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ABSTRACT. – We show that there are topological obstructions for a noncompact manifold to admit a
Riemannian metric with quadratic curvature decay and a volume growth which is slower than that of the
Euclidean space of the same dimension. 2000 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Nous montrons qu’il y a des obstructions topologiques pour qu’une variété non compacte
admette une métrique Riemannienne à courbure quadratiquement décroissante ainsi qu’une croissance de
volume plus lente que celle de l’espace Euclidien de même dimension. 2000 Éditions scientifiques et
médicales Elsevier SAS

1. Introduction

A major theme is Riemannian geometry is the relationship between curvature and topology.
For compact manifolds, one can constrain the curvature and diameter and ask whether
one obtains topological restrictions on the manifold. If the manifold is noncompact then a
replacement for a diameter bound is a constraint on how the curvature behaves in terms of
the distance from a basepoint. More precisely, letM be a complete connectedn-dimensional
Riemannian manifold. Fix a basepointm0 ∈M .

DEFINITION 1.1. – M has quadratic curvature decay (with constantC > 0) if for all m ∈M
and all 2-planesP in TmM , the sectional curvatureK(P ) of P satisfies∣∣K(P )

∣∣6C/d(m0,m)2.(1)

Note that condition (1) is scale-invariant in that it is unchanged by a constant rescaling of
the Riemannian metric. One can show that any connected smooth paracompact manifold has a
Riemannian metric with quadratic curvature decay; see [10, p. 96] or Lemma 2.1 below. Let us
contrast this with the result of Abresch [1] that ifK(P )>−C/d(m0,m)2+ε for someε > 0 then
M has finite topological type in the following sense.

DEFINITION 1.2. – M has finite topological type ifM is homotopy-equivalent to a finite
CW -complex.

1 Supported by NSF Grant DMS-9704633.
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See [1,9] for results on manifolds with faster-than-quadratic curvature decay. In this paper we
concentrate instead on the case of quadratic curvature decay. We will show that if in addition one
restricts the volume growth of the metric, then one does obtain topological restrictions onM .
The first question is whetherM has finite topological type.

DEFINITION 1.3. –M has lower quadratic curvature decay (with constantC > 0) if for all
m ∈M and all 2-planesP in TmM , the sectional curvatureK(P ) of P satisfies

K(P )>−C/d(m0,m)2.(2)

Let Bt denote the metric ball of radiust aroundm0 and letSt denote the distance sphere of
radiust aroundm0. If M has lower quadratic curvature decay then by a standard argument,M
has at most polynomial volume growth; see [7, Theorem 4.9(iii)] or Lemma 3.1 below.

PROPOSITION 1.1. – Suppose thatM has lower quadratic curvature decay. Ifvol(Bt) =
o(t2) as t→∞ andM does not collapse at infinity, i.e.infx∈M vol(B1(x)) > 0, thenM has
finite topological type.

The o(t2) bound in Proposition 1.1 cannot be improved to O(t2), as shown in Example 3
below. Proposition 1.1 is an improvement of [11, Theorem 1.2], where an additional assumption
of nonnegative Ricci curvature was made.

Next, we consider manifolds with volume growth slower than that of the Euclidean space of
the same dimension.

DEFINITION 1.4. – M has slow volume growth if

lim inf
t→∞

vol(Bt)/tn = 0.(3)

There is a notion of anendE of M and ofE being contained in an open setO ⊂M ; see, for
example, [2, p. 80].

DEFINITION 1.5. – An endE of M is tameif it is contained in an open set diffeomorphic to
(0,∞)×X for some smooth connected closed manifoldX .

We remark thatX is determined byE only up toh-cobordism. Hereafter we assume thatM
is oriented.

PROPOSITION 1.2. – Suppose thatM has quadratic curvature decay and slow volume
growth. LetE be a tame end ofM as in Definition1.5. Then for any product

∏
k pik (TX)

of Pontryagin classes ofX and any bounded cohomology classω ∈Hl(X ;R) with l+ 4
∑
k ik =

n− 1, ∫
X

ω ∪
∏
k

pik (TX) = 0.(4)

COROLLARY 1.1. – If M is as in Proposition1.2then the signature and the simplicial volume
ofX vanish.

Example. – There is no metric of quadratic curvature decay and slow volume growth on
R×CP2k.

