Abstract. We derive the torsion constraints for superspace versions of supergravity
theories by means of the theory of G-structures. We also discuss superconformal
geometry and superKéhler geometry.

I. Introduction

Supersymmetry is a now well established topic in quantum field theory [WB,
GGRS]. The basic idea is that one can construct actions in ordinary spacetime
which involve both even commuting fields and odd anticommuting fields, with a
symmetry which mixes the two types of fields. These actions can then be interpreted
as arising from actions in a superspace with both even and odd coordinates, upon
doing a partial integration over the odd coordinates. A mathematical framework to
handle the differential topology of supermanifolds, manifolds with even and odd
coordinates, was developed by Berezin, Kostant and others. A very readable
account of this theory is given in the book of Manin [Ma].

The right notion of differential geometry for supermanifolds is less clear. Such a
geometry is necessary in order to write supergravity theories in superspace. One
could construct a supergeometry by Z, grading what one usually does in (pseudo)
Riemannian geometry, to have supermetrics, super Levi-Civita connections, etc.
The local frame group which would take the place of the orthogonal group in
standard geometry would be the orthosymplectic group. However, it turns out that
this would be physically undesirable. Such a program would give more fields than
one needs for a minimal supergravity theory, i.e. the fields would give a reducible
representation of the superLorentz group. In order to get around this problem, the
approach of Wess and Zumino [WZ] is to use the standard orthogonal group as the
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structure group, but to choose selected components of the torsion tensor which can
be nonzero. One then uses the Bianchi identities to find the consequences of the
choice. If the choice is too stringent, one only finds flat geometries. If the choice is
too lax, one gets too many fields in the supergravity theory. It is a well-developed
technique to find the right torsion choices, but the geometric meaning is obscure and
the method remains somewhat of an art.

To give an analogy, suppose that one has an almost complex manifold with a
Hermitian structure. Let {e;} be a local unitary basis of the complexified tangent
bundle. If one is told that a desirable set of torsion constraints is given by

:Ejkzo > (1)
Tijl?z TEij“ TEji B 2

the geometric meaning of the constraints may not be clear. In fact, they are saying
that the manifold is a Kdhler manifold, which means that to first order around a
point, the geometry of the manifold is the unitary geometry of C".

We wish to give a similar interpretation of the torsion constraints of
supergravity theory. Our approach will be to use Cartan’s theory of G-structures
[St, Gu, Kob]. The idea of this theory is as follows. Given a subgroup G of the
invertible endomorphisms of the tangent space and a reduction of the structure
group of a manifold to G, one can ask whether the manifold is locally equivalent to a
flat G-structure. Let us put a G-connection on the reduced frame bundle. Roughly
speaking, the first-order flatness is measured by a combination of the components
of the torsion tensor of the connection, which is constructed in such a way that the
result is independent of the G-connection chosen. (For example, for (pseudo)
Riemannian geometry this combination always vanishes, which gives Einstein’s
equivalence principle.) If one has first-order flatness, one can ask if there are higher
order obstructions to flatness. These are given by the Spencer homology groups
[Sp, Gu], which are an algebraic generalization of the Riemann curvature tensor
and its covariant derivatives. By different choices of the group G, one obtains
different geometries.

Our approach to supergeometry is to find the groups G which give the torsion
constraints of supergravity. We consider the geometries which come from these
groups to be preferred, in that they do come from physics. We find that the
appropriate groups have the following structure. If we locally decompose the
tangent space into even and odd subspaces, then the group elements take the matrix

form (Ql iA) 0 ? A)>' Here A4 is an element of the Spin group, g,(4) is its
2

representation as an orthogonal matrix, g, is a spinor representation and * lies in a
Spin-invariant subspace ¥ of endomorphisms from the even subspace to the odd
subspace. (Different choices of & can give different geometries.) We will show
explicitly that the torsion constraints for supergravity theories (at least those
existing offshell) arise from the requirement of first-order flatness of such G
structures. Such structures have previously occurred in the work of Rosly and
Schwarz in four dimensions [RS] and Giddings and Nelson in two dimensions
[GN]. We also look at the geometric structures underlying superconformal
geometry and superKahler geometry.
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The outline of this paper is as follows:

In Sect. IT we collect the needed background on supermanifold theory.

In Sect. 11T we give a digression on the physical interpretation of supermanifold
theory. There seems to be some confusion as to whether the sheaf-theoretic
description of supermanifolds is adequate to describe both classical and quantum
supersymmetric field theories. We show by the specific example of supergeodesic
motion that it is, when properly interpreted. Although this material may be known
to some, we have not seen it in the literature, and so we have included it.

In Sect. IV we define the model flat superspaces. We then define superRie-
mannian structure bundles and superRiemannian geometries in terms of G-struc-
tures. We work out the torsion conditions when the subspace & is the largest
possible subspace.

In Sect. V we show by explicit calculation that with the right choice of the
subspace &, the torsion conditions of Sect. IV, along with the Bianchi identities,
give the supergravity theories in 2, 3, 4, and 6 dimensions. Our purpose here is not to
repeat known expressions for the torsion and curvature tensors, but to show how
they follow from the general framework.

In Sect. VI we compute the Spencer homology groups when the subspace & is
the largest possible.

Conformal structures have a greater role in supergeometry than in ordinary
geometry. Conformal supergravity theories can be used as a technical tool to
construct Lorentzian supergravity theories [GGRS]. Conformal groups also arise
when one looks at the diffeomorphisms of the flat space which preserve the flat
space torsion tensor and the odd subspace of the tangent space. One finds that the
corresponding Lie algebra is a subalgebra 4" V@ 4~ 2 @ 4 of the superconfor-
mal algebra. This gives a strong analogy between superconformal geometry and the
pseudoconformal geometry of CR manifolds, in which the flat-space torsion tensor
is given by the Levi form of the sphere. In Sect. VII we find the curvature
obstructions to superconformal flatness, in analogy to the work of Chern-Moser on
CR geometry [CM].

Although the local geometry of supermanifolds of one complex dimension is
well understood, it is not a priori clear how to generalize this to more complex
dimensions. In Sect. VIII we look at one approach, which is to extend Kahler
geometry. This can be done following the above approach to superRiemannian
geometry, and using the fact that the spinors have a natural description in terms of
(p,0) forms on a Kdhler manifold. We define three types of such structures, which
we call superKéhler, C*-extended superKéhler and weak superKéhler structures.
We show that in one complex dimension, superKahler structures are always flat,
and both C*-extended superKédhler and weak superKéhler structures are equiva-
lent to the superRiemannian geometry. In two complex dimensions we show that
the reduced manifold for a superKéhler or C*-extended superKahler structure is
always a locally Hermitian symmetric space (although we do not claim that any such
symmetric space is the reduced manifold for such a structure). We show that a weak
superKéhler structure is equivalent to an superRiemannian structure with an IH*
internal symmetry group, for which the strictly even part of the curvature form is
u(2) valued. However, our discussion here is incomplete.

In Sect. IX and X we briefly discuss two related topics. In Sect. IX we discuss the
constraints for supergauge theory, and give an example in Riemannian 4-space. In
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Sect. X we discuss when the torsion constraints for superconformal geometry can be
seen as arising from integrability conditions for the local embedding of the
supermanifold in a flat complex or quaternionic superspace, as in the work of
Ogievetsky-Sokatchev [OS] and Rosly-Schwarz [RS] for four-dimensional
supergravity.

Notation. We will follow the notation of [WB], in which letters from the beginning of the alphabet
denote frame indices, letters from the middle of the alphabet denote coordinate indices, small
Latin letters denote even indices, small Greek letters denote odd indices and capital letters denote
even or odd indices.

I wish to thank Dan Burns for helpful explanations of CR geometry, and Ofer Gabber for a
helpful conversation. I thank M. Berger and the IHES for their hospitality while part of this
research was performed.

Note. Spencer homology groups have been previously computed in a supersymmetric case in
[RS2]. I thank the referee for bringing this reference to my attention.

II. Review of Supermanifold Theory

We will assume a knowledge of superalgebra, as given in [Le] or [Ma]. The idea
underlying supermanifold theory is that one can do much of ordinary topology and
geometry by working with the ring of functions on a manifold, instead of the points
of the manifold. A supermanifold is defined by its “‘ring of functions,” which is now
generalized to be a supercommutative ring. Some conditions are put on this idea to
make it workable. Let us recall the definition of a supermanifold [Ma]. (The
definition is the same whether one is working in the smooth, analytic or complex
analytic categories, provided that one makes the obvious changes.) A super-
manifold X consits of a pair (M, 0,,) such that M is a smooth manifold, 0,, is a sheaf
of supercommutative rings over M and certain conditions are satisfied. To give the
conditions (x), we will need the following notation:

Definition 1. Let 0y ; denote the sheaf of vector spaces formed by the odd part of
Oy . Let ¢, denote the sheaf 0y, , + 0} ; of ideals of nilpotent elements. Then the
conditions (x) are

1. Op/#y is the structure sheaf of M.

2. Il FL is a locally free sheaf of 0,/ #,, modules.

3. Oy is locally isomorphic to the sheaf A¥, 4, (Fu/#%) of exterior algebras.

We will call 0, the structure sheaf for X, (M, 0,/ %) the reduced manifold of
X, and the sections of @), will be called the functions on X.

The standard example of a supermanifold is constructed from a smooth vector
bundle E over M. Define the sheaf ¢,, by saying that over an open set U< M, Oy is
the ring of smooth sections of the Grassmannian bundle A*E|;. One can show that
any smooth supermanifold arises from such a construction, although not
canonically [Ga, Ba]. We will be concerned with smooth supermanifolds in this
paper. For a trivial R? bundle over R?, we will denote the corresponding
supermanifold by R?!4.

A supermanifold has both even and odd local coordinates in the following sense.
Let p be the dimension of M and let g be the dimension of the locally free sheaf
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Sl #. Then for any point ne M, we can find a neighborhood U of n with local
coordinates {x™}2_, and sections {#"}Z_, of ¢, such that any function f € 0|, can
be written as Y, f;(x)n’, where I is an increasing multi-index from {1,2,..., 4} and
each f;(x) is in C*(U).

Much of the theory of differentiable manifolds goes over to the case of
supermanifolds without trouble [Ma]. In order to fix notation, we will recall some of
this. Let I10),, denote the sheaf ¢, with the parities reversed. A locally free sheaf
of rank r|s is a sheaf of graded ©,, modules which is locally isomorphic to
O3 = 05 ® (110, )*. The sheaf of tangent vectors TX is the sheaf of local derivations
of 0,;. It has rank plg, and has a basis of local sections consisting of the even
derivatives {0m}2_, and the odd derivatives {d,}Z_;. The sheaf of cotangent
vectors T*X is the dual of TX, and has rank plg and local sections{dx™}£_, and
{dn*}2_,. The sheaf of differential forms A*X is the exterior algebra of T*X, and
has the local relations

dx" Adx"= —dx" Adx™ | 3)
dx™ Adnt = —dn* Adx™ > 4
dnt ndn’= dn® ndp" . &)

A*X has an even exterior derivative d. To follow the notation of [WB], we will let
d act from the right, so that

dwnro)=wrdo+(—1)do Ao | 6)

where deg (o) is the degree of ¢ as a differential form, and for f'e C*(X), we have
locally

df =Y d:™oy f . 0

Let us note that there are some differences between integration on super-
manifolds and integration of exterior forms on ordinary manifolds. On a
supermanifold, one integrates sections of a rank one sheaf called the Berezinian (see
[Ma]).

A morphism @ between a supermanifold X and a supermanifold X’ is a pair
(¢, ¥), where ¢ is a smooth mapping from M to M’ and y: 0. — ¢, (0),) is aneven
morphism of sheafs of rings which is local with respect to ¢. If (x, #) are local
coordinates around a pointne M and (x’, ') are local coordinates around ¢ (n) then
@ is locally given by

o*(x™= Y fMn' and &*(*)= Y gi(x)n’ ®)

I even I odd

for smooth functions {f"(x)} and {g4(x)} (where I is a multi-index) with
J§'(x)=*(x™).

One point of supermanifold theory which may not be familiar is the notion of a
super Lie group. Recall [Ka] that a super Lie algebra 4 is given by an ordinary Lie
algebra (over R or €) g, and a finite dimensional vector space ¢, such that
1. There is a representation g of g, on ;.

2. There is a gy-equivariant symmetric map d:S?(g,)— 4.

3. VY, ny and ny€ gy, 0(d(ny, n)) s +0(d(my,13))n; +e(d(ns, n1))n, =0.
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The commutation relations are given by
1. [X, Y],=[X, Y],, for X, Yegy,.

20 [X, Y], =0(x)Y for Xe gy, Yeg,.
3. [X,Y],=d(X,Y) for X, Yeg,.

One can define a super Lie group to be a supermanifold for which the space of
“distributions of finite support™ has a graded Hopf algebra structure with antipode
[Kos]. Let us note that with this definition. what is sometimes called the general
linear group of a graded vector space W, namely the invertible endomorphisms
Aut (W), is not a super Lie group, but instead gives coordinates for the super Lie
group GL(W). One way to obtain super Lie groups is as follows.

Proposition 1. Let G be a Lie group and let ¢ be a representation of G on a finite
dimensional vector space V. Suppose that there is a G-equivariant map d:S*V—4
which satisfies Condition 3 above. Let E be the trivial vector bundle G x V and let X be
the associated supermanifold, with reduced space G. Then X has a super Lie group
structure.

Proof. See [Kos].

III. Relation of Supermanifold Theory to Physics

There seems to be some confusion in the literature as to whether the above
formalism can handle the supersymmetric theories of theoretical physics (see for
example the discussion in [DS]). Let us give a simple example. The formal
Lagrangian for an N =% supersymmetric theory of maps from R!" to R is

L=} | (<?+iyy")dT , ®
Rl

where x is an even function and i is an odd function. One might wish to interpret x
and  as functions on R, in which case

x=f(T) and y=g(T)y (10)

for functions f,ge C®(R!). An immediate problem is that yy’ would then be
identically zero.

