
Uniqueness of standard solutions in the work of

Perelman

Peng Lu and Gang Tian

The short time existence of Ricci flow on complete noncompact Riemannian
manifolds with bounded curvature is proven by Shi [Sh1]. The uniqueness of
such solutions is a difficult problem. Hsu studies this problem in dimension two
[Hs], otherwise there is not any result about this problem. In the fundamental
paper [Pe2] Perelman discussed a special family of solutions of Ricci flow on
R3, the so-called standard solutions, the solutions are used to construct the
geometric-topological surgeries and their uniqueness are used to construct the
longtime existence and to study the properties of the Ricci flow with surgery.
A particular nice feature about these solutions is that at space infinity these
solutions are asymptotic to round infinity cylinder.

In [Pe2] §2 Perelman gives a proof of the uniqueness of the standard solutions.
The idea is to reduce the Ricci flow equation to

ft = f ′′ + a1f
′ + b1g

′ + c1f + d1g

gt = a2f
′ + b2g

′ + c2f + d2g

by using the rotational symmetry of the solutions, then prove the uniqueness of
solutions of above equations for given initial data. However there is difficulty to
bound the coefficients in above equations near the origin of R3, the first named
author thanks John Lott for discussions in understanding this difficulty.

In this paper we give a proof of the uniqueness of standard solutions through
the uniqueness of the DeTurk-Ricci flow. The general idea of using DeTurk-Ricci
flow to prove the uniqueness of the Ricci flow is due to Hamilton [H95b] §6. Our
proof uses the rotationally symmetry of the standard solutions which is used to
prove the short time existence and the certain asymptotic behavior of harmonic
map flow.

We make two remarks. First through a private communication we have
learned that Perelman has similar idea of using the DeTurk-Ricci flow to prove
the uniqueness; Second properties of standard solutions are proven in [Pe2] §2,
for completeness we include here proofs of those properties needed to show the
uniqueness.
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1 Standard solutions

Let integer n ≥ 3. Denote Sn−1 (r) the round (n − 1)-sphere of radius r and
let dσ be the standard metric on Sn−1 (1). Let Gn be the set of rotationally
symmetric metric g0 on Rn which satisfies the following condition:

(i) The curvature operator of g0 is nonnegative and is positive at some point;
(ii) The curvature |Rmg0 | and its derivatives

∣∣∇iRmg0

∣∣ , i = 1, 2, 3, 4 are
bounded;

(iii) There is a sequence of points yi → ∞ in Rn, (Rn, g0, yi) converges to
R× Sn−1

(√
2 (n− 2)

)
in pointed C3 Cheeger-Gromov topology.

We construct a rotationally symmetric metric to show that Gn is nonempty.
Let

(
θ1, · · · , θn−1

)
be normal coordinates on Sn−1 (1), then

(
θ1, · · · , θn−1, r

)
are local coordinates on Rn. Consider rotationally symmetric complete metric
dr2 + f (r)2 dσ on Rn, the curvatures are given by

Rijji = f2 − f2 (f ′)2 Rijkn = 0 (1)
Rinnj = 0 Rinni = −ff ′′

where 1 ≤ i 6= j, k ≤ n − 1 (see, for example, [BW] §9). We choose a smooth
convex function f0 (r) satisfies

f0 (r) =
{

sin r if 0 ≤ r ≤ π
100√

2 (n− 2) if r ≥ √
3n

.

Then clearly metric g∗ + dr2 + f0 (r)2 dσ has nonnegative sectional curvature.
Using (1) it is easy to check that g∗ satisfies (i), condition (ii) and (iii) also hold
and hence Gn is not empty.

Given g0 ∈ Gn, since g0 is complete and has bounded curvature tensor, by
Shi’s existence theorem ([Sh1]) there is a solution g∗(t), t ∈ [0, T∗], T∗ > 0 of the
Ricci flow

∂g

∂t
= −2Rij , g (0) = g0 (2)

on Rn. g∗(t) has uniform bounded curvature supRn×[0,T∗]

∣∣Rmg∗(t) (x)
∣∣ < +∞

and g∗(t), t > 0 has positive curvature operator ([Sh2] Theorem 4.14). We call
any solution g(t), t ∈ [0, T ], T > 0 of (2) with supRn×[0,T ]

∣∣Rmg(t) (x)
∣∣ < +∞

a standard solution, again g(t), t > 0 has positive curvature operator ([Sh2]
Theorem 4.14). The uniqueness problem of the standard solutions is to show
that g(t) = g∗(t) on t ∈ [0, min{T∗, T}].

To prove the uniqueness, we need to establish a few properties of standard
solutions.

1.1 Asymptotic behavior of standard solutions g(t) at
space infinity

Let yi →∞ be the sequence of points in Rn such that (Rn, g0, yi) converges to
R× Sn−1

(√
2 (n− 2)

)
in pointed C3 Cheeger-Gromov topology.
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Lemma 1 There is a subsequence of (Rn, g (t) , yi) , t ∈ [0, T ] which converges
in pointed C3 Cheeger-Gromov topology to the round cylinder solution

dr2 + 2 (n− 2) (1− t) dσ

on R× Sn−1. In particular T < 1.