Next, we give a sufficient condition forM to have a metric of quadratic curvature decay and
slow volume growth.
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PROPOSITION 1.3. – LetX be a closed manifold with a polarizedF -structure[5]. Suppose
thatX = ∂N for some smooth compact manifoldN . Then there is a complete Riemannian metric
onM = Int(N ) of quadratic curvature decay and slow volume growth.

It follows from Proposition 1.3 that whenn is even, there is a metric onRn of quadratic
curvature decay and slow volume growth. The case whenn is odd is less obvious.

PROPOSITION 1.4. – For all n > 1, there is a complete Riemannian metric onRn of
quadratic curvature decay and slow volume growth.

If X is a closed oriented manifold with a polarizedF -structure then the Pontryagin numbers
and Euler characteristic ofX vanish. Based on Proposition 1.3, one may think that under the
hypotheses of Proposition 1.2, one could also show that the Euler characteristic ofX vanishes.
However, Proposition 1.4 shows that this is not the case, as the Euler characteristic ofSn−1 is
two if n is odd.

We can combine Propositions 1.2–1.4 to obtain some low-dimensional results.

COROLLARY 1.2. – LetN be a smooth compact connected oriented manifold-with-boundary
of dimensionn.

(1) If n= 2 thenInt(N ) has a metric of quadratic curvature decay and slow volume growth.
(2) If n= 3 thenInt(N ) has a metric of quadratic curvature decay and slow volume growth if

and only if∂N consists of2-spheres and2-tori.
(3) If n = 4, suppose that Thurston’s Geometrization Conjecture holds. ThenInt(N ) has a

metric of quadratic curvature decay and slow volume growth if and only if the connected
components of∂N are graph manifolds.

Finally, by an argument similar to that of [6, Theorem 0.8], there is an integrality result for the
integral of the Gauss–Bonnet–Chern form, which we state without proof.

PROPOSITION 1.5. – Suppose thatM has a complete Riemannian metricg of quadratic
curvature decay with

vol(Bt) = o(tn) and

∞∫
1

vol(Bt)
tn

dt
t
<∞.

Lete(M ,g)∈Ωn(M ) be the Gauss–Bonnet–Chern form. Then
∫
M e(M ,g)∈ Z.

As mentioned above, any connected smooth paracompact manifold admits a Riemannian
metric with quadratic curvature decay. An interesting question, which makes no reference to
volume growth, is how small the constantC in Definition 1.1 can be made. That is, given
C > 0, what are the topological constraints on the noncompact manifolds which admit complete
Riemannian metrics satisfying|K(P )|6C/(1+ d(m0,m))2?

We thank Mikhael Gromov for pointing out the relevance of bounded cohomology, Frank
Connolly for a topological remark and the referee for useful comments.

2. Examples

(1) LetN be a smooth compact connectedn-dimensional manifold-with-boundary. Leth be a
metric on∂N . Givenc> 1, consider the metric on [1,∞)× ∂N given by dt2 + t2ch. Extend this
to a smooth metricg on Int(N ) =N ∪∂N ([1,∞)× ∂N ). Theng has quadratic curvature decay
and polynomial volume growth. By choosingc large, the degree of volume growth can be made
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278 J. LOTT AND Z. SHEN

arbitrarily large. Takingc= 1, we see that having quadratic curvature decay and volume growth
of order O(tn) in no way restricts the topology of the ends.

(2) For c ∈ R, consider the metric on [1,∞)× S1 given by dt2 + t2c dθ2. Cap this off by a
disk at {1} × S1 to obtain a smooth metricg on R2. Theng has quadratic curvature decay. If
c <−1 then (R2,g) has finite volume. Hence the assumption of quadratic curvature decay gives
no nontrivial lower bound on volume growth.

(3) Start with the Euclidean metric on the annulus

A=
{

(x,y)∈R2: 16 x2 + y26 4
}

=B2(0)−B1(0).(5)

Add a handle to Int(A), keeping the metric the same near∂A. Consider this as a metric on
T 2−D2−D2. With an obvious notation, forj ∈N, let 2j · (T 2−D2−D2) denote the rescaled
metric. Consider the infinite genus surface

Σ =B1(0)∪S1

(
T 2−D2−D2

)
∪S1 2 ·

(
T 2−D2−D2

)
∪S1 4 ·

(
T 2−D2−D2

)
∪S1 · · ·(6)

with its corresponding metricgΣ . For n > 2, let gTn−2 be a flat metric on the (n − 2)-torus.
Then the product metric (Σ,gΣ)× (T n−2,gTn−2) has quadratic curvature decay, volume growth
of ordert2 and infinite topological type. This shows that the o(t2) condition in Proposition 1.1
cannot be improved to O(t2).