There is a natural resolution of this problem. Note that the space Mor (X, X’) of
morphisms between two supermanifolds X and X is a space, not a superspace. We
want a superspace of maps from R to R. More generally, in analogy with the
ordinary case, let us define a superspace Map (X, X') of maps between super-
manifolds X and X’ by requiring that

Mor (Z,Map (X, X"))=Mor(Zx X, X") 11)

for all supermanifolds Z. In the case X=IR!" and X' =M, an ordinary manifold,
one finds by taking Z=IR°/ that the base space of Map (R*!*, M’) is the infinite-
dimensional ordinary space Map (R,M"). By taking Z=IR°", one finds that if
Map (R'!*, M) comes from a vector bundle E over Map (R!, M) then E must be
the (smooth) cotangent bundle of Map (IR!, M), as defined in [Pa]. In fact,
Map (R, M) is the superspace whose functions are differential forms on
Map (R!, M) [Lo].
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Given an ordinary Riemannian metric {,» on M’, the Lagrangian

L=5 | (x\x>+iy, Ve ¥y 5)dT (12)
]Rl

is actually a function on Map (R'", M), namely the sum of a zero-form and a two-
form on Map (R!, M’) [At]. The quantum theory with Lagrangian L can be
constructed by considering the vacuum expectation as a certain linear functional
acting on functions on Map (R, M") [Lo].

One can consider the classical theory with Lagrangian L either from the
Hamiltonian viewpoint or the Lagrangian viewpoint. The Hamiltonian approach is
to consider the supermanifold Y with reduced space T*M' which is constructed
from the vector bundle E=7n*T*M', where n: T*M'— M’ is the projection map.
Let {x™} be local coordinates for M, let {e,} be a local orthonormal frame and let
{t%} be the dual coframe. Then there are local coordinates on T*M' given by

(m, p)—{x"(m),{p,e)} - (13)

There are local sections {#*} of n*T*M' given by (m, p)—(m, p,t*) and so we have
coordinates {x™, p,,n*} for Y. It is convenient to define a new coordinate n, by

T, =P, _%i[‘aﬁarlar’ﬂ . (14)
Consider the local basis of T*Y given by
{t% Dn,=dn,—I'*;m17 and Dy*=dn*+T*,1°n"} . (15)

Proposition 2. The two-form
w=Dn" At +5iDn* Dn* + 5 R0t A
is supersymplectic.

We omit the proof.

From w we derive a superPoisson algebra {o, o}. There are functions Q = — iz,
the supercharge, and H=%(n")*, the Hamiltonian, with {Q, Q}=2iH. The time
evolution of a function on Y is given by df /dt=—{H, f}.

From the Lagrangian viewpoint, the equations of motion derived from L are

A™MT)=(xX")"+I",,(x") (xP) =FiR" 5 (x") 1P =0 (16)
and
BH(T)=(1*)'+T%,,(x™)'n’=0 . (17)

In order to form the superspace % of classical solutions, it is necessary to form the
formal quotient of the space of functions on Map (IR*"!, M ") by the ideal generated
by {A™(T), B*(T)},. - In order to see the equivalence with the Hamiltonian
approach, recall that in ordinary classical mechanics one can identify the space of
solutions of the equations of motion with the phase space, by evaluating the
solutions at a fixed time. There is a symplectic form on the space of solutions which
becomes identified with the symplectic form on the phase space [Se, Sz, CW]. In our
case one can convince oneself that given a fixed T, € has the local coordinates x™(T),
(x™)'(T'), and n*(T'), which gives the identification with the superphase space of the
Hamiltonian approach. Choosing a different value 7" of the time corresponds to a
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different choice of local coordinates of €, which is related to the original choice by
the time evolution operator exp (— (T’ —T){H, °}).

We will be concerned in this paper with superspaces of geometrical structures on
a supermanifold. The idea is to define these superspaces as universal objects with
respect to some pullback property. (For a definition of superTeichmiiller space in
this vein, see [LR].) For example, in the ordinary case, one could define the space
Met (M) of Riemannian metrics on M as a space such that for any manifold Z,
the space Map (Z, Met (M)) is the space of vertical metrics on the fibered space
MM >l< Z. Similarly, one can define the space Met (M)/Diff (M) as a space such

VA
that for any manifold Z, the space Map (Z, Met (M)/Diff (M)) is the space of
fiber spaces M—P with vertical Riemannian geometries, i.e. an element of

Z
Met (M)/Diff (M) on each fiber.
In the super case, given a notion of a space of geometries on a supermanifold X,
we will define a superspace Geom (X) by requiring that for all supermanifolds Z,
Mor (Z, Geom (X)) is the space of vertical geometries on the fibered supermanifold
X->XxZ.

|
z

Let Z,.q denote the base space of Z and let U be an opensetin Z, 4. Then the ring
of functions of the pre-image of Uin (X x Z),.q will be Ox ® Oy. That is, to do local
calculations we can deal with functions on X which take value in the superalgebra
B=0y. If {x,n} are local coordinates for X then the even functions have the form
f =z f1(x)n*, where f;(x) is an (even or odd) element of B if Iis an (even or odd)

I

multi-index. In what follows, we will omit explicit mention of the algebra B, but all
local calculations are to be understood in this way.

IV. SuperRiemannian Structures

Let us define the super Euclidean group. Let y be the nondegenerate quadratic form
on R?=R?@R?-) given by

@@w,v'@w)={v,v") =W, W) . (18)

For simplicity of notation, we will let SO (p .., p_) denote the connected component
of the identity of the corresponding special orthogonal group. Let n denote the
standard representation of SO(p,,p_) on R?. Let Spin(p,,p_) denote the spin
group, a double cover of SO(p ., p_). Let Vbe areal vector space of dimension g on
which Spin(p,,p_) has a faithful spinor representation ¢. That is, there are
matrices {y,}7_, € End (V) which satisfy

Yayb+ybya=2Xab’ (ya)T=Xaa’ya . (19)
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Put 6,,=[7,,7,)/4. Suppose that there is an invertible matrix CeEnd (V) which

satisfies
Cy,C l=ay,T,CT=0aC , (20)

with ¢ = + 1. Then there is an Spin (p,, p_) invariant charge conjugation operator
on V given by y—y¢=C 1y.

Definition 2. The super Euclidean algebra e on IR?|V is the super Lie algebra with
even part so(p,,p_)®R? and odd part ¥, with commutation relations

(M&P,M'®P']=[M, MO (M)P' —n(M")P)®0 , @1
MDP,Q]=000®(M)Q , (22)
[0,01=000"(yC™1)Q'®0 . (23)
In terms of components,
(M, M= 1y My =g My =1y Mg+ M 24
(M, Pol=1s Py =116 P, 25
(M, Qul=(0,4)a" Qs (26)
[Py, P)=[P,, Q,]=0 , @7
(04, O5)=1""(3,C Dy P, (28)

The super Euclidean group & on IR?|V is the corresponding super Lie group, as
defined in Proposition 1, with reduced manifold Spin (p,,p_) X R?. This acts on
R ?|V, and the corresponding representation of e by vector fields on R ?|Vis given by

P,(x,m=0, , (29)
M, (x, ) =%,8,~X,0, , (30)
Q. (x,m)=0,+5("C ™)1y, - @31

We can define a model geometry on IR 7|V with & as an automorphism group by
writing R?|V as &/Spin(p,,p_) and using the decomposition

e=spin(p,,p_)®(R?®V) (32)

to put a canonical connection on IR?|V [KN]. To make this more explicit, let s be a
global section of the frame bundle of IR?|V given by

s(x, ) =(Dy, D) =(8,, 0, — 5 (" C ™1 ngd,) (33

and let P, be the Spin (p, ,p_) subbundle of the frame bundle which includes the
section s. Let n denote the projection map from P, to R?|V. Let w be the
Spin(p,,p_) connection on P, which vanishes when pulled back to R?|V by s.
Then one can verify that & acts by automorphisms on P, and preserves the
connection .

In order to discuss when another Spin (p , , p _) structure is approximated by the
model geometry, let us recall the notion of a torsion tensor for a G-structure [St]. Let
M be a manifold whose tangent space at a point is isomorphic to a vector space W
and let P be a reduction of the frame bundle of M to a group G. Let t denote the
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canonical form of P, an W-valued horizontal 1-form on P. Given a connection w on
P, the torsion T is an W-valued horizontal 2-form on P defined by

TA=dt"+ B A wp? . (34)

Let w’=w+ Aw be another G-connection on P, where Aw is a g-valued equivariant
horizontal 1-form on P. Then

T'A—TA=18 A (Adw)g* =18 A 1€ (dw)cp? . (35)
Let 6: W*®g—~Hom (WA W, W) be defined by
oW*, XY (W, w ) =w (W) XW)—w*(w)X(w") . (36)

Let 4 denote Ker é. Let H*2 denote Hom (W A W, W)/Im 6. Then to each point
p € P there is associated a class C(p) e H*?, defined independently of w. There is an
action of G on H%2, and if pg ! denotes a point in the same fiber of P as p then
C(pg~1) differs from C(p) by a g action.

Now suppose that there is a diffeomorphism ¢: M—IR™V for which the
pushforward of the frame bundle induces a diffeomorphism ¢, : P—P,. Then it
follows that for any point p € P, C(p) must equal C(¢(p)), which lies in the G-orbit
of C(s(n(¢(p)))). Thus the G-orbit of C(¢p(p)) gives an obstruction to the first-order
flatness of M. If C(p) equals C(¢(p)) then we can choose a connection form w at p
so that the torsion of w at p equals the torsion of the model space at ¢ (p). Thereis a
freedom of 4 in determining w.

In the supersymmetric case, if we write the torsion tensor in the form

TA=4tC AP Tyt 37

then one finds that in the model geometry, along the section s, the only
nonvanishing components of the torsion tensor T; are

(T0)ag" =("C ™ Nag - (38)

In order to see the consequences of first-order flatness, let us first look at the case
of the smallest possible structure group consistent with a Riemannian structure on
the reduced space, mainly G=Spin(p,,p_).

Proposition 3. For Spin(p,,p_) acting on W=R?V, 4Y=0. A tensor
TeHom (W A W, W) lies in the same orbit of H*? as Ty if and only if

Ty'=0, (39
T ="C Ny (40)
Ty =5(Tope = Top — T1ea) (6)7 (41)
Tp" =5 Toae(06°)g" +5 T (0°)," (42)

Proof. Let M denote an element of W* ® 4. whose image in W*® (W*® W) we will
write as (M ). If S denotes the image of M in Hom (W A W, W) then the
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components of S are

Sap” = (Ma)y = (Mp) 43)
S’ =0, (44)
Sap'= —(Mp) (43)
Sag”=(Ma)g’ (46)
S=0, (47)
up’ = (Ma)g" +(Mp)," (48)

Because the representation g is assumed to be faithful, it follows from (45) and (46)
that 4™ =0. From (43), (M,)," can be written in terms of S,,. Using the fact that

(M,)g" =5(M,)y (0.)y" (49)
and
(Ma)ﬂy=%(Mu)bc(acb)ﬂy > (50)

and the Spin(p,,p_) invariance of the equations, the result follows. [

Proposition 4. Assume that the bundle P satisfies the torsion conditions of
Proposition 3, and choose a connection w so that the torsion T of w equals T,. Suppose
that there is an invertible Spin (p .. , p _)-invariant operator D € End (V'), such that for
all Xeso(p,,p_), o(X)D is symmetric. (If « of (20) is —1, we can take D=C*.)
Then w is flat.

Proof. From the Bianchi identities, we have

dT°+ T A =1 A Q% , (51)
dT*+ TP A g =1 A Qp" . (52)

As
T=3t" AT()*C ™y (53)

and the other components of T vanish, it follows that the left-hand sides of (51) and
(52) vanish. Let us write Q,° as

0, =1t AT Q" T AT Qg HET AT, (54)

and similarly for Q,* From (51) follows

Qeap’ +Qane”" + e =0, (55)
Qesp’ — Qs =0, (56)
Q.5°=0 . 67N
From (52) follows
Q..F=0, (58)
Qg™+ Q55" =0 . (59)

Because g is faithful, (58) implies that Q_,* vanishes.
Let us use D to lower the last index on ©,5,*. Then 44, is symmetric in f and «,
and antisymmetric in 6 and f. It follows that Q_,,, vanishes, and so w is flat. [
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For four-dimensional Minkowski space, we have a= — 1. Proposition 4 shows
that the assumption that Pis a first-order flat Spin (p . , p _) bundle is too restrictive,
as one would like to deal with nonflat geometries. We will also want to allow for a
larger structure group than Spin(p,,p_) in order to deal with gauged extended
supersymmetries. The correct assumption is as follows:

Definition 3. Let Kbe a Lie group. Suppose that V' breaksup as V'=V'® V" and that
0=0®¢":Spin(p,,p-)x K-End(V'®V") (60)

is a tensor product representation. (K is the symmetry group for an extended
supersymmetry.) Let & be a subspace of End (R?, V) which is Spin(p,,p_)x K
invariant. A superRiemannian structure bundle P is given by a reduction of the
frame bundle of X to the subgroup

G=(Spin(p,,p_)xK)X & (61)
which is first-order flat.

The reduction of the frame bundle to the structure group G has the consequence
that there is a well-defined subbundle 7°% of the tangent bundle, given by the odd
directions. In this sense a superRiemannian structure is like a foliation of an
ordinary manifold. However, even for a flat superspace, instead of being integrable
the distribution 7°% is maximally nonintegrable. The requirement of first-order
flatness has as a consequence that this will also be true for a supermanifold with a
superRiemannian structure.

For simplicity, in the rest of this section we will only consider the case of
unextended supersymmetry, i.e. K={e}. The model G-geometry is given by the
reduction (of the frame bundle of R?|V to G)) which contains the section s. At s, the
torsion tensor again has only (7;),,*=(y*C™'),; as a nonzero component.