Proof. We will apply Hamilton’s Cheeger-Gromov type compactness theo-
rem [H95a], but we need to make some modification of the compactness theorem
since time 0 is not an interior point of [0, T ]. In general if there is a sequence of
complete solution of the Ricci flow (Mn

k , gk(t), pk), t ∈ [0, T ], k ∈ N satisfying

sup
k

sup
Mn

k

∣∣∇iRmgk(0) (x)
∣∣ < +∞, 0 ≤ i ≤ i0 + 1 for some i0 ∈ N

sup
k

sup
Mn

k ×[0,T ]

∣∣Rmgk(t) (x)
∣∣ < +∞,

one can improve Shi’s derivative estimate and get

sup
k

sup
Mn

k ×[0,T ]

∣∣∇iRmgk(t) (x)
∣∣ < +∞ i ≤ i0 + 1.

We will give a proof of this estimate in the appendix at the end. This esti-
mate implies that in normal coordinates the Ci0+1-norm of metric tensor gk(t)
are bounded independent of k, t. Suppose we have injectivity radius bound
igk(0)(pk) ≥ δ > 0, then one can follow the proof of compactness theorem in
[H95a] to conclude the following. There is a subsequence (Mn

kj
, gkj (t), pkj ), t ∈

[0, T ] which converges in pointed Ci0 Cheeger-Gromov topology to an complete
solution of the Ricci flow (Mn

∞, g∞(t), p∞), t ∈ [0, T ], with bounded curvature
tensor and ig∞(0)(p∞) ≥ δ.

Applying this compactness statement to (Rn, g(t), yi), t ∈ [0, T ], we conclude
that there is a subsequence yij (still denoted by yi) such that

(Rn, g(t), yi) → (M∞, g∞(t), y∞), t ∈ [0, T ]

in the C3-topology. Note that by assumption (iii) (M∞, g∞(0)) is isometric to
round cylinder R×Sn−1

(√
2 (n− 2)

)
. (M∞, g∞(t)) has nonnegative curvature

operator because g(t) has nonnegative curvature operator.
Since M∞ has two ends, (M∞, h∞(t)) has a line for each t ∈ [0, T ]. From the

local version of Hamilton’s strong maximal principle ([?] §8), the line direction
is preserved by the Ricci flow. By the Toponogov splitting theorem the metric
g∞(t), t ∈ [0, T ] splits and has the following form

g∞(t) = dr2 + gSn−1 (t) ,

where gSn−1 (t) is the solution of the Ricci flow on sphere Sn−1 with initial
metric 2 (n− 2) dσ. It follows from the uniqueness of Ricci flow solution on
closed manifold that gSn−1 (t) = 2 (n− 2) (1− t) dσ.
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1.2 Standard solutions are rotationally symmetric

Lemma 2 Let X be a vector field evolving by

∂

∂t
Xi = ∆Xi + Ri

kXk (3)

and Vij + ∇i

(
gjkXk

)
= gjk∇iX

k, then V evolves by

∂

∂t
Vij = ∆Vij − 2RikjlVkl −RikVkj −RjkVik. (4)

Proof. The evolution equation of Xi + gikXk is

∂

∂t
Xi = −2RikXk + gik

∂

∂t
Xk

= −2RikXk + gik

(
∆Xk + Rk

j Xj
)

= ∆Xi −RikXk.

We compute

∂

∂t
Vij =

∂

∂t
(∇iXj) = −

(
∂

∂t
Γl

ij

)
Xl +∇i

(
∂

∂t
Xj

)

= (−∇lRij +∇iRjl +∇jRil)Xl +∇i (∆Xj −RjkXk) .

From

∇i (∆Xj) = ∇k∇i∇kXj −Rikkl∇lXj −Rikjl∇kXl

= ∇k (∇k∇iXj −RikjlXl)−Ril∇lXj −Rikjl∇kXl

= ∆Vij −Xl∇kRikjl − 2RikjlVkl −RilVlj ,

we get

∂

∂t
Vij = ∆Vij − 2RikjlVkl −RikVkj −RjkVik

−Xl∇lRij + Xl∇jRil −Xl∇kRikjl.

(4) follows from the second Bianchi identity 0 = ∇kRikjl + ∇jRiklk +
∇lRikkj = ∇kRikjl −∇jRil +∇lRij .