LEMMA 2.1. – If M is a smooth connected paracompact manifold thenM admits a complete
Riemannian metric of quadratic curvature decay.

Proof. –First,M admits a complete Riemannian metrich of bounded sectional curvature [8].
Givenφ ∈C∞ (M ), putg = e2φh. We have

Rijkl(g) =Rijkl(h)− φ̃ikhjl + φ̃ilhjk − δikφ̃jl + δil φ̃jk − φ;rφ
;r
(
δikhjl − δilhjk

)
,(7)

whereφ̃ab = φ;ab − φ;aφ;b. Let dh denote the distance function with respect toh and letdg
denote the distance function with respect tog. By [6, Theorem 1.8], there is aφ ∈C∞(M ) and a
constantc > 0 such that

(1) φ(m)6 dh(m0,m)6 φ(m) + c.
(2) ‖∇φ‖∞ 6 c.
(3) ‖Hess(φ)‖∞ 6 c.

Then from (7), in order to show thatg has quadratic curvature decay it suffices to show that there
is a constantC > 0 such thatdg(m0,m)6Ceφ(m) for allm ∈M . Letγ be a normalized minimal
geodesic, with respect toh, fromm0 tom. Then measuring the length ofγ with respect tog,

dg(m0,m)6
dh(m0,m)∫

0

eφ(γ(t)) dt6
dh(m0,m)∫

0

et dt= edh(m0,m) − 16 eceφ(m).(8)

The lemma follows. 2

3. Proof of Proposition 1.1

First of all, every manifold with lower quadratic Ricci curvature decay has polynomial volume
growth [7, Theorem 4.9(iii)]. For completeness, and as we will need Eq. (11) below, we give the
proof here.
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LEMMA 3.1. – Suppose that there is a constantC > 0 such that for eachm ∈M and each
unit vectorv ∈ TmM , the Ricci curvature satisfies

Ric(v,v)>−(n− 1)
C

d(m0,m)2
.(9)

PutN = (n− 1)((
√

1 + 4C − 1)/2)+ n. Then there is a constantC0 = C0(n,C)> 0 such that
for t> 3,

vol(Bt)6C0 vol(S1)tN + vol(B1)(10)

and

vol(Bt+1−Bt−1)6C0
vol(Bt−1)
t− 1

.(11)

Proof. –Let Πt = 1
n−1

∑n−1
i=1 ki denote the mean curvature of the regular part ofSt, where

{ki}
n−1
i=1 are the principal curvatures. Letting dAt and dAm0 denote the volume forms onSt and

Sm0M respectively, defineϕt :Sm0M → St by

ϕt(v) = expm0
(tv)(12)

and defineηt :Sm0M → (0,∞) by

(ϕt)∗dAt|v = ηt(v) dAm0.(13)

We have

vol(St) =

∫
Sm0M

ηt(v) dAm0(14)

and

(n− 1)Πt|ϕt(v) = η′t(v)/ηt(v).(15)

As t→ 0,

(n− 1)Πt|ϕt(v) =
n− 1
t
− Ric(v,v)

3
t+ o(t).(16)

PutΠ(t) =Πt|ϕt(v) andv(t) = (expm0
)∗(tv). The Riccati equation implies

Π ′(t) +Π(t)26−Ric(v(t),v(t))
n− 1

.(17)

Putα= (
√

1 + 4C + 1)/2 and consider

f (t) = e

∫ t
1
Π(s)(s) ds[

tαΠ(t)− αtα−1
]
.(18)

Then (16) implies that limt→0+ f (t) = 0. On the other hand, from (9) and (17), we have

f ′(t) = tαe

∫
t

1
Π(s)(s) ds[

Π ′(t) +Π(t)2−α(α− 1)t−2
]
6 0.(19)
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280 J. LOTT AND Z. SHEN

Thusf (t)6 0, giving

Π(t)6 αt−1.(20)

Together with (15), we conclude thatηt(v)/t(n−1)α is nonincreasing. This implies that
vol(St)/t(n−1)α is nonincreasing, too. As

vol(Bt)− vol(B1) =

t∫
1

vol(Ss)
s(n−1)α

s(n−1)α ds,(21)

we obtain

vol(S1)

t∫
1

s(n−1)α ds> vol(Bt)− vol(B1)> vol(St)
t(n−1)α

t∫
1

s(n−1)α ds.(22)