Proposition 5. For Spin (p ., p_) X & actingon W=R?|V, ) S R?® ¥. Necessary
conditions for a tensor Te Hom (W A W, W) to lie in the same orbit in H®2 as T, are

Le=0C" 1)0:[3’ > (62)
T;ﬁy - %— I;ac (O.ca )ﬁy - é— Tliac (O.ca )ay = ('}’c c l)aﬂ ch
35X 0. CT g (0" +5 X (7. C 7 V) gpr (0°), (63)

for some Xe & .
If ¥ =End (R?, V) then these are also sufficient conditions.

Proof. With the notation of the proof of Proposition 3, we have

Sap"=(M,)y" —(My)," (64)
Sap’ =(M,)y" —(M,)," . (65)
Sap"=—(Mp), , (66)
g’ =(M,)"—(My)," (67)
S,=0, (68)

Saﬁy=(Ma)ﬁy+(Mﬂ)ay . (69)
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Suppose that Meg®. From (64), (M,),. is symmetric in a and b, and
antisymmetric in b and ¢, and so vanishes. Then (M,),” also vanishes, and so from
(67), (My),” vanishes. From (66), (M;)," vanishes, and so (M;),” vanishes. Thus
MeR?® S, and satisfies (M,)," =(M,),".

To show that (62) and (63) are necessary conditions it suffices to show that both
{g-T;:9€G} and Ty+Im J satisfy the conditions (62) and (63). For T, +Im 6, this
follows from (64-69). For g - Ty, the fact that

(9" To)ap’=("C ™ g (70)

is satisfied follows from Spin(p, , p_) invariance of (yC~'),,. It now suffices
to consider g=1 % Z with Ze . If one writes out the left-hand side of (63) for
T=g-T,, one finds exactly the right-hand side of (63) with X=Z.

If ¥ =End (R?, V) and the conditions (62) and (63) are satisfied, putg=1% X,
where X is given on the right-hand side of (63). If we put

S=T—g'T, , (71)

then S,;¢ and S,;" — 58,4, (6°*) " = Sp,(6°°),” vanish. It suffices to show S= (M)
for some

MeW*®(Go(p,,p_)®End(R?, 1)) . (72)
Take
(Ma)bc = %(Sabc - Sbca + Scab) > (73)
(M) =5(M)p ()5 (74)
(M)y" =584 (75)
(My),"=(M,)g"—Sap” (76)
(Mp)ac= - aﬂc > (77)
(M[})ay = %(Mﬂ )ac(aca)ay . O (78)

In the physics literature one does not talk about Spin (p, , p_) X & structures,
but instead about Spin (p . , p_) structures. To make the comparison, suppose that
we have a superRiemannian structure bundle. If we write the torsion equations, we
can transfer the % part of the connection to the other side of the equation and
consider that we have torsion equations for a Spin (p .., p_) geometry, but now with
a nonflat torsion. Thus the first-order flatness of a Spin(p,,p_) X & structure
becomes translated into the nonvanishing of certain components of the torsion
tensor of a Spin(p.,, p_) structure.

To formalize this, suppose that we have a superRiemannian structure bundle P.
We can then find a local section ¢ of P such that along g, Te T, +Im .

Definition 4. A superRiemannian geometry is a reduction of P to a Spin(p,,p_)
subbundle Q such that Te T,+Imé on Q.

Proposition 6. There is a connection w on Q for which the only nonzero components of

the torsion T are
L= C Ny T and T*

If these components are given then w is unique.
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Proof. We have that there is a G-connection @’ on P such that when restricted to Q,

(Ty)y*=dt°+t° A p® (79)
(T =de*+1* Ao+ 1" A . (80)
Define a Spin(p,, p_) connection @ by
o=, 0t = =w*(6,")" . (81)
Then
Te=dv'+ 2 nwyf=(Ty) (82)
T*=di"+ 1% Awg*=(T)* —1° A )
=(Tp)"— 1° A PPwp*— 1 A TP, (83)

The uniqueness of w follows as in the analogous uniqueness of the Levi-Civita
connection. [J

Proposition 7 (Dragon’s theorem [Dr]). Under the hypotheses of Proposition 4, the
curvature Q of w can be written explicitly in terms of T and VT.

Proof. The left-hand side of (51) and (52) can be written in terms of 7'and V'T. The
proposition follows from the proof of Proposition4. O

V. Examples

We will show that the above definition of a superRiemannian geometry gives the
minimal supergravity theories in 2, 3, 4, and 6 dimensions. We will assume that we
have a superRiemannian structure bundle for the group (Spin(p,,p_)xK)X &
and find the consequences of the torsion equations of a supergeometry. We will
do this by writing the torsion equations for a first-order flat (Spin (p, , p_) X K) X &
structure in the form of torsion equations for a non-first-order flat
Spin(p ., p_) x K structure. We will also look at the different geometries which
arise from different choices of the subspace .

A. One Dimension
Let ¥ be R!. The torsion equations become
dt*=—1" a1, (84)
d® =T AT* (85)
for some even torsion component 7. Taking the exterior derivative of (84) gives
0= 2Tt AT AT* , (86)

and so T'=0. By the super Poincaré lemma [Ma), we can locally write t° as d, where
n is an odd 0-form. Then (84) becomes

d(t*—ndn) =0, (87)
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and so locally we can find an even 0-form z so that
*=dz+ndy , °=dpn . (88)

Thus, a one-dimensional supergeometry is locally equivalent to the flat super-
geometry
"=dx+0d0 , °=do . (89)

B. Two Dimensions

I (1,0) Supergeomerry. Let us take SO(p,,p_)=S0(1,1)=R™* and V=R. (In
the two-dimensional case we will define Spin(1,1) to be R*, with the “double
cover”: Spin(1,1)—S0(1,1) given by c(x)=x2) Let x* denote the light cone
coordinates x* = (x° + x')/]/2 and let 6 denote the odd coordinate. Take & to be
the subspace of End (R?, V) which vanishes on 4, -, i.e. has the matrix form M _°.
The torsion equations become

x>

dit+tt Ao, T =—1 A1, (90)
i+t Aw_" =0, 1
P+ A =St AT+ T AT 92)

where S is an even function, T is an odd function and

w,t=—w_" =20, . (93)

Proposition 8. S=0.
Proof. The exterior derivatives of (90) and (91) give
tPAQ T =1 AQSTPA-2TATT) , 94
TTAQ_"=0. 95)
For these to be consistent, S must vanish. [

Thus the above choice of the subspace & gives the heterotic geometry described
by Moore and Nelson [MN]. The Bianchi identities give

Q=10 " =-TOAt +V, Dt AT, (96)
where
V,T=e,T—Togy' . 97)

II. (1,1) Supersymmetry. Let us take SO(p,,p_)=S0(2) and V'=R? with the
spinor representation of Spin (2), the double covering of SO(2). Let both IR? =R?
and V have the standard complex structure, and let & be the space of complex-linear
maps from R? to V. It is convenient to complexify both IR? and ¥, in which case the
torsion equations become

A+t A =—1"A1" (98)
AP+ nofi=—1 A1, (99)
di? +1° Ay’ =St AT+ TrF AT+ Ut A7, (100)

O+ nwf =SEA+TE A+ OE ATE (101)
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where 77 is the complex conjugate of 1%, T'is the complex conjugate of T, etc., w,? is
purely imaginary and

W, =2, . (102)
Proposition 9. S=0, T+ T=0 and U=V;T, where
VsT=e;T—ws T . (103)
Proof. The exterior derivative of (98) gives
TAQ =T AQRSTAT+2T AT —2U° ATF) (104)
and so _
Q7 =28 A +2T° A1* 22U A1"mod ©* . (105)
Similarly, o _ _
QF=28 AP+ 2Tt A1®—20U7° A t*mod 17 . (106)
Because
QF+QF=0 , (107)

it follows that S =0 and T+ T=0. Using this information, the exterior derivative of
(100) gives

P AQ =1 A[(VyU—T?) 1= AP+ TP AP+ V, T
A+ U A+ (V;T—U) "
AN+ (VU= T AT AT . (108)
Thus U=VzT. O

Thus the restriction to the subspace & gives the N=1 supergeometry described
by Howe [Ho1]. The Bianchi identities give

Q0 =(V,V3T—T?*) ¢ AT+ T A0+ V, Tt
AP+ VTE AT . (109)

Suppose that we take & to be the space of all linear maps from IR? to V. The
torsion equations become )

dv+trw =—1 A1, (110)
dF+Enof=—P A1, (111)
A +1° A g’ = ST A0+ T12 A1+ Ur?
A+ QU AT+ RIEAT (112)
P41 A g =807 A+ T AP+ 00
AT+ OT AT+ REEAT . (113)
The exterior derivative of (110) gives
TAQ =1 ARST AT+ 2T A1P —2UT? A TF)
201 ATEATP—2RPO AT AT . (114)

Thus Q=R =0, and we are back to the case of ¥ consisting of complex-linear maps.
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III. (2,0) Supersymmetry. Let us take SO(p,,p_)=S0(1,1), V=C and
K=S80(2). Let x* denote the light cone coordinates x* = (x° £ x? )/‘ﬁ and let 0
denote the odd coordinate, with complex conjugate 0. Take & to be the C* subspace
of End (IR?, V) which vanishes on d, -, i.e. has the form M . °. The torsion equations
become

ittt rw,t=—1 A1, (115)
diT+1tT Aw_" =0, (116)
i+ Al =Rtt AT+ ST AP+ TT AT, 117
di? 70 A w§6=R‘E+/\‘EO+§‘E+/\‘E§+TI+/\‘E— , (118)

where R and S are even functions, T is an odd function and
Rew=tw,*=—to_", wf=(w)* . (119)

R is the complex conjugate of R, etc. By using the freedom in Im § from redefining
the connection, we can assume that S=S.

Proposition 10. R=S=0 and V3T=0, where
ViT=e;T— Twg’ . (120)
Proof. The exterior derivatives of (115) and (116) give
P AQ =1t AR AP+ RO AT +(S+5)7
AP+ Tt AP+ Tr™ A1) (121)
and
TTAQ_T=0. (122)
For these to be consistent, R and S+ S must vanish. Thus
R=S5=0. (123)
The exterior derivative of (117) gives

PAQL =AW, Tt At™+T1™ Atd)

N AN (124)
Thus V3T must vanish. [
The curvature is given by
QL =V,Tt* At"+Tu™ a7, (125)
Q7 =(Q")* . (126)
Q,"=-Q_"=0,+Q5 . (127)

V. (2,1) Supersymmetry. Let us take SO(p,.,p_)=S0(1,1), V=C@®R and
K=S50(2). Let x* denote the light cone coordinates x* = (x° + x‘)/‘/i and let 0 and
o denote the odd coordinates, where 6 has complex conjugate #. Take & to be the
C!'@R subspace of End (IR?, ) which has the matrix form M ,°@®M_°. The
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torsion equations become

dit+tt A, =—1A10 (128)
i+t A0 T =—1T"AT", (129)
A+ A =Rt AP+ 81 AT+ Tt AT+ Ut AT, (130)
AP+ nwf =Ret AP+ 81t AP+ Tet A1™ + U1t A0, (131)
A"+t Aw,” =Nt~ AT+ Pt~ Atl+Pr” AP+ QT AT, (132)

where R, S, U, N, and P are even functions, T and Q are odd functions, N=N*,
Q0=0* and

o =Rew=to, ' =-to_", wf=(")* . (133)
As for the (2,0) geometry, we can assume Im.S=0.
Proposition 11. R=N=S=0, V,P=0, T= —2V,P, U= -2P, Q= —(V,P+V;P).
Proof. The exterior derivatives of (128) and (129) give

P AQ, T =t  ARIAP+REAT+(S+8)1? A1l

+ Tt AP+ Tt~ AT+ Ut AP+ U AT°) (134)
and B
TTAQ_ T =21 AN AT+ PTOAT+PtOAT? Q17 ATTY) . (135)

For these to be consistent, R, S+ S, U+2 P and N must vansih. Thus S=0. We have
Q. =Tt AP+ Tt At®—2Pt" AT —2P1° A7°
—20t° Attt (modt* ATT) . (136)
The exterior derivative of (130) gives
PAQL = A((V,T—2PP)t* At~ + Tt~ AP =2V, Pt* AT°
—2P1° AT+ (VT—2P2) 1+ AT™ ATl
+(V, T+2V_P)t° ntt At™ =2VaPr AP ATt

—QRV,P+T)t* AT°AT° . (137)
Thus
T=—2V,F, V;P=0, and (138)
Q,=—@2V,V,P+2PP)t* 1" =2V, Pt~ A7®
—2V,Pt* A" —=2P1° A7 | (139)

The complex conjugate of (139) gives
Q= —(QVzV,P+2PP)t* A1” —2V,P1” AT’
—2VzPtt A" =2Pt° AT% . (140)
Using the fact that
Q. =0+ , (141)
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we obtain B
Q=—V,P+VzP) . (142)

The exterior derivative of (132) gives no further information. [
V. (2,2) Supersymmetry. Let us take SO(p , , p_)=SO(2), V= C?, each C with the
spinor representation of Spin (2), the double covering of SO(2), and K= C*. Let &
be the space of complex-linear maps from R? to V. The torsion equations become
di+tP Aw, = -1 AT02 | (143)
A+ AWy =8 T AT+ Sy, AT+ T TF
A T, AT+ U e ATE (144)
A+ 12 Ay, =8, TP AT+ S, T AT 4 Ty 1R
AP Ty tf AT+ Uyte A TP (145)
along with the complex conjugates, where
we =y =07, 0 +wf=0. (146)

In this case we can use the freedom in Im 6 [for the structure group Spin (2) x C*]to
set S1;=95,,.

Proposition 12.