Let hij + Vij + Vji. It follows from (4) that

∂

∂t
hij = ∆Lhij , (5)

where ∆Lhij + ∆hij +2Rikljhkl−Rikhkj−Rjkhki is the Lichnerowicz Lapla-
cian. A simple calculation shows that there is a constant C > 0 such that

(
∂

∂t
−∆

)
|hij |2 = −2 |∇khij |2 + 4Rijklhjkhil (6)

∂

∂t
|hij |2 ≤ ∆ |hij |2 − 2 |∇khij |2 + C |hij |2 . (7)
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Note Xi(t) is Killing vector fields for g(t) if and only if hij(t) = 0. For
any given Killing vector field Xi(0) for metric g(0), (3) has a bounded solution
Xi (t) for t ∈ [0, T ). Then |hij (t)|2 is a bounded function and satisfying (7) and
|hij |2 (0) = 0. Since the metric g(t) has bounded sectional curvature, we can
apply the maximum principle to |hij |2 on complete manifolds ([Sh2] Theorem
4.6) to conclude that hij(t) = 0 for all t ≥ 0. So Xi (t) is Killing vector fields
for g (t).

The following is a very nice observation of Bennett Chow, we thank him for
allowing us to use it here. From hij = 0 we have ∇jX

i + ∇iX
j = 0. Taking

∇j derivative and summing over j we get ∆Xi + Ri
kXk = 0 for all t. Hence

(3) gives ∂
∂tX

i = 0 and Xi(t) = Xi(0), i.e., the rotation group O(n) of Rn are
contained in the isometry group of g(t). We conclude

Lemma 3 The standard solution g(t), t ∈ [0, T ] are rotationally symmetric.

2 From Ricci flow to DeTurk-Ricci flow

In this section we discuss the DeTurk-Ricci flow and the harmonic map flow.

2.1 Converting Ricci flow solutions to Deturk-Ricci flow
solutions

Let (Mn, h(t)), t ∈ [0, T ] be a solution of the Ricci flow and let ψt : M → M, t ∈
[0, T1] be a solution of harmonic map flow

∂ψt

∂t
= ∆h(t),h(0)ψt, ψ0 = Id. (8)

In local coordinates (xi) on domain M and (yα) on target M , the harmonic
map flow (8) can be written as

(
∂

∂t
−∆h(t)

)
ψα (x, t) = hij (x, t) Γα

βγ (ψ (x, t))
∂ψβ (x, t)

∂xi

∂ψγ (x, t)
∂xj

(9)

where Γα
βγ is the Christoffel symbols of h(0).

Suppose ψ (x, t) is a solution with bounded |∇ψ|C2 norm, then ψ (t) , t ∈
[0, T1] are diffeomorphisms when T1 > 0 is small. For 0 ≤ t ≤ T1, define
ĥ (t) +

(
ψ−1

t

)∗
h (t), then ĥ (t) is a solution of Ricci–DeTurck flow by (see

[D], [H95b] or [CK] Chapter 3 for details)

∂

∂t
ĥij = −2R̂ij + ∇̂iWj + ∇̂jWi ĥ (0) = h(0),

where R̂ij and ∇̂i are the Ricci curvature and Levi-Civita connection of ĥ re-

spectively and the time-dependent 1-form W = W
(
ĥ
)

is defined by
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(
W (ĥ)

)
j

+ ĥjkĥ pq
(
Γ̂k

pq − Γk
pq (h(0))

)
.

In local coordinates the Ricci-DeTurk flow takes the following form ([Sh1]
Lemma 2.1)

∂ĥij

∂t
= ĥkl∇k∇lĥij − ĥklh(0)ipĥ

pqRjkql (h(0))− ĥklh(0)jpĥ
pqRikql (h(0))

+
1
2
ĥklĥpq

[ ∇iĥpk∇j ĥql + 2∇kĥjp∇qĥil

−2∇kĥjp∇lĥiq − 2∇j ĥpk∇lĥiq − 2∇iĥpk∇lĥjq

]
. (10)

where ∇ is the Levi-Civita connection of h(0). This is a parabolic system.

Recall the following derivative estimate for solution ĥ(t) of the Ricci-DeTurck
flow from [Sh1] Lemmas 4.1 and 4.2, one can check easily that the γ dependence
of constant C below is not necessary.

Proposition 4 Let
(
Mn, ĥ (t)

)
, t ∈ [0, T ), be a solution of the Ricci-DeTurck

flow. For a given m ∈ N, suppose

sup
x∈Bg̃(x0,γ+ δ

m+1 ),i≤k

|∇i
ĥ(0)

Rmĥ(0)|ĥ(0) ≤ Bk.

There exists a constant C = C (n,m, δ, T, Bk) depending only on n,m, δ, T, Bk

such that if
(

1− 1
256000n10

)
ĥ(0) ≤ ĥ (t) ≤

(
1 +

1
256000n10

)
ĥ(0), 0 ≤ t ≤ T

then ∣∣∣∇̃mĥ
∣∣∣
ĥ(0)

≤ C in Bĥ(0)

(
x0, γ +

δ

m + 1

)
× [0, T ) (11)

2.2 Solutions of harmonic map flow

In this section we study the existence of harmonic flow (8) and its asymptotic
behavior at the space infinity when h(t) = g(t) is a standard solutions. Here we
use of the rotationally symmetric property and asymptotic property at infinity