Hence

vol(Bt)6
1

(n− 1)α+ 1
vol(S1)t(n−1)α+1 + vol(B1).(23)

Also,

vol(Bt+1−Bt−1) =

t+1∫
t−1

vol(Ss)
s(n−1)α

s(n−1)α ds6 vol(St−1)
(t− 1)(n−1)α

t+1∫
t−1

s(n−1)α ds(24)

6 vol(Bt−1)− vol(B1)∫ t−1
1 s(n−1)α ds

t+1∫
t−1

s(n−1)α ds

6C0
vol(Bt−1)
t− 1

for large enoughC0. 2
Proof of Proposition 1.1. –We use critical point theory of the distance function; for a review,

see [3]. Let us say that a connected componentΣt of St is goodif it is part of the boundary of
an unbounded component ofM −Bt and there is a ray fromm0 passing throughΣt.

LEMMA 3.2. –Suppose that there is at0 > 0 such that ift > t0 then there is no critical point
of dm0 on any good componentΣt of St. ThenM has finite topological type.

Proof. –LetE be an end ofM . We know that there is a normalized rayγ such thatγ(0) =m0

and γ exits E. Let U be the unbounded component ofM − Bt0 containing {γ(t)} t>t0. By
assumption, for allt > t0, the connected componentΣt of St which containsγ(t) does not
include any critical points ofdm0. By the isotopy lemma [3, Lemma 1.4], for eacht > t0 there
is someε > 0 so that a neighborhood ofΣt is homeomorphic to (t − ε, t+ ε) × Σt, the first
coordinate being the distance fromm0. By compactness, for anyb > a > t0, we get an embedding
[a,b] × Σa → U . Stacking these together, we get an embeddingψ : (t0,∞) × Σ → U for a
fixedΣ. As the image ofψ is relatively open and closed, we obtain thatU is homeomorphic to
(0,∞)×Σ (compare [3, p. 35]). Furthermore,Σ is a closed connected topological manifold [3,
Lemma 1.4]. In particular, for allt > t0,U ∩St is connected and good, soU does not contain any
critical points. ThusM −Bt0 does not contain any critical points in its unbounded components.
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A priori, M −Bt0 may have an infinite number of bounded components. However, as distance
balls inM are precompact, it follows that only a finite number of these bounded components can
intersectSt0+1. Thus there is somet1 > t0 such thatM −Bt1 does not have any critical points,
from which the lemma follows. 2

Remark. – In fact, the proof above shows thatM is homeomorphic to the interior of a compact
topological manifold-with-boundaryN . It follows from smoothing theory that if dim(M ) > 6
thenM is diffeomorphic to the interior of a compact smooth manifold-with-boundary. This is
basically because one can put a smooth structure on∂N if one can lift the classifying map for
the tangent (micro)bundle from [∂N ,BTop] to [∂N ,BO]. As the interior ofN is smooth, we can
deform the lifting obstruction into the interior ofN , where it vanishes.

Define

D(m0, t) = sup Diam(Σt),(25)

where the supremum is taken over all good componentsΣt of St and the diameter is measured
using the metric onM . We claim that if the manifold has lower quadratic curvature decay and if

lim
t→∞

D(m0, t)
t

= 0(26)

there is at0 > 0 such that ift > t0 then there is no critical point ofdm0 on any good component
Σt of St. For a pair of pointsp,q ∈M , define

epq(x) = d(p,x) + d(q,x)− d(p,q).

Clearly, for anyt > 0 and any pointm ∈M −B2t on a ray fromm0 which intersectsΣt,

em0m(x)6 2D(m0, t) for x ∈Σt.(27)

By assumption, the sectional curvature onM −Bt/2 satisfies

KM >−
4C
t2
.(28)

Assume that there is at0 > 0 such that fort > t0,

D(m0, t)6 t

4λ
√
C

,(29)

whereλ is a large constant which will be specified later.
Suppose thatx ∈Σt is a critical point ofdm0. (See Fig. 1.) Take a minimizing geodesicτ from

x to m. There is a minimizing geodesicσ from x to m0 such that∠(σ̇(0),τ̇(0))6 π
2 . Take two

pointsp= σ(a) andq = τ (a) wherea= t/(λ
√
C). By the triangle inequality, we have

epq(x)6 em0m(x)6 2D(m0, t).(30)