S11=81,=8,1=8,,=0, (147)
Tyt Ty =Tp+ Ty =T + 15 =0 , (148)
Vo, Ti2=Vo, 11 =V, T, =V, 15, =0 , (149)
U=V Tu+Ve T, U=V T, +VgTh, . (150)

Proof The exterior derivative of (143) gives
AR =T A(Sy T AT +8,, 10 At024+ T 7%
A Tt A2+ Uy tE AT+ 8 T
AT 48,1 AT T} 10 AT+ T, 1"

AT+ U 2 A1) | 151)

Along with the complex conjugate equation, and the fact that Q,*+(Q,7)* =0, we
obtain

S11=S12=S21=522=0 s (152)

T+ Ty =T+ T, =Ty + Ty =0, (153)
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and o _ _
Q=T 1" At — T} 1" A2+ T} 1% AT

+ Tt A2 — Ut AP = Uy t® A TP+ Uy 1% AT
+ U, A1 (mod 12 A T%) . (154)
Using this information, the exterior derivative of (144) gives
A Q=T A [(V, Uy + T Ty + T, Ty )T AT
Vg T 75 AT 4V Ty AT — Up®2 A 17
+ 13,12 AT 4 T 1% A2 ]+ (W, Uy + Ty, Ty, — Tip Ty T ATE AT
+(Vgr Uy = VT )T ATP A ‘J.'aT—i—(l7gU1 —VT) T AT AT
Vo, Tip0 AT AT 4V, Ty 77 AT ATD Vg Ty 12 AT A0

+ Vo T1,7° AT ATH

(= U+ Ve Ty + Vg Ti) v AP at® (155)

Thus
Vo, 2=V, T11 =V 11, =V5; T1,=0 (156)

and
U=V T+ V5 Ty, (157)

Similarly, the exterior derivative of (145) gives

Vo, Ty =V, Do =V, Ty = Vg7 15, =0 (158)

and
U=V T+ Ve By - O (159

Thus the restriction to the subspace & gives the N =2 supergeometry described
by Howe and Papadopoulos [HP].

C. Three Dimensions

Let us take SO(p,,p_)=S0(2,1), V=IR? with the spinor representation of
Spin(2,1)=SL(2, R). Following the notation of [GGRS], we will denote the
matrix representation of an element M of s/(2, R) by (M), * with Tr M =0. Using
the invariant symplectic form ¢ on V'to raise and lower indices, we can consider M as
an element of S?(IR?), i.e. of the form M, , with M, ;= M,,. We will also identify
sI(2, R) with the Minkowski 3-space, to write an element of R* in the form
PeS%(R?).
Let us first take & =End (R3, V). The torsion equations become

S LN RE S SUNORE S S L (160)
A+ A =T AT, 5 5T AT T, 5 (161)

where w,” is s/(2, R)-valued and T, ;,€ Hom (A*(S?(IR?)), IR?). It is known that
the Bianchi identities imply that one can express the torsion and curvature in terms
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of a function R and a tensor G
calculation gives

5y Which is totally symmetric in its indices [GGRS]. A

Te,éya = R(‘Seé 5),41 + Ssv 551) ’ (1 62)
Ty 5 =5(6550, "V, R+ 6,504V, R+¢,,6,"VsR+¢,,0,"VsR
—8540,"V,R—£,40,"V,R—¢5,0,"V,R—¢,,,V, R

+G 45"+ G5, + Gy e+ Gy eh5) (163)
with the constraint
VoG, +VyV,R+V,VR=0 . (164)

There are two SL(2, R)-invariant subspaces of End (IR3, ) =End (S%(V), V),
namely

S ={MeEnd (S*(V), V):for all ve V, Tr M,=0, where

M,: V-V is given by M,(w)=M@@w+w®uv)} (165)
and
&, ={MeEnd(S*(V), V):3ze V* such that

M@, w)y=z@)w+z(W)v} . (166)
Proposition 13. The supergeometry corresponding to &, has vanishing R.

Proof. In matrix form,

S ={MeEnd (S*(V), V):Maﬁﬂ=0} . (161)
Thus the torsions must be writable as
T;,éva = (Me)éya and T;t)s,éya = (M¢s)éya - (Méy)qsea 5 (1 68)
where
(M)s,"=0 and (M,),"=0 . (169)

The condition (T;),,"=0 gives R=0. Let us guess that (M,);,, has the form
(M¢s)6ya =&ps Psya + & P¢ya + Ed)vPséa + aadeuSa
+ 8¢a Pséy + gsapqﬁ&y (1 70)

for some symmetric tensor P. This has the required symmetry that (M,);,, be
symmetric in both (¢¢) and (dyx). Then

T:ps,éyaz28¢6P£ya+28£6P¢ya+28¢yPséa+28£}’P¢6a
F 850 Pesy 1 € Pysy = €50 Py — Eya Pige - 171

One can check that if P=G/5 this equals 3(Gysu6e)+ Gesabipy + Gpyates + Goyaps)-
Note that G must still satisfy V,G,,*=0. O

Proposition 14. The supergeometry corresponding to &, is the same as the
supergeometry corresponding to & =End (R3, 1).

Proof. In matrix form

Sy={MeEnd(S*(V),V): M, =2Z56"+Z,85 for some Z} .  (172)
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Thus the torsions must be writable as

I;,&vaz(za)ééva-l—(za)yééa (1 73)
and
T:j)e,&ya = (Zd;e)ééya + (Zdze)y&&a - (Zéy)¢ 5;1 - (Zéy)s 5¢a . (1 74)

We can do this by putting (Z,); to be Re,; and (Z,,); to be —5(e54V,R+¢;.V,R)
+Gy.5, thanks to the identity

%(Gqséasey + Geéagqﬁy + G¢ya856 + Geya‘gdaé) = G¢5657a + G¢£y 56a
~Gy 02— Gy 8,5 O (175)

D. Four Dimensions

I. N=1 Supersymmetry. Let us take SO(p,,p_)=S0(3,1), V=R* with the
spinor representation of Spin(3,1)=SL(2, €). This representation is complex-
equivalent to the representation on C>@ C? which is the direct sum of the
fundamental representation of SL(2, C) and its complex conjugate. Following the
notation of [WB], we will denote the matrix representation of an element M of
sI(2, €©) by (M) f® (M) with Tr M =0 and (M) =((M),?)*. Using the invariant
symplectic form ¢ on €2 to raise and lower indices, we can consider M as an element
of §2(€?), i.e. of the form M,,; with M, ;=M ,,. We will also identify

# ={PeM,(C): P=—P'} (176)

with the Minkowski 4-space, to write an element of R* in the form P,; with
Poy=—(Py)*
Let us first take & =End (R*, V). The torsion equations become

di? 417 A w,,"j +1% A of=—1"A ¥, 177

A+t At =1 AT, 5 400 ATT

FEO ATy, 5 (178)
di+ P Ao =1 ATT, 5 T AT
+IeP ATy, 50 (179)

where w,” is 5/(2, C)-valued and Ty, 5, € Hom (A*(#), C).

Itis well known that the Bianchi identities imply that one can express the torsion
and curvature in terms of a complex function R, a hermitian tensor G,; and a
complex tensor W,,, which is totally symmetric in its indices. We refer to [WB] for
the expressions for the components of the torsion tensor, as well as the constraints
among R, G, and W.

There are two SL(2, C)-invariant subspaces of End (IR*, V)=End (#, V),
namely

S ={MeEnd(#,V): M#=0} and (180)
F,={MeEnd(#,V):IN; such that M,;’=5,'N;} . (181)

Proposition 15. The supergeometry corresponding to &, has vanishing R and G.



Torsion Constraints in Supergeometry 585

Proof. Using the notation of [WB], the torsions must be writable as

T =My, . Ts.85=(Ms) , (182)
and
Erﬁ,séaz(Métf)eéa—(Meé)é&a ’ (183)
where
(M;),*=0, (Ms),*=0 and (Ms4).s*=0 . (184)

The condition T} ,,*=0 gives G=0. The condition T} ,*=0 gives R=0. If we take
(Ms5),:" to be —es: W,," then

Ts,ed=(Msg)es” —(Mye)ps"  and  (Mg),5"=0 . [ (185)

Proposition 16. The supergeometry corresponding to &, has vanishing G and W and
constant R.

Proof. The torsions must satisfy

T 0" =Ns, :0," (186)
T(;,ee‘a:Né,izéea (1 86,)

and
né,aéazNéé,éésm—Nséjééa (187)

for some Nj ;, N, ; and Ny ;. Equation (186) is always satified. Equation (186)
implies that

8eaGJé_3864zGeé_—386£Gmé:8saHéé (1 88)

for some H. Contracting with &* gives H;; =G, and so &;,G,;+¢&5,G,;=0.
Contracting with £%* gives G=0. Equation (187) gives

=285 Wa" = Nis, 607 — Nig 505" - (189)

Contracting with J,° gives N=0, so W=0. The constraints on R, G and W give that
V,R=V;R=0, which implies that V,; R=0.

II. N=2 Supersymmetry. Let us take SO(p . , p_)=SO0(4), V=IR® with the spinor
representation of Spin (4) =SU((2) x SU(2) and K=H*=R™" x SU(2). Thinking of
V as H?, the representation of Spin (4) x K on V is given by

(99", k) (v, v)=(go k", kvy (g') 1) (190)

where g and g’ are unit quaternions, keH* and (v,,v,)eH?. The action of
Spin(4)x K on R*=H is given by v—gv(g’) 1.t is convenient to use the
identification

H={PeM,(C): P= —cP¢} , (191

where ¢ is a symplectic form on €. Using this identification, we will write an
clement M of su(Q)@®su(2)®k as (M), ® M)} D M)/ with (M),*=(M);*=0.
Similarly, we will write an element P of R* as P,’ and an element Q of V as
(0), ) ®(Q"). We will use the symplectic form ¢ to raise and lower indices.



586 J. Lott

Let us first take & =End (R*, V). The torsion equations become
drf+1) A a)yﬁ to)Atf=—tintf (192)
dij+ o A+t Awf=1 ‘5./\1:l,jT-” Y i-{—tv‘g
A Ty 0+ 5, /\r‘me A (193)
i nofrol At i=1S A TE s .‘i+ry‘f
AT g+ 5e S A STy g2 (194)

The solution to the Bianchi identities is given in the Minkowski case in [Ho2]. In
our case a tedious calculation shows that the solution is given by superfields U,
U, T;; TV W W' LK and L f Here U, U, Tand T are symmetric and W
and W' are traceless. The fields satisfy the Hermiticity conditions

(UBY* = Uy, (U'3)* = U (T)* =T (Ty*=T";,
(Wﬂ)*= _Wd ’(W/aﬁ)*;_ — W ,(Kijdﬁ)*=Ki'd and
@ [ B iB

(Lijdﬁ)*=Lijdﬂ . (195)
One finds
T! 0= —[K/s$6, + L/55,0] , (196)
Ty §8=KJ o8+ Ligss" (197)
Ty =70, U' g5+ el W' +eps T'0, (198)
T 38 =6;0UP +e;,e" Wi+ eV T;64 . (199)

By the freedom in Im 4, we may assume that L vanishes.
For future use, we will give the curvatures modulo t, # They are

Qf = =t At (e UP +e0T) + 5t At/ fKI, 56,

— AT PR, L AT BTy W B (200)
.QB——‘C At e, s“W" 7, /\r//’K’ N
e Cji ivd 2t

AR, éaédﬁ_'_r,jé/\fliﬁ(gﬁ(] wteaT'V), (201)

Qij == Tyj A Tﬂk(gki UP+ BﬂyTik) - ‘C,iﬁ A TakKkj, ;ia
+%Tak A ‘C/jéKkja éaaij - ‘C)‘k A T/kéLij> (5y - T)‘j
A ‘c’kBK,-k, ,ﬂ-}-‘c'iﬁ A ‘t’k"‘(a"jU’é,;-i-sél; T%y (202)

The superfields will have to satisfy further first order differential equalities,
which we will not bother to derive here (see Sect. VIII).

E. Six Dimensions

Let us take SO(p,,p_)=S0(5,1), V=IR? with the spinor representation of
Spin (5,1)=SL(2,IH). This representation is the fundamental representation of
SL(2,IH) onIH2. Following [KT], it turns out to be most convenient to use another
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equivalent form of Spin (5, 1), which is SU*(4). Let J be a real skew-symmetric

operator on €*, J?= —1, and let ¢ be a real skew-symmetric operator on €2,
g?=—1. Then
SU*(4)={A4eSL@4,C):JA=AJ} . (203)
Put
V={ve M®4,2,C):0=Jve} . (204)
Then SU*(4) acts on V by g(4)v=Av. We can identify R® with
H#={BeM(@4,C):JB=—-BJ, B"=—-B} , (205)

with the SU* (4) action given by B—A4BA”. There is a map from S? (V) to # given
by (v,v")—vev'T+v'ev”, which gives a super Euclidean algebra on R®|V.

Let us denote the components of A esu*(4) by 4,*, Be M(4, C) by B* and
veM(@4,2,C) by vf.

Let us first take & =End (R®, V). The torsion equations become

e NN LN R N (206)
A+t Aot =1 AT 5 F 500 AT, 500 (207)

The solution for the Bianchi identities is given in terms of a tensor M*” which is
symmetric in fy and satisfies Vj M’ =0 [ST]. Explicitly,
TJ

e,éy? = 856)’13 Mﬁaéij s (208)
Tdm,éy? =& [%a&a Vyj M — Epeye Vaj M — Esypa VejM 7+ Esvea Vdf M) . (209)

There are two SU*(4)-invariant subspaces of End (RS, V)=End (#, V),
namely

%, ={MeEnd(#,V): M,f=0} and , (210)
Sy={MeEnd(#,V):INy such that M,l=0,"Ny—05,/'N,} . (211)

Clearly the geometry corresponding to & is the same as that corresponding to &.
On the other hand, the geometry corresponding to &, is easily seen to have
vanishing M, and so is flat.

V1. Higher Order Obstructions to Integrability

The torsion tensor of a G-structure gives a first-order obstruction to the flatness of
the G-structure. There are also higher order obstructions, which are given by the
Spencer homology groups. An elegant exposition of this theory is given in [Gu]. We
will briefly review [Gu] in order to fix notation. (We will consider everything to be
Z, graded, without writing so explicitly.)