Forλ> 100/
√
C, we see that the triangle4pxq is contained in a small neighborhood ofx inside

M −Bt/2. Then we can apply the Toponogov inequality to4pxq and obtain

cosh
(
c0d(p,q)

)
6 cosh2(c0a),(31)
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Fig. 1.

wherec0 = 2
√
C/t. Note that

c0d(p,q) = c0
[
2a− epq(x)

]
> 2c0

[
a−D(m0, t)

]
> 3
λ
.(32)

We obtain

cosh

(
3
λ

)
6 cosh2

(
2
λ

)
.(33)

This is impossible for sufficiently largeλ.
Finally, we must show that if vol(Bt) = o(t2) and if there is av > 0 such that vol(B1(x))> v

for all x ∈M , then (29) holds for larget.
LetΣt be a connected component of the boundary of an unbounded component ofM−Bt. For

anyx,y ∈Σt, there is a continuous curvec : [0,r]→Σt from x to y. Suppose thatd(x,y)> 2.
Then there is a partition 0= t0 < t1 < · · · < tk = r such that {B1(c(ti))} ki=0 are disjoint and
B2(c(ti))∩B2(c(ti+1)) 6= ∅. Note thatB1(c(ti))⊂Bt+1−Bt−1. We have

(k+ 1)v 6
k∑
i=0

vol
(
B1
(
c(ti)

))
6 vol

(
Bt+1−Bt−1

)
6C0

vol(Bt−1)
t− 1

.(34)

Thus

Diam(Σt)6
k−1∑
i=0

d
(
c(ti),c(ti+1)

)
6C1

vol(Bt−1)
t− 1

,(35)

giving

lim
t→∞

D(m0, t)
t

= 0.(36)

This proves Proposition 1.1.2
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4. Proof of Proposition 1.2 and Corollary 1.1

Fix an open setO containingE which is diffeomorphic to (0,∞) × X . For u > 1, let M̂
denoteM with the metricu−2gM . Let Ô denote the copy ofO in M̂ . Let B̂t andŜt denote the
metric ball and metric sphere in̂M aroundm0. Rescaling (1), there is a constantC′ > 0 such
that the region̂B100− B̂1/100 has sectional curvatures bounded byC′, uniformly in u. Put

T1/10(Ŝ1 ∩ Ô) =
{
m̂ ∈ M̂ : d(m̂, Ŝ1 ∩ Ô)6 1/10

}
.(37)

By [6, Theorem 0.1], there is a constantC′′ > 0 independent ofu such that there is a connected
codimension-0 submanifoldUu of M̂ with

(Ŝ1 ∩ Ô)⊂ Uu ⊂ T1/10(Ŝ1 ∩ Ô),(38)

vol(∂Uu)6C′′vol
(
T1/10(Ŝ1 ∩ Ô)

)
(39)

and

‖Π∂Uu‖6C′′,(40)

whereΠ∂Uu is the second fundamental form of∂Uu in M̂ . Then by the Gauss–Codazzi equation,
the intrinsic sectional curvature of∂Uu is uniformly bounded inu. Rescaling toM , we have

vol
(
T1/10(Ŝ1 ∩ Ê)

)
= u−nvol

(
Tu/10(Su ∩O)

)
6 u−nvol(B11u/10).(41)

Let {uj}∞j=1 be a sequence inR+ approaching infinity such that

lim
j→∞

vol(B11uj/10)/u
n
j = 0.(42)

Forj large, letYj be a connected component of∂Uuj . LetOj be the oriented cobordism between
Yj andX coming from the unbounded component ofM − Yj corresponding toE, truncated at
some level {Rj} ×X . Let i :Yj →Oj be the inclusion and letπ : Oj → (0,∞)×X →X be
projection. Then∫

X

ω ∪
∏
k

pik (TX)−
∫
Yj

(π ◦ i)∗ω ∪
∏
k

pik (TYj) =

∫
Oj

d

(
π∗ω ∧

∏
k

pik (TOj)
)

= 0.(43)

From (39), (41), (42) and [10, p. 37], we have that
∫
Yj

(π ◦ i)∗ω ∪
∏
k pik (TYj) = 0 if j is large

enough. This proves Proposition 1.2.
Takeω = 1∈ H0(X ;R). Applying Proposition 1.2 to the HirzebruchL-class, we obtain that

the signature ofX vanishes. SupposeX has a nonzero simplicial volume. Then the fundamental
class [X ] ∈ Hn−1(X ;R) is a bounded cohomology class and Proposition 1.2 implies that∫
X
ω = 0, which is a contradiction. This proves Corollary 1.1.

5. Proof of Proposition 1.3

Suppose that {g(t)} t∈[1,∞) is a smooth 1-parameter family of Riemannian metrics onX with
sectional curvatures that are uniformly bounded int. Then one can check that dt2 + t2g(t)
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284 J. LOTT AND Z. SHEN

is a metric of quadratic curvature decay on [1,∞) × X if ‖g−1(t) dg/dt‖∞ = O(1/t) and
‖g−1(t) d2g/dt2‖∞ = O(1/t2). Putδ = t−1 and letg(t) be the Riemannian metric onX defined
in [5, Section 3]. Then {g(t)} t∈[1,∞) has uniformly bounded sectional curvature int. We claim
that‖g−1(t) dg/dt‖∞ = O(1/t) and‖g−1(t) d2g/dt2‖∞ = O(1/t2). The metricg(t) is defined by
a finite recursive process. One starts with an invariant Riemannian metricg0 for theF -structure
and putsg1(t) = log2(1 + t)g0. Clearly‖g−1

1 (t) dg1/dt‖∞ = O(1/t) and‖g−1
1 (t) d2g1/dt2‖∞ =

O(1/t2). Then

gj+1(t) =

{
ρ2
jg
′
j(t) + hj(t), onUj ,

gj(t), onX −Uj ,
(44)

where
(1) Uj is a certain open subset ofX ,
(2) g′j(t) is the part ofgj(t) corresponding to tangent vectors to theF -structure onUj ,
(3) hj(t) is the part ofgj(t) corresponding to normal vectors to theF -structure onUj and
(4) ρj = t−log(fj )/log(1/2) with fj :X→ [1/2, 1] a certain smooth function which is identically

one onX −Uj .
It follows by induction onj that there is a metric of quadratic curvature decay and small

volume growth on [1,∞)×X . Gluing [1,∞)×X ontoN , we obtain the desired metric onM .

6. Proof of Proposition 1.4

If n is even thenSn−1 has a polarizedF -structure coming from a freeS1-action and the result
follows from Proposition 1.3. The first nontrivial case is whenn= 3.

Suppose thatn = 3. By [4, Example 1.4], there is a metrich on R3 with finite volume and
bounded sectional curvature. Our metric will be conformally related toh. Let us first give the
construction ofh in detail. Forj ∈ Z+, letCj be the complement of a small solid torus in a solid
torus. (See Fig. 2.) Then topologically,

R3 = (S1×D2)∪T 2 C1 ∪T 2 C2 ∪T 2 · · · .(45)

We takem0 ∈ S1×D2. EachCj can be decomposed asCj = (Σ2j ×S1
2j)∪T 2 (Σ2j+1×S1

2j+1),
whereΣ2j is a 2-sphere with three disks removed,Σ2j+1 is a 2-disk andS1

2j , S
1
2j+1 are circles.

(See Fig. 3. Each block is to be rotated around the axis and then have its left and right faces

Fig. 2.
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Fig. 3.

Fig. 4.

identified.) Put∂Σ2j = S1
2j,1 ∪ S1

2j,2∪ S1
2j,3, whereS1

2j,1 is the top side of the rectangle,S1
2j,2 is

the bottom side of the rectangle andS1
2j,3 is the circle enclosing the removed disk. (See Fig. 4.)

Put∂Σ2j+1 = S1
2j+1,1. The identifications of the toroidal boundaries are

S1
2j+1,1× S1

2j+1∼ S1
2j,2× S1

2j ,(46)

S1
2j,3× S1

2j ∼ S1
2j−2,1× S1

2j−2,

where

S1
2j+1,1∼ S1

2j,(47)

S1
2j+1∼ S1

2j,2,

S1
2j,3∼ S1

2j−2,

S1
2j ∼ S1

2j−2,1.

We will put product metrics onΣ2j × S1
2j andΣ2j+1× S1

2j+1. Let εi be the length ofS1
i and

let δi,∗ be the length ofS1
i,∗. Then (47) gives the relations

δ2j,1 = ε2j+2, δ2j,2 = ε2j+1, δ2j,3 = ε2j−2, δ2j+1,1 = ε2j .(48)

We will take εi = e−i. Let Σ∞ be a thrice-punctured sphere with a Riemannian metric
such that three endsE1,E2,E3

∼= (1,∞) × S1 are isometric to dr2 + e−2r dθ2. Put Σ0 =
Σ∞ − (E1 ∪E2 ∪E3). Letu ∈C∞([0, 1]) be a nondecreasing function such that

u(s) =

{
s if s ∈ [0, 1/3],
1 if s ∈ [1/2, 1].