Given the Lie algebra g=gl/(W) of G, define 4™ <End (W, g) as in Sect. IV.
Define ¢* inductively by

#W={SeEnd (W, g* V):S(w)(w)=Sw)(w) for all w,w' e W} . (212)

There is a Lie group %* whose Lie algebra is 4@V @...@®4%, with an
appropriately defined bracket. Given a G-structure which is k™ order flat, one can
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define a principal bundle E* over M with structure group 4*. There is a canonically
defined 1-form I'* on E* with value in V@ z@®...® 4% Y. We will denote its
homogeneous parts by 1, @°,...,w* 1.

(In the special case k =0, one has that 4°= G, E° is the usual frame bundle and
I'° is the canonical 1-form 1. The case k>0 is a generalization of this.)

Let us define

T=dr+5([t, 0°]+ [w° 1)) (213)
Qi=do' +L([r, 0’ ]+ [0, &' ]+... + [0 1)), O<i<k—1. (214)

One can verify that for i <k —1, dw' is canonically given on E*, and so Q' has the
corresponding flat space value. On the other hand, dw* ™! is not canonically given if
the G-structure is not (k 4 1) order flat. Let us choose a ¢*-equivariant horizontal
#"%-valued 1-form w* and define

Q1 =do* 1 +1([r, 0]+ [0, 0 T+ 4 [0k 1)) 215)

The exterior differentiation of

Q2 =dw* 2+ 1([1, * ] +...+ [0* 1 1)) (216)
gives
Pk 2=[7, Q% 1], (217)

where VQ* 2=dQ* 20 H denotes the covariant exterior derivative. As Q%72 is
canonically given, if PQ*~2 vanishes in the flat geometry then [z, 2%~ '] vanishes
on E*,

Let us define the chain group

Chl=gt- DA (W*) . (218)
There is a boundary map
§:CHlCH LI [Gu) . (219)

Then given a choice of w*, the condition [r, 2 1]=0 implies Q% *eZ*2. The
freedom of choosing w* means that there is a well-defined element of H*? which
gives an obstruction to the (k +1)® order flatness of the G-structure. The group H*2
is the Spencer homology group [Sp, Gu].

Let us consider the setup of Sect. IV with unextended supersymmetry. That is,
the structure group G is Spin (p. , p_)x¥, where ¥ is a Spin(p, , p_)-invariant
subspace of End (R?, V).

Proposition 17. If k>0 then 4® =(# @ S*(R?)*)N(VQS* 1 ((IR?)*)).

Proof. In components, an element M of 4® can be written as a tensor M, 4, .,
which is graded symmetric in (A4;,...,4,,;) and is such (M, 4)a..,
=M, 4.,° denotes an element M,, , of 4. First suppose that B is an even
index. For (M4, 4)a,.,” to be nonzero, 4, ,, must also be an even index. By the
symmetry in the lower indices, for (M, . 4 )4,.," to be nonzero, each 4; must be an
even index. Then we are reduced to the case of so(p, , p_)*, which is known to be
zero if k> 0.
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Now suppose that B is an odd index. If 4, is an odd index then

MAl ...AkﬂB:(MAl ...Ak)Ak+ 1B=%(MA1...Ak)ab(aba)Ak+1B (220)

vanishes. By the symmetry of the lower indices, for M,
A; must be an even index. [

B
..., tobenonzero, each

In components, an element of C*! has the form M, ¢, 4,.. 4" Where M is
graded skew symmetric in the C indices and graded symmetric in the 4 indices. The
boundary map §: Ck!—C*~1:!*1 ig given by

(5M)C1...CI+I,A,...A,<_13:(M)[Cl...C;,CHl]m...Ak_lB s (221)

where [] denotes antisymmetrization.
The group H®2 gives the torsion obstruction which we have already discussed.

Proposition 18. If & =End (R?, V) then H**=0 for k> 1.
Proof. H*? is the middle homology of the sequence
o QAW T RQAT (W) g 2QAR (W) > . (222)

If k> 1 then by Proposition 17, 4*~* = V® S*((IR?)*). Suppose that Mc¢,c, 4,.. 4"
denotes an element M of g*~' ® A* (W*) with SM =0. If both C indices are odd then

Mecy ar al —Mcaascoa” +Mase, o a=0 (223)
which implies that M¢ ¢, 4, .. AkB vanishes. If C, is odd and C, is even then
Mecyynd T Meyaycya My, e, 4°=0, (224)
which implies
MC;C;_,Al...AkB=MC;A,,C;...A,‘B : (225)
Then M =0N, where Ne s*® A* (W*) is given by
NCH,A;...Ak+1B=MC1A1,A2...Ak+1B . (226)
If C, and C, are both even then
Meycyas.al ¥ Meyapcoa”+Mac, e, ”=0 . (227)

In this case one can show that M € Im ¢ by the same agument as is used to show that
the Spencer homology vanishes for the group GL(r, R). 0O

Proposition 19. I = End (IR?, V) then the homology group H:* is isomorphic to
that of a usual SO(p. , p_) Riemannian geometry.

Proof. The group H'-? is the middle homology of the sequence

o P AN W) > g @ A (W) WR A (WH)—... . (228)
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If Me g® A*(W*) then the component equations of M =0 become

Mk, 8.7+ Mp,p, 5,% + Mg, 5,°' =0, (229)
Myg,g,.0,°~Mo,5, £,°*+ Mo,r, 5,7 =0 , (230)
Mo,0,,8,% +Mpg,0,,0,” +Mg,0,,0,°=0 , (231)
Mo,0,,0,°+Mo,0,,0,°*+Mo,0,,0,7 =0 , (232)
Mg, 5.5+ Mp,p, 5"+ Mg g, 5, =0 , (233)
M01E2,E1E3_M01E1,E2E3=0 > (234)
Mop,0,,572=0, (235)

where E or O denotes an even or odd index.

Note that because of the spinor representation of SO(p,,p_), Eq. (230) is
related to Eq. (233), Eq. (231) is related to Eq. (234) and Eq. (232) is related to
Eq. (235). Because & =End (R?, V), as in the proof of Proposition 18, Eq. (229)
gives no contribution to H*:2. Equation (235) implies that Eq. (232) has no content.
Equation (233) gives the same contribution to H*? as in ordinary Riemannian
geometry, that is, a tensor with the symmetries of the Riemannian curvature tensor
of an SO(p,, p_) geometry. Equation (230) implies that there is a tensor P such
that

Mo 5, 5,"*= —5Mg.5, 5,°95,7)0,% + Po,g,. £,"% > (236)
where P is symmetric in E; and E,. Then P lies in Im§, and so Eq. (230) gives
no new contribution to H':2. Because so(p,,p_)") vanishes, Eq. (234) implies
My 5, £,"*=0. Then Eq. (231) becomes M, o, 5, ?*=0. O

Propostion 19 shows that flatness of a superRiemannian structure with no internal
symmetry group is given by flatness of the reduced space, i.e. there is no new
curvature in the odd directions.

Let us now consider the case when G=Spin(p,,p_) and W=R?@V. We
know that when the hypotheses of Proposition 4 are satisfied, first order flatness
implies second order flatness. Let us show more generally that there are no formal
obstructions to flatness other than the torsion.

Proposition 20. For G=Spin(p,,p_), acting faithfully on V, we have 4®=0
Jor k>0.

Proof. This follows from the proof of Proposition 17. [

Proposition 21. For G=Spin(p, , p_), acting faithfully on V, we have H**=0 for
k>0.

Proof. Because 4® vanishes for k>0, H*? automatically vanishes for k>1. If
5: @A (W*)>W® A>(W*) is the boundary map then H':?=Ker §. Written in
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components, this becomes

My,g,.0,72=0 , (237)
Mzg,0,,0,7 +Mp,0,,0,°°=0 , (238)
Mop,0,.0.2+ Mo 0, 0,°+Mp.0,0,°=0 , (239)
Mg g, 5,5+ Mg, 5"+ Mg g, 5, =0, (240)
Mo,g,.5," —Mo,g, 5,2 =0 , (241)
Mp,0,,572=0, (242)

where E or O denotes an even or odd index.

Equation (237) implies that Eq. (240) has no content, and Eq. (242) implies that
Eq. (239) has no content. Because so(p . , p_ )"’ =0, Eq. (241) implies My, ¢, ,**=0.
Then Eq. (238) has no content. O

VII. Superconformal Geometry

The superconformal Lie algebras tend to be simple super Lie algebras (a
classification of which is given in [Ka]). They have a filtration

7= V@S TIIP O DG N | (243)
where
g V=0=R? , (244)
POl IR % (245)
and
#V=s0(p,.p )OR®K , (246)

with & being a Lie algebra which represents an additional symmetry. The even part
of gisso(p, +1, p_ + 1)@k, which is the usual conformal Lie algebra plus k. The
commutator of ¢{”/* and 4“/ is nonzero in 4 and is given by the model torsion.
This is similar to what happens in CR geometry, in which the nonzero torsion
corresponds to a nondegenerate Levi form [CM].

We will need the superconformal Lie algebras for the following spacetimes,
where N denotes the extended supersymmetry index:

Signature Lie algebra k
(+) ospr (N[1) soR (V)
(++) ospc (N|1) soc(N)
(++++) sl (2IN) if N2 glg (N)
slu(2)2)/R if N=2 sl (2)
(-+) OSpR (N|1) @ospr(NR|1)  sor (N ) @sor (Ng)
(=++) OSpR (N]2) soR (V)
(—+++) su(N|2,2) if N+4 u(N)
su(4)2,2)/R if N=4 su(4)

(—+++++) hosp(NJ2) ho(N)
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If we consider 4~V to be the even tangent space and 4 ~*/? to be the odd tangent
space, then the subspace 4@ @412 of 4 acts on g~V @ 4712 by

adg(o’:y‘—”—»y(_” , adg(o’ :y(-I/Z)__,y(—l/Z) and
ad y(1/2):5;(—1)_“,(—1/2) . (247)

Let G denote a super Lie group with Lie algebra ¢ and let G, denote a subgroup with
Lie algebra

20=9@ 4P @, . (248)

Note because the adjoint action of G, on g preserves 4, there is a representation g of
G, into End (¢/¢,). Let G’ denote the image ¢(G).

The model spaces for a superconformal structure will be homogeneous spaces of
the form G/G,. These will turn out to be Grassmannian manifolds or subspaces
thereof on which a quadratic form vanishes. The reduced spaces will be conformal
compactifications of the flat Lorentzian (or Euclidean) spaces.

We will consider a superconformal geometry to be given by a Cartan connection
[Kob] on a supermanifold X. That is to say, we have a g-valued connection w on a
principal G, bundle such that
1. w is G, equivariant.

2. Forall Xe g9, o(Vy) =X, where Vy is the vertical vector field corresponding to X.
3. w gives an isomorphism between the tangent space of a point in the bundle and
the Lie algebra 4.

Suppose that we can write ¢ as the direct sum 2@k of two Lie subalgebras.
[We will take 4 to be so(p, , p_)® R and k to be the additional symmetry group.]
Suppose that we are given the ™%, 412 and h parts of a putative Cartan
connection, denoted by P, Q and M. We will want to be able to find the k, 4"/* and
¢ parts to complete a Cartan connection w. The 1-forms P, Q and M will have to
satisfy some conditions, namely
1. For all Xeg,, P(Vx)=0(Vx)=0 and M (V)= (X),.

2. POQ®M is G, equivariant, where G, acts on 4 V@4 VIPh
=g/(k® " @ 4V) via the adjoint action on g.

3. A tangent vector ¥V on the principal bundle is vertical if P(V)=Q(V)=0.
The idea is to find curvature obstructions to the conformal flatness of a space. To do
so, we will find the curvature of some specified Cartan connection w. In order to
specify w, we will want to put some conditions on its curvature Q. These conditions
should be weak enough so that a superRiemannian geometry also has a
superconformal structure.

Given a G, principal bundle, the homomorphism g gives a G’ principal bundle.
G’ can be written as

G'=Spin(p,,p )IXR*xK)X ¥ , (249)
where the subspace & of End (R?, V) is given by
Fayi=,y00 (250)

Here the inclusion V* < End (IR?, V) is given by the Clifford multiplication of IR?
on V*. The principal G’ bundle coming from a G, bundle will inherit the canonical
forms P and Q. If we reduce a first order flat superRiemannian structure with
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connection, having & = End (R?, V), to a superRiemannian structure with & = V'*,
then the induced Spin (p ., p_) X V* connection will generally have nonzero torsion,
which lies in Hom (A% (IR?), V)@ Hom (R?@® V, V). Consequently, it would be too
stringent to require first order flatness of the G’ structure over X. In order to specify
the Cartan connection, we will require that the 4~ part of Q vanishes, that the
# 71 part of Q lies in a certain subspace of Hom (4*(R?), V)@ Hom (R?®V, V)
and that the g© part of @ satisfy a tracelessness condition analogous to the
vanishing of the Ricci part of a curvature tensor. These conditions must be invariant
under the action of G,. As the super Lie groups change very much with the
spacetime dimension, we will have to look at the cases individually.

B. Two Dimensions

As is well known, conformal flatness is somewhat different in two dimensions as
compared to higher dimensions. We will only discuss case II of (1,1) super-
symmetry. The other two-dimensional cases are similar. The global superconformal
algebra is ospg(1]1). The model space X is a supermanifold arising from a
homogeneous IR? vector bundle over S2. In the two-dimensional case it would be
wrong to construct a Cartan connection with values in ospg(1]1), as the Cartan
connection is a local construction, and the local automorphism group ¢ is much
larger than osp¢(1]1). In fact, ¢ is a subalgebra of the Z@ (Z+1/2) graded Neveu-
Schwarz superextension of the Virasoro algebra [NS], with even generators
{L,}m= -, odd generators {G,}}Z__ ., and relations

r=

[LmsLn]z(m_n)Lm+n > (251)
(L, G )=(m]2=1)Gps, (252)
{Gr! Gs} = 2Lr+s . (253)

There is an induced grading
7=9"V@/ ... (254)

with 4™ generated by L_,, and g™*'/? generated by G_,,_y,.
A g-valued Cartan connection can be written in the form

© 0+1/2
w=( & ww)@( S w<m>), (255)
m=—1 m=-12

where {0™}>__, are even C-valued 1-forms and {w™}2*1Z, are odd C-valued 1-
forms. Let us take #=C and k=0. Here P is 0™V, Q is »~'? and M is »®.