(49)

Givenk ∈ Z+, putE(k) = [0,k]× S1 with the metric dr2 + e−2ku(r/k) dθ2. Then put

Σ2j =Σ0 ∪∂Σ0

(
E(2j + 2)∪E(2j + 1)∪E(2j − 2)

)
,(50)
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Fig. 5.

isometrically. (See Fig. 5.) Similarly, letΣ′∞ be a once-punctured sphere with a Riemannian
metric such that the endE ∼= (1,∞)× S1 is isometric to dr2 + e−2r dθ2. PutΣ′0 =Σ′∞ −E and

Σ2j+1 =Σ′0 ∪S1 E(2j),(51)

isometrically. (See Fig. 5.) Then one can check that {Σi}∞i=1 have uniformly bounded volume
and curvature. Glue together the product metrics on {Σ2j ×S1

2j}
∞
j=1 and {Σ2j+1×S1

2j+1}∞j=1 to
give the metrich onR3. As

∑∞
j=1 e

−j <∞, it follows thath has bounded curvature and finite
volume.

Givenφ ∈C∞
(
R3
)
, putg = e2φh. By (7), the weighted sectional curvatures{

e2φ(m)
∣∣K(P ,g)

∣∣}
m∈M ,P⊂TmM(52)

are uniformly bounded provided that the gradient∇φ of φ and the HessianH(φ) of φ are
uniformly bounded with respect toh.

We constructφ onΣ2j × S1
2j andΣ2j+1× S1

2j+1 to be the pullbacks of functions onΣ2j and
Σ2j+1, respectively. Letφ∞ ∈ C∞(Σ∞) be a Morse function with one critical point, of saddle
type, such that

φ∞|E1 = 40d(· ,Σ0),(53)

φ∞|E2 = 10d(· ,Σ0),

φ∞|E3 =−80− 40d(· ,Σ0),

φ∞(Σ0)⊂ [−80, 0].

Then in terms of (50), put

φ|Σ2j = 80j2 + 80j + φ∞|Σ2j .(54)

(See Fig. 6.) Similarly, letφ′∞ ∈ C∞(Σ′∞) be a Morse function with one critical point, a local

4e SÉRIE– TOME 33 – 2000 –N◦ 2



MANIFOLDS WITH QUADRATIC CURVATURE DECAY AND SLOW VOLUME GROWTH 287

Fig. 6.

maximum, such that

φ′∞|E =−10d(· ,Σ′0), φ′∞(Σ′0)⊂ [0, 10].(55)

Then in terms of (51), put

φ|Σ2j+1 = 80j2 + 120j + 10+ φ′∞|Σ2j+1.(56)

(See Fig. 6.) Finally, defineφ on theS1×D2 factor in (45) so as to extendφ to a smooth function
onR3.

It is easy to see that∇φ andH(φ) are uniformly bounded onR3. As

dg(m0,m)2
∣∣K(P ,g)

∣∣= dg(m0,m)2

e2φ(m)
e2φ(m)

∣∣K(P ,g)
∣∣,(57)

in order to show thatg has quadratic curvature decay, it suffices to show thate−φ(m)dg(m0,m) is
uniformly bounded with respect tom ∈R3. LetT 2 be the first torus factor in (45). Then it suffices
to show thate−φ(m)dg(T 2,m) is uniformly bounded with respect tom ∈R3. Let {γ(s)} s∈[0,t] be
a piecewise smooth path fromm to T 2 which is unit-speed with respect toh, and along whichφ
is nonincreasing. Then lettingLg(γ) denote the length ofγ with respect tog, we have

e−φ(m)dg(T 2,m)6 e−φ(m)Lg(γ) =

t∫
0

eφ(γ(s))−φ(m) ds.(58)

We takeγ to be (reparametrized) gradient flow ofφ starting fromm. Althoughφ is not a Morse
function, we note that gradient flow onΣ2j ×S1