Proposition 22. Given P, Q and M satisfying 1’, 2, 3" and QF =0, there is a Cartan
connection w extending P@® Q@ M such that w is flat.

Proof. First, let us take any Cartan connection w extending P@® Q @ M. Writing the
curvature 2 as

Q=< o) Q‘"")@( "D Q‘"‘)> : (256)

m=-1 m=-1/2
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we find

QMW=do™+ Y (=p+oPr0®+2 Y o"Arw® formelZ,

ptq=m r+s=m

do™+2 Y (=p241 0P Arw®” formeZ+1/2 .

ptr=m
The Bianchi identity is

dom =27 Z (—p+q)a)(p)/\§2(‘1)+4 Z a)(')/\Q(s), meZ

ptgq=m rts=m

2 Y (—pR2+D(@PAQV-QP Aw") for meZ+1/2 .

ptr=m

By hypothesis, we have that (" vanishes. Forme Z, m = — 1, we will assume that
QUL QD Q@ yanish and show that it is possible to modify w™*3? and
@™*? 50 that Q™*1/2 and Q™*V vanish. By the Bianchi identity, we have

0=2Q2+m)w "V AQm+D L 45(~1/D)  Qnt1/2) (257)

Thus Q™ *1/2 must be proportionate to w'~ and so it is possible to modify »™*3/2)
in order to make Q™*1/2) yanish. By the Bianchi identity, we then have

0=2(m+2) "V A QM+ £ 2(m/2+1) QM1 A "1 (258)

Thus Q* 1 must be proportionate to ‘™! and so it is possible to modify »™*? so
that Q™*1) vanishes. By induction, we can complete  so as to make Q vanish. [0

In order to clarify the question of superconformal structures in two dimensions,
suppose that X'is a real supermanifold of dimension 2|2 and that the frame bundle of
X has a reduction to a subbundle with the structure group (R™* x Spin (2)) X C
= C* X € which is first-order flat. One can check [GN] that the torsion conditions
for this are

T7+2T5' =0, (259)
T+ T’ =0 , (260)
T,5°+2T5° =0 , (261)
T =Ty =T =T =T5"=Tx'=0, (262)
To'=1, (263)

along with the complex conjugate equations. Suppose that these are satisfied. Let P
and Q denote the canonical forms on the reduced frame bundle. Then by choosing a
C® € connection with flat space torsion, it follows from Proposition 22 that it is
possible to extend the connection to a flat Cartan connection. Suppose on the other
hand that we have a reduction of the frame bundle of X to a subbundle with
structure group €* which is not necessarily first-order flat, but satisfies the torsion
conditions

Ty =T5" =T =T =0, (264)
Toe* =1, (265)



Torsion Constraints in Supergeometry 595

along with the complex conjugate equations. Let us choose a C* connection M on
the reduced frame bundle so that the torsion components 7,-%, T,,* and T,5° vanish
(this can always be done). Then by Proposition 22, it is still possible to extend
PO®Q®M to a flat Cartan connection.

C. Three Dimensions

The superconformal algebra for three dimensional Minkowski space is ospg (12).
The model space X is a supermanifold arising from a homogeneous IR? vector
bundle over

M ={real 2-planes P in R*: the form dx® A dx* +dx' A dx?
vanishes when pulled back to P} . (266)
More specifically, X can be given by
X={R°? planes P in R'*: the quadratic form
X2+t — oMo 1113 — M3y
on R'™ vanishes on P} . (267)

In order to construct a Cartan connection, let us take h=50(2,1) ®R and k =0.
A Cartan connection can be written in the form

0 o7 87
w=|S M K ,
0 P —-MT

where P and K are real symmetric even 2 x 2 matrices, M is an real even 2 x 2 matrix
and Q and S are real odd 2 x 1 matrices.

Proposition 23. Given P, Q and M satisfying 1',2', 3’ and QF =0, there are unique S
and K such that Q2=0QY =0.

Proof. First let us take any Cartan connection w with the given P, Q and M. The
curvature Q =dw+w A ® of w has components

QP =dP+QAQT+PAM—~MTAP=0 , (268)
Q2=dQ+PAS—-MTAQ , (269)
QM=dM+SAQT+MAM+KAP (270)
QS=dS+MAS+KAQ , 71)
QKX=dK—~SAST+MAK—KAMT . (272)

The Bianchi identity gives

0=0AQOT+PAQM—Q2AQT+(QM)T AP, (273)
dQ2=PAQS—MTAQ2+(QM)TAQ . (274)
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Let us write P as t*, Q as 1 and M as w,”. Then (268), (269), (270), (273), and (274)
become

0=dt*+* AP+ Ao~ AT (275)
QP =dv—w ATP+TP NS, (276)
@ =dof+S, AP +o,) Ao f+ K, AT (77
0=1"A Q2P+ A(QM), —(Q* AP +(QM), AT, (278)
d(Q2)1 =1 A(Q%)— w0 A(QD)F+(QM) AP . (279)

Let us write (22)* as

Q2 =5tP AT(Q9), +1° AT (QRD), 5,

e, 6
+3° AT(Q9),40 5,7 - (280)
From (278) and (279) one can show that Q2 has the form
(Q9),,,°=0, (281)
(29),,5, =R(£,50,"+,05") + V;50,*+ V,, 0" (282)

for symmetric tensors R and V. One can redefine S so as to make (29), ,,* vanish.
The general form for (29),, 5, is

(QQ)¢£’5ya = 64)6 5£aDy + 856 5¢aD.y + 8¢.y 5eaD6 + Bsy 5¢aD5
- 85¢5yaD£ - 8},4,55“1)5 - 8655yaD¢ - 87856aD¢
4G pst0y+ sy + G605+ Gy (283)

for some symmetric tensors D and G. As in the proof of Proposition 14, by
redefining S we can make Q¢ vanish.
The Bianchi identity (273) now becomes

0=PAQM+(QMTAP . (284)
In components,
0=1A QM)+ (@), * AT . (285)
This gives
T ATAT (M), L+ AT AT (QM),, 2=0 (286)

which implies that (@), , . vanishes. Also,
AT AT QM) 05 TP AT AT (QM)5,0.,°=0 . (287)
It can be verfied that the most general solution to (287) is of the form
(@QM)5.00.," =N5,50 + N, 0, (288)

for some tensor N;,, which is symmetric in the last two indices. From Eq. (277),
K., can be redefined in order to make (2"); ., ,* vanish. Finally, because the Weyl
tensor vanishes in three dimensions, Kj, ,, can be redefined in order to make
(2M)s5¢,40,,” vanish. O
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Note that the remaining curvature components, Q° and Q¥ are uniquely
determined and generally nonvanishing. For a superRiemannian geometry, they
give the supersymmetric analog of the three-dimensional conformal tensor [Ei].

D. Four Dimensions

The superconformal algebra for four dimensional Minkowski space is su(1/2, 2).
The model space X is a supermanifold arising from a homogeneous R* vector
bundle over

M = {complex 2-planes P in C*: the form

dxy A dx, —dX, Adxy+dxX, Adxs—dX; Adx,
vanishes when pulled back to P} . (289)
More specifically, X can be given by
X={C°? planes P in C'*: the quadratic form
XX+ Moty — M2 Mo+ 1113 — 3ty
on C'™ vanishes on P} . (290)

In order to construct a Cartan connection, let us take A=s50(3, 1)@ R and
k=u(1). A Cartan connection can be written in the form

A Qo —sT
w=|S* M* K*|,
o P -—-MT

where A4 is imaginary, P and K are Hermitian even 2 x 2 matrices, M is a complex
even 2 x 2 matrix and Q and S are complex odd 2 x 1 matrices.

Proposition 24. Given P, Q and M satisfying 1',2', 3" and QF =0, there are unique A, S
and K such that Q9 has the form

QO =13 At%04, (291)

where Oys,." is skew in ¢ and 8, symmetric in ¢ and y and O 4,,* =0, and Q™ has the

Jorm My B_ 8, 8 By v \ 76 B
@) =1 AT X 400" +T AT L 500 s (292)

where Xééﬁaﬁ =0, Z&ssyaﬂ =- Z&ﬁysaﬁ and Zé&ﬁaﬂ =0.

Proof. First let us take any Cartan connection @ with the given P, Q and M. The
curvature Q=dw+w A ® of w has components

QP =dP+QAQ'+PAM*~MT AP=0 , (293)
Q2=dQ+QAA+PAS*~MTAQ , (294)
QY =dM+SAQT+MAM+KAPT (295)
Q4=dA+Q'AS*—STAQ , (296)
QS=dS+SAA*+MAS+KAQ* , (297)

Q¥=dK—SAST+MAK—KAM' . (298)
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The Bianchi identity gives
0=0 A Q' +PAQRM*—Q2AQT+(QM)T AP, (299)
dQ2=0AQ*+PA(QS*—MTAQ2-Q2A4+(Q")TAQ . (300)

Let us write P as r“’j, Qas1*and M as w,?. Then (293), (294), (295), (299), and (300)
become

0=d1:°"§+1:“Arﬁ-i-‘t“”/\a)y-‘;—wy“/\r’ﬁ , (301)
Qo =di— 0 AP+ A A+TPA Sy (302)
@ f=dolf+S, AP+ 0, Ao+ K nTh (303)
0=1* A Q)P+ A (@) f —(Q2)" AP+ (QM) 2 AT (304)
d(Q2) =1 A Q4+ A (Q)j— " A (Q2)P —(Q2) A 4

+(@M) Al (305)

Let us write (Q2)* as
Q) =5f AT (Q9), f+ 18 ATI(Q2); 1
+1P AT (Q2), F 417 ATH(Q0), 4,5+ T ATHRD), 5,7
1o A0, 4 (306)
From (304) one can show

@9), =0, (Q9),,*=V,5,% and (Q9), ,=V,6,°+V;6,%, (307)

where (V;)* = —V,. Then by redefining 4 we can assume
(29); 7 =(Q2); ;°=(29), 5*=0 . (308)
The general forms for (29), 5, and (29); 4,° are
(Q9), 5" =Hs,, +1,40,7 + 1,50, (309)
and
(QQ)E,Jya = Téﬁéya+ Us'&ya P (310)

where Hj,,*is symmetricin e and y and Hy,,* =0, and U,* =0. We can redefine S'in
order to make 7 and T vanish. We can redefine 4 to make the skew-Hermitian part
of J vanish.

The general form for (22),, 3, is

(QQ)&’M“ =B‘ﬁ585y“+Bq;5y5£“ +Nq;355ya —ng(;yéea-f- Oqg,gwa s (311)

where By, is skew in ¢ and 8, N5, is symmetricin ¢ and 8, O g4,," is skew in ¢ and 8,
symmetricin eand y and Oy;,,* =0. By redefining S, we can make B and N vanish. 4
and S are now uniquely determined.

The general forms for (), 3, ., and (@), 4,/ are

(@), 5,4" = R0,/ + V5.0 (312)
(QM)é,Jy,aﬂ'—: Wédaéyﬁ+XéSyaﬂ > (313)
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where V35, = X 45,’ = 0. By redefining K, we can make Rand W vanish. The general
form for (QM)4, 5,.." is

(QM)d;s,é'y,aﬂ = Yq%eaévﬂ - Y5q§ya 55” + Zézﬁayaﬁ » (314)

where Zgs,,," = — Zsg,.,” and Zyg,5, =0. By redefining K, we can make Y vanish.
K is now uniquely determined.

From the Bianchi identities (304) and (305) one finds that H, J, U and V vanish.
Thus Q¢ and Q¥ are as stated in the proposition. [

Let us note that using the Bianchi identities, X and Z can be given explicitly in
terms of O (see [Ho2]). O is the super analog of the Weyl tensor.

E. Six Dimensions

The superconformal algebra for six dimensional Minkowski space is hosp (1]2). The
model space X is a supermanifold arising from a homogeneous H? vector bundle
over

M = {quaternionic 2-planes P in H*: the form
dx® Adx? —dx® AdxX®+dx" Adx®—dx® A dx!
vanishes when pulled back to P} . (315)
More specifically, X can be given by
X={H°? planes P in H'": the quadratic form

XX +1o s — 2 Mo + 11 N3 —113 7y, on H™ vanishes on P} . (316)
For calculations, it is convenient to use an equivalent form of hosp (1]2). Let J be a
real skew-symmetric operator on C*, J>= —1, and let ¢ be a real skew-symmetric
operator on €2, 2= —1. Let B and C be the operators

e 0 0 e 00
B={0 J 0| and C=|0 0 I
00 —-J 0 70

on C?@C*@C* Then
hosp (12) ~ s0*(2I8) = {M e g/(C*®): MB=BM and MTC+CM=0} . (317)

In order to construct a Cartan connection, let us take ~=s0(5,1)®R and
k=su(2). A Cartan connection can be written in the form

A 0T ST
w=|S M K s
Q0 P —-MT

where 4 is a skew-Hermitian 2 x 2 matrix, P and K are complex skew-symmetric
even 4 x 4 matrices such that PJ= —JP and KJ= —JK, M is an complex even 4 x 4
matrix such that MJ=JM, and Q and S are complex odd 4 x 2 matrices such that
Qe=—JQ and Se= —JS.
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Proposition 25. Given P, Q, and M satisfying 1',2', 3" and Q¥ =0, there are unique A,
S and K such that Q2 has the form

(@O =17 ATIN 3, + 377 A TRy (318)

where N, is skew in €6y,
Ngi=0, (319)
Rd)eéy? = de)év? = qusy&? = R&y:pe? and Rq)a&a? =0 ’ (320)

and QM has the form

@M =tP AT+ A ZS5, P+ 1P AT C Y,

JjTe dya
where +T AT Dy’ (321)
=T (322)
Zht = = Zhst Zit =0 (323)
C¢eya =- Ce¢ya = C¢m > (324)
Do’ = = Diprne’ = = Dgoys’ = = Dyypu®  and Dy =0 . (325)

Proof. First let us take any Cartan connection w with the given P, Q and M. The
curvature Q=dw+ o A w of w has components

QP =dP+QAeQT+PAM—-MTAP=0, (326)
Q2=d0+QAA+PAS—MTAQ , 327)
OM=dM+SAeQT+MAM+KAP , (328)
QA=dA+ANA+eQTAS+eSTAQ (329)
Q¥=dS+SAA+MAS+KAQ , (330)
Q¥=dK+SAeST+ MAK—KAMT . (331)
The Bianchi identity gives
0=0Ae(QD)T+PAQM—Q2AeQT+(QM)T AP, (332)
dQ2=0AQ*—Q2AA+PAQS—MTAQ2+(QM)TAQ . (333)

Let us write Pas t*, Q as t* and M as w,?. Then (326), (327), (328), (332), and (333)
become

0=di” +eti ntf+ 7 Ao f -0  ATF (334)
@i =dii+ A A~ AP+ NSy, (335)
@l =dol+e'Syntt+o) Ao+ K ATF (336)
0=6V1f A(Q)f + 17 A (QM),F —9(Q2) A1t

+(QM)),°’/\‘L'W R (337

d(Q2)F =15 A (Q*),—(Q2)I A AI+ 1 A (Q5);
—‘C)ﬂa/\(QQ),'B'i'(gzlu)pa/\"':ilZ . (338)
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Let us write (29)* as
Q=3 AY(QD B+ ATHQRD). 5,0
+3PAT(Q) 4 507 - (339)
From (337) one can show that (Q2)% J* has the form
Q9 fi=V 05"+ V376, (340)
where VM, is symmetric in k and j, and ¥}¥;=0. By redefining 4, we can make
(Q2)k 72 vanish.
The general form for (29)],,7 is

(Q9)] 58 =0, Wy, 40, Y5,07:+6," Xy,

=82 X1+ M, (341)
where
H/;iyii= aéyt_Maaauzo > Y;,=—Y; ,
M si=—M] 5 . (342)

By redefining 4 and S, we may assume that # and X vanish. 4 is now uniquely
determined. From (337) and (338), one can show that Y vanishes and that

Méi,év?:Ne&yaéji (343)

a

for some tensor N,;,* which is completely antisymmetric in edy and satisfies

*=0.
s&a
The general form for (Q9),, 5,7 is

(QQ)d;e,éyg = 5¢a026vi - 5510¢6yi - 5610y¢si + 5y105¢si

F Rpesri > (344)
where
O,5i=—0 Rysi=—R

Ryesai =0 . (345)

By redefining S, we may assume that O vanishes. S'is now uniquely determined. One
can show that (337) and (338) give no further conditions on R.
The general form for (Q™)J

— o __ o« __ a
edyi — £yoi > epdyi _R¢£y6i - *Réycﬁei s

£,07, nz
(QM)g,éy,a = ajéaéy eya55ﬂ+ séa(s f— sya56 +Zs<§ya H (346)
where ‘
Ts

=T;‘£zé > Uél.édz —Ugaé ’ Zsjéyaz - Zeyéoz > éléﬂ = =0 . (347)

We can redefine K in order to make U vanish.
The general form for (Q),, 5, .* is

(QM)d;e,éy, aﬂ = queyaz 5613 - dezéa 5}*5 - B&yea 5¢B + B&ydm 6£B
+ Cd:eya 55ﬂ - Cd)séa 5yﬂ - C&yea 5¢ﬂ
+ C,,M,,,éf + Dd,aawﬁ , (348)
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where

Byeya=— Bepya= = Bgeay 5 Coeya=— Cewa = C¢mv >

Dd)e&yap = _De¢67aﬂ= _an:yéazli = _Déydaea:ﬂ p D¢e&[3aﬁ =0 . (349)
We redefine K in order to make B vanish. K is now uniquely defined. O

We note that using the Bianchi identities, T, Z, C, and D can be given in terms of
N and R, although we do not bother to do so explicitly.

VIII. SuperKihler Manifolds

Suppose that we have a supermanifold X with a reduction of its frame bundle to a
superRiemannian structure bundle. If we want to define a superK&hler structure on
X, a reasonable necessary condition is that the reduced manifold M2" should have a
Kaihler structure, that is, the frame bundle of M should have a reduction to a first-
order flat U(n) subbundle. Thus the structure group of a superKéhler structure
should be a subgroup of (Spin (2n) x K) X & whose even partis U(1) x SU(n) x K,
the double cover of U(n) x K. A natural such subgroup can be constructed by using
the fact that the spinors on a Kihler manifold can be identified with twisted A*-°
forms [Hi]. The spinor representation

0: U(1) x SU(n)—End (17°C) (350)

is the tensor product of the representation of U(1) on € given by e'—¢? (P~ n2)i0
and the representation of SU(n) on A?° which is derived from the representation
on A*°.

Let n denote the standard representation of u(n) on C". Let {e,}i_, be the
standard basis for €", with dual basis {t*}7_, . Let {na} be a standard basis for 4*°,

where a runs over a set of 2" multi-indices. Given an element Q of A*:°, let us write it

as Q=) Q.n".

Definition 5. The superunitary algebra u on C"?" is the real super Lie algebra with
even part u(n)@® C" and odd part €*", with commutation relations

MePM®P=M,M1®r(M)P' —n(M")P)DO , (351)
[M®P.0] =000 (M) . (352)
[0.01=00 Y ¥ (0.0'¢rat Qa0 ra)es®0 . (353)

If we denote the corresponding superunitary Lie group by % then there is a
model geometry on €"?" with % as an automorphism group. This geometry will be
given by a reduction of the frame bundle to a U(1) x SU(n) subbundle, along with a
flat connection on this subbundle, and can be written down explicitly as in Sect. I'V.

The spinor space A*° has a decomposition into its chiral subspaces A4°"°™° and
A°3%0 C* acts as automorphisms on u by the transformations

Qeven_>ZQeven , Qodd_)f—lQodd ) (354)
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Thus there is a natural extension C* x % of % with even part €C* x U(1) x SU(n).
The €* can be thought of as an internal symmetry group which generates complex
chiral transformations with respect to the decomposition of the spinor space.

In analogy with the definition of a superRiemannian structure bundle, we define
a superKéhler structure bundle as follows.

Definition 6. Let X be a real supermanifold of dimension 2#[2"*1. Let & be a
subspace of End (IR?>",IR?>""") which is U(1)x SU(n) invariant. A superKihler
structure bundle P is given by a reduction of the frame bundle of X to the subgroup
(U)x SU(n)) % & which is first-order flat. If & is €* x U(1) x SU(n) invariant
then a C*-extended superKihler structure bundle P is given by a reduction of the
frame bundle of X to the subgroup (C* x U(1) x SU(n)) X & which is first-order
flat.

Given a superKéhler structure bundle P, we can find local sections ¢ of P such
that along o, T Ty+1Imé.

Definition 7. A (C*-extended) superKéhler geometry is a reduction of P to a
(C*x)U(1) x SU(n) subbundle Q such that T'e Ty+Imé on Q.

Note in particular that a superKdhler structure is automatically a super-
Riemannian structure, and that the reduced manifold is Kéhler. As calculations for
superKéhler structures rapidly become very complicated, we will only discuss the
cases of n=1 and n=2.

A. One Complex Dimension

Suppose that X is a real supermanifold of dimension 2|4 whose complexified
cotangent bundle has a local coframe {17, 17, 1%, 19, 1%, t%*}. Let us put

=70 | gfr=qiz (355)

Let us first consider a C*-extended superKédhler geometry with & =End (R?, R*).

The representation M : C@u(1)—End (C!?) can be written in matrix form as M ®
where the nonzero components are M,*, M, °* and M,,%, and

My " +My*=M7, M +M7=0. (356)

Let us assume that the torsion conditions are satisfied for a C*-extended
superKédhler geometry (we will not work out these conditions, although it is
straightforward to do so). The torsion equations become

dir+t Aw, =—1"" A1 | (357)
A+ Ay, =8 T AT S, TP AT T T
AT+ T, A2+ U P APV 108
61 V z 62 z 0—1
AT+ VL TP AT+ W TP AT

+ Wyt At (358)
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At 412 A 0y, =8, T AT+ 8, T AT+ T T
A+ T, AT+ Uyt A+ V12
AT+ VT AT Wy 1F
AWy P A% (359)

We can use the freedom in Im§ (for the structure group C* x Spin(2)) to set
S1=S8y and Vj; =V,

Proposition 26. A C*-extended superKihler geometry with & =End (R?, R*) is
equivalent to one with ¥ =End¢(C, €?). That is,

Vi=Vo=W=Vy=W=W,=W,=W,;,=0. (360)
Proof. The exterior derivative of (357) gives
AR =TT A (V1% AT 4V, 10 AT02 4 W o
AT Wy 11 A 102 1V 10 A T02 4 V1™
AT Wy 1 A 1024 Wy, 1% A1%2) (mod 77) (361)
The proposition follows. O

It follows from Proposition 26 that we have the geometry comnsidered in
Sect. V.B.V. On the other hand, unextended superKahler geometries are less
interesting, as the next proposition shows.

Proposition 27. An unextended super Kihler geometry has aflat connection, regardless
of the U(1)-invariant subspace & of End (R2, R*).

Proof. Let us consider the most general possibility for &, namely & = End (IR?, R#).
We can consider an unextended superKédhler geometry with connection to be an
extended superKéhler geometry with connection, whose curvature will then have to
satisfy

0,1 =0,2=1207 . (362)

From Proposition 26, we can assume that & =End¢ (C, €?). From the results of
Sect. V.B.V., we have that the relation Q, ' =, % implies

(Fo, U+ Ty Ty + T B )& A T4, Ty 7 a2
+Vp T, AT — U 12 AT+ T 1% A1
+ 11 A=V, Uy + Ty Ty + Ty T, )T ATE
+Vy, T T* AT 2+|702T21‘Cz/\‘l:§‘—~U2179‘/\‘L'Z—

+ Tt A+ Ty 1% ATt (363)

Thus
T11=T12=Tz1=T22=0 B (364)

and so
U=0 and Q,%=0Q,%=0Q7*=0. (365)
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B. Two Complex Dimensions

Suppose that X is a real supermanifold of dimension 4|8 whose complexified
cotangent bundle has a local coframe

- = o 5 AdE
{‘L’zl, ,L.zz, ‘Ezl, ,L.z2, ‘L'ﬂ, szl, szz, .L.dzlAdzz’ TQ’ ‘L'dz‘, szz, sz1 zz} .
Let us put
701 =9 , 702 = 792t 793 = pd72 , 794 = gdz1ddz2 (366)

Let us consider a C*-extended superKihler geometry with & = End (IR*, R®). The
representation M : C@u(1) @ su(2)—End (C?*) can be written in matrix form as
M ,® where the nonzero components are {M, %, My%}, and

Mz_az',_i_szz,:O , M0504 =M2221 , M0405=Mz1z2 ,
M()(,e6 - M0303 = szz1 + Mzzz2 > M0404 - M0505 = szzl - Alzzz2 >
M, %4 M, "4 (M, s+ M, **)* =0 . (361)

Let us assume that the torsion conditions are satisfied for a C*-extended
superKéhler geometry. The torsion equations become

At T A, P T A @,

= — (1% A% 4705 A 105) | (368)
At + 1 A, 2+ T2 A 0,7

= — (" At =104 A 10S) | (369)

di? — 315 A (0, 0,2 =)
=TASP+HT2 A S P+ ASP+12A S, (370)

di+31 A (0, — 0,2 =)+ Ao,
=T ASH+HT2 A S+ A ST A S, (371)
di+1% Ao, 1A (-0, o, - Y)

=TIASPHT2AS HTASE+12A S (372)

di’+51% A (0, +,,”+ T)
=TIAS P+ A+ TASE+1R2A S, (373)

where Y represents the C* part of the connection.

Proposition 28. With the above torsion conditions, the reduced Kdhler manifold M is
locally Hermitian symmetric.

Proof. As the proof consists mostly of tedious calculations, we will only give a
sketch. As a C*-extended superKéhler geometry is also a superRiemannian
geometry, we can use the results of Sect. V.D.II. In particular, the torsion equations
for a C*-extended superKahler geometry are the same as those of a superRie-
mannian structure with o’ a diagonal matrix and w;/ a diagonal matrix. Then Q; g



606 J. Lott

and Q; will also be diagonal. The condition that Qdﬁ be diagonal gives
WE=Wi=K=U'yy=U'yy=T"'=0 . (374)
The condition that Q7 be diagonal gives
U=T1,,=T,,=U'=0 . (375)

Thus the possible nonzero superfields are 7,,=T;,, Wy = — Wf and W'. To be
slightly more general for a moment, let us consider the consequences of the Bianchi
identities for the superRiemannian geometry of Sect. V.D.II, under the assumption
K=0. One finds

VyeWst=0 , (376)
VW' =0 , (377)
GiWi=vows (378)
VW' 2=VuW'7 (379)
VdU'35=0, (380)
Vi T'=0 , (381)
VT OcgDa—( | (382)
V¢kUﬁ7=0 , (383)
VWg=0 (384)
VyT;=0 , (385)
Vié Teaya=0 . (386)

We now use that U=U’=0. If we use the fact that the only nonvanishing
component of T'is 77, , (386) implies that 7}, is covariantly constant. Similarly, (378)
implies that W is covariantly constant. One finds from further Bianchi identities
that W' must be covariantly constant. Then the T*¢*" A T*¢¥*" part of the
curvature will be quadratic in the covariantly constant fields 7, W and W’ and so
will be covariantly constant. Thus the reduced space is a locally symmetric
space. O

Proposition 28 shows that the assumption of a first-order flat C*-extended
superKéhler structure is too strong to have interesting geometries. A similar
situation is known to occur for N>2 extended supergravity theories in four
dimensions [Ho2]. There it is found that it is necessary to allow a torsion 7" with
respect to the structure group (Spin(3,1)x K) % & which is different from the
model space torsion 7Tj, in order to write the corresponding supergravity theory.