2j is essentially the same as gradient flow onΣ2j ,
as it is constant in theS1

2j -factor, and gradient flow onΣ2j+1× S1
2j+1 is essentially the same as

gradient flow onΣ2j+1, as it is constant in theS1
2j+1-factor. If the projection ofγ ontoΣ2j or
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Σ2j+1 meets a critical pointc of saddlepoint type, we extendγ beyondc to become a piecewise
smooth curve with a corner, again following a downward gradient trajectory. We continue this
process untilγ hitsT 2. Changing variable tou= φ(γ(s)), we have

t∫
0

eφ(γ(s))−φ(m) ds=

φ(m)∫
80

eu−φ(m) du
|∇φ|(φ−1(u))

.(59)

As φ(γ(s)) is nonincreasing, ifm ∈ Cj thenγ never entersΣ2k+1 × S1
2k+1 for k < j. Also

γ hits at most one critical point in eachΣ2k for k < j. By the construction ofφ, if ck ∈ Σ2k

is the critical point thenφ|ck×S1
2k
∈ [80k2 + 80k − 80, 80k2 + 80k]. Thus the singularities of

1/|∇φ|(φ−1(u)) are well-spaced inu. If γ passes through a critical pointc andu0 = φ(c) then

1
|∇φ|(φ−1(u))

∼ 1√
|u− u0|

for u ∼ u0. From the uniform nature of∇φ near the critical points, it follows that there is a
constantD> 0, independent ofm ∈R3, such that for allx ∈ [80,φ(m)− 1],

x+1∫
x

du
|∇φ|(φ−1(u))

6D.(60)

Then

φ(m)∫
80

eu−φ(m) du
|∇φ|(φ−1(u))

6 D

1− e−1
.(61)

Thusg has quadratic curvature decay.
Puttj+1 = d(m0,Cj+1). Forj > 0, each path fromm0 toCj+1 must pass throughCj . Put

Dj =
(
S1×D2

)
∪T 2 C1 ∪T 2 · · · ∪T 2 Cj .(62)

ThenBtj+1(m0) ⊂Dj and so vol(Btj+1) 6 vol(Dj). With respect to (50), letFj be the subset
[j+ 2, 2j+ 2]× S1

2j ⊂E(2j+ 2)×S1
2j . (See Fig. 7.) For largej, φ

∣∣
Dj−Fj 6 80j2 + 120j+ 80

and so

vol(Dj − Fj)6 e240j2+360j+240vol
(
R3,h

)
.(63)

On the other hand,

vol(Fj) =

2j+2∫
j+2

e3(80j2+80j+40x)e−2(2j+2) dx=
1− e−120j

120
e240j2+480j+240e−2(2j+2).(64)

Thus

vol(Btj+1) = O
(
e240j2+480j+240e−2(2j+2)

)
.(65)
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Fig. 7.

As any path fromm0 to Cj+1 must pass throughFj ,

tj+1 >
2j+2∫
j+2

e80j2+80j+40x dx=
1− e−40j

40
e80j2+160j+80.(66)

Thus

vol(Btj+1)/t
3
j+1 = O

(
e−2(2j+2)

)
,(67)

showing thatg has slow volume growth.
If n > 3, we can do a similar construction in whichCj is the complement of a smallT n−2×D2

in T n−2×D2 andCj is decomposed as (Σ2j × T n−2)∪Tn−1 (Σ2j+1× T n−2).

7. Proof of Corollary 1.2

(1) If n= 2, put a metric on Int(N ) with flat cylindrical ends.
(2) If n= 3, suppose that∂N consists of 2-spheres and 2-tori. For a 2-sphere component of

∂N , put a metric coming from Proposition 1.4 on the corresponding end of Int(N ). For a 2-torus
component of∂N , put a flat metric on the corresponding end (1,∞)× T 2 of Int(N ). This gives
the desired metric on Int(N ). Now suppose that Int(N ) has a metric with quadratic curvature
decay and slow volume growth. From Corollary 1.1, the simplicial volume of∂N must vanish.
Thus∂N consists of 2-spheres and 2-tori.

(3) If n = 4, suppose that the connected components of∂N are graph manifolds. Then∂N
has a polarizedF -structure and Proposition 1.3 implies that there is a metric on Int(N ) with
quadratic curvature decay and slow volume growth. Now suppose that Thurston’s Geometrization
Conjecture holds and that Int(N ) has a metric with quadratic curvature decay and slow volume
growth. From Corollary 1.1, the simplicial volume of∂N must vanish. From [12], this implies
that the connected components of∂N are graph manifolds.
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