In analogy, let us allow for a torsion with respect to the structure group (C*
x U(1)x SU(n)) ¥ & which is different from the model space torsion. One
condition on the torsion is that we want the torsion of the reduced space to vanish.
That is, letting ¥ denote €2" and W denote €|V, we will want to allow the tor-
sion T to lie in a subspace of Hom (W A W, W) which has zero intersection with
Hom (C" A €", €"). The following definition seems to be appropriate.
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Definition 8. A weak superKdhler geometry is given by the definitions 6 and 7, where
the subspace % is now a U(1) x SU(n) invariant subspace of End (W, V).

(We do not consider C*-extended weak superKéhler geometries because by
writing out the torsion equations, one can see that a C*-extended weak superKadhler
geometry would be the same as an unextended weak superKédhler geometry.)

We will look at weak superKéhler geometries in one and two complex
dimensions.

C. One Complex Dimension

Proposition 29. 4 weak super Kdhler geometry in one complex dimension is equivalent
to a C*-extended superKdhler geometry in one complex dimension.

Proof. The torsion equations for a weak superKdhler geometry can be written in the
form

i+t Ao = —1" A1 | (387)
A+ A wy P =1 ANA;+1F A B+ 10 AT 41
AL 4T AT+ AT, (388)
di®+1% A 0y,"* =17 A Ay + 17 A By + 10 A T2 417
AT+ ATE+12 A TS (389)
where o,” is imaginary and

61 __ 62 __1 z
Wy ' =wy, =507 . (390)

Without loss of generality we may assume that each T term has no t* or 1%
component. Modulo 7% and 77, the exterior derivative of (387) gives

0=—1" A A T2+ A T2 10 A TR +1% A T5)
FE AT 2 AT 410 AT+ AT ) AT (391)

As the T’s have no 7* or 77 components, it follows that (391) is also true without the
congruence condition. Taking (391) modulo %> gives that t® A T;2+1% A T
+1% AT is proportionate to 7. Similarly, 1% A T, +17% A TPt +1%2 A T3 is
proportionate to t°*. Thus we can write the torsion equations in the form

di+tAw=—1" a1, (392)
A+ A0 =TT ANA+TAB +T AC, (393)
A+ 12 A 0, =T AA,+TFA B+ AC, (394)

Equation (391) becomes
0=—1t"At"2A(C,+C,) . (395)
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Thus C, + C, =0. We can now change the connection so that the torsion equations
become

A+t Aw = —1" AP (396)
A+ AWy ' =T" AA +TFABy (397
A+ 12 Ay, *=1" A A, +AB, , (398)

where w,, % + 1y, = w,?. These are exactly the torsion equations for a C*-extended
superKéhler geometry. [

D. Two Complex Dimensions

Proposition 30. 4 weak superKdhler geometry in two complex dimensions is
equivalent to a super Riemannian geometry in the sense of Sect. V.D Il inwhichw . isa
diagonal matrix.

Proof. The torsion equations for a weak superKéhler geometry in two complex
dimensions are

A+ A, P T AW,
— _(1'-53 /\1:0“+19_5 A -L-Gs) , (399)
dr22+1-zl A 0)2122 +TZZ A a)zzzz
= (@B Al —1P A1) | (400)
it —51% A (0,7 + 0,,7)
=TIASP+HTAS P+ ASP +TR A SS
+193/\]33+Te4/\7143+195/\7;3+166/\]-‘63
+TBATR+1 ATR+15 A TP+ A TS, (401)
d 1% A (0, — 0, + T A0,
=T ASHHT2 A S+ 1T A ST T2 A S
P10 A T+ 10 A T 4195 A Tyt 1% A T
+ AT+ AT+ AT+ AT, (402)
di+1" A0, P +3T A (o, 0,7
=TAS P+ AS T ASP +12 A S
+103/\ ]35_‘_,(94/\ 7:1_54—‘[05/\ ];5_11_»[06/\]%5

F AT+ AT+ AT+ A TS, (403)
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di% +51% A (0,7 + 0,,7)
=TASCHT2A S+ ASE+HT2ASSE + 1P A TS
+1% AT +705 A T8+ 1% A TLO+1%5 A T5°
F1ATE+105 ATE+1% A TS . (404)

Without loss of generality, we may assume that each T term has no %!, 72, ! or 1%
component. Taking the exterior derivatives of (399) and (400) and using congru-
ences shows that we may assume that the only nonzero entries of T are T,3, T3, T,4,
T5*, T2, Ty, Tg®, and T3°, where we no longer assume that T,,°=T;,°. The exterior
derivatives of (399) and (400) then give

0=15 A A (T4 4+ T3%) +1% A 1% A (T + T5°)
F1 AT A (TR + T3 )+ 1% AP A (TP + ) (405)
and
0= AP A (T3 +T5°) +1% AT A (T = T5°)
FS A A(TS ~T5* )+ AT A (= T8 —T,%) . (406)

From (405) it follows that there are functions V, W, X, and Y such that

T+ T =X +1%Y | (407)
T+ T5° = — %X +1%W | (408)
T3+ T3 = — Y +07 (409)
T+ T = — W~V . (410)

Similarly, it follows from (406) that there are functions 4, B, C and D such that

TS+ TP =1"A+1%B , (411)
T3 — T3 = — %54 +1%C 412)
T3 —T5* = —1"B+1"D , (413)
T8+ T,* =1»C+1%D . (414)

It follows from (407) and (411) that
T —T =X+ 1Y —1% 4 —1%B , (415)
and from (410) and (414) that
TS T4 = —1BW—1V—1C—1%D . (416)
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Then from (415) and (416) we have that X—D=0, Y—B=0, A+ V=0 and
W+ C=0. If we put

T4 =Tt —1Pox | (417)
T'3=T3—1%7 , (418)
T's*=Ts*+1%X , (415)
T =T3¢ — %W , (420)
T'P3=T3+17 , 421)
TP =T -1V | 422)
T' =T +>W (423)
TS =TS+ | (424)
then we have
TP=-T A =-T5=T¢ (425)
and
T'd=—T'5=-TF=T3 . (426)

One can check that replacing 7'by T’ does not change the torsion Egs. (399)—(404).
After moving the T’ terms to the left-hand side of the torsion equations, on can
check that the torsion equations become equivalent to those of Sect. V.D.II,
provided that w,” is diagonal matrix. O

We have not analyzed the consequences of the Bianchi identities for a weak
superKahler geometry in two complex dimensions. However, the following seems
reasonable:

Conjecture. There are solutions of the Bianchi identities for a weak superKéhler
geometry in two complex dimensions which give a non-covariantly-constant-
curvature reduced space.

IX. Gauge Theory

In order to give a space of superconnections suitable for gauge theory, it is necessary
to put some constraints on the curvature of a connection. From the discussion of
Sect. IV, we know that if X is a supermanifold with a reduction of the frame bundle
to the group G=(Spin(p.,, p_) X K) X & then there is a well defined odd subbundle
T, 44X of TX with an action of Spin (p,, p_) x K via the representation §. Let H be
an ordinary Lie group and let 4 be an H-connection on a vector bundle over X.
The curvature constraints can be summarized by saying that the curvature F of 4
vanishes on some subspace V of T 44X A T 44X which is Spin(p,,p_)x K in-
variant. We must admit that we do not have any general way to determine the
appropriate ¥, a maximal subspace such that Fis not implied to vanish identically.
(For example, for N=4 gauge theory in four dimensions, there is a self-duality
condition on the curvature [So], which does not occur for N <4. This condition
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exists because the internal symmetry group of the superconformal group for N=4
is SU(4) rather than U(4).) The curvature constraints for extended supergauge
theory in four-dimensional Minkowski space can be found in [So]. Let us note that
it is often the case that there is a subspace W of T 44X (or T,;, X ® €) such that
W AWcV (or V® C). Then A|ycan be locally written in the form g ~1dg| w, where g
takes value in H (or Hg). The field g is the prepotential in physics [GGRS]. Let us
also note that it seems to be necessary to have at least a superconformal structure on
X, i.e. a reduction of the frame bundle of X to (R* x Spin(p,,p_)xK)X &, in
order to define the space of connections for a supergauge theory.

As an example, let H be a Lie group and consider a gauge theory on Euclidean
RR*® with structure group H. The Yang-Mills action was given in components in
[Zu] as

L= [5|F(4)P-%|D,BP+4ID,CP
]R4
+3i(Y Y D )Y >+ D )Y ¥ D)
—iy, [B—ysC,¢1>—%I[B, CIP] . (427)

Here A is an H-connection on IR*, B and C are cross-sections of the ad (H) bundle,
s is a cross-section of the S®ad (H) bundle (where S denotes the complex spinor
bundle) and ys is the Hermitian chirality matrix.

In order to write the superspace version, let us note that the representation of
Spin (4) on IR® is quaternionic. Let R*®=IH'"? have quaternionic coordinates x, 6
and 0'. Let Q denote df, Q' denote df’ and P denote dx +50d0’ —~1d06’. Let A be an
H-connection on R*® and let Fdenote its curvature. The right constraints for Fturn
out to be .

F=Re(W'QAQ+WQ’'AQ’)(mod P) (428)

for some h-valued superfunctions W and W'. Let D, denote the IH-valued
differential operator

DQ=D00+iD91 +jD92 +kDo3 N (429)
and similarly for Dy . The Bianchi identities imply that
DoW'=DoW=0 and DyDyW—DyDoW'=0, (430)
and that F can be completely expressed in terms of W and W’ by
F=Re(W'OQAQ+WQ'AQ' 20Dy W' AP
~20'DgWAP—4Dy Dy W'PAP
~+DyDy WP AP) . (431)
The Yang-Mills equations become
DyDgW=Dy Doy W'=0 . 432)

Self-dual solutions correspond to W’ =0 and anti-self-dual solutions correspond to
W=0. One could also work out the superspace Yang-Mills equations for a gauge
theory on a general superRiemannian manifold of dimension 4|8, the geometry of
which was given in Sect. V.D.IL
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X. Supergeometries as Submanifolds

We will briefly sketch the relationship between the present paper and the work of
[OS, RS, Ma]. We have seen that an important feature of a superRiemannian or
superconformal geometry is the existence of an well-defined odd subspace of the
tangent space. One way to construct supermanifolds with such subspaces is the
following. Suppose that X is a real submanifold of a complex (or quaternionic)
affine superspace Y. Then the tangent space to X will inherit a subspace which is
invariant under the complex (or quaternionic) structure. If this subspace is an odd
subspace of maximal dimension then one has a candidate for a superconformal
structure on X. (One also needs a nondegeneracy condition on the commutator of
the subspace.) Conversely, given an odd subspace with a complex (or quaternionic)
structure on a general superconformal manifold X, the appropriate integrability
conditions will give necessary conditions for X to be locally realizable as a
submanifold of an affine space. The torsion equations for a superconformal
structure can be interpreted as the integrability conditions for the complex (or
quaternionic) subspace of the tangent space, in analogy to what happens for CR
manifolds. This was shown for N=1 supergravity in Minkowski 4-space in [RS]. (A
superRiemannian geometry can be considered to be the analogue of the pseudo-
Hermitian geometry of Webster [We].)

When we have such an extrinsic description of conformal supergeometry, one
can ask which submanifold corresponds to the model geometry. It turns out that the
model submanifold is given locally as the zero set of a set of real quadratic equations
in the complex (or quaternionic) affine superspace. Thus the superconformal
curvature tensor measures whether a given submanifold X is locally equivalent to
the model submanifold with respect to complex-analytic (or quaternionic-analytic)
maps of the affine superspace.

One finds such a description of the model supermanifold when it is given as the
subspace of a complex (or quaternionic) Grassmannian supermanifold on which a
quadratic form vanishes. We find in particular the following cases.

1. (2,2) Supersymmetry in Minkowski 2-Space
The model space is
X={C°" planes P in C'?: the quadratic form Zx+#, 1, ——

on €' vanishes on P} x {C°" planes Q in C'P:
the quadratic form %x+1, #, —#, #; on €' vanishes on 0} . (433)
If we parametrize a subspace of X by
P=span((c,1,a)) , Q=span((d,1,b)) (434)
then X is locally described as

{(@,c,b,d)eC' xC"M': a—a= —éc,b—b=—dd} . (435)
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II. N=2 Supersymmetry in Euclidean 3-Space
The model space is
X={H planes P in H??: the quadratic form

X, X, X, X; +11; 1, —17, 7y on HAR

vanishes on P} .
If we parametrize a subspace of X by

P=span((1,a,b,¢)) ,
then X is locally described as
{(a,b,c)eH*?: a+a+bc—éb=0} .

IIl. N=1 Supersymmetry in Minkowski 4-Space
The model space is
X ={C°? planes P in C'*: the quadratic form
Xx 1oy —fiaMo+ 71Ny — iz on €'
vanishes on P} .
If we parametrize a subspace of X by
P=span((x,q,b,1,0), (y,¢,d,0,1)) ,
then X is locally described as

{(a,b,c,d,x,y)eC*?: G—a=%xx, —c+b=xy, d—d=jy} .

IV. N=1 Supersymmetry in Minkowski 6-Space
The model space is
X={H°? planes P in H!*: the quadratic form
XX A7y — iz Mo + 71 3 — Al on H'*
vanishes on P} .
If we parametrize a subspace of X by
P=span((x,a,b,1,0), (y,¢,d,0,1)) ,

then X is locally described as

{(a,b,c,d, x,y)eH*?: G—a=%x, —c+b=xy, d~d=7y} .

613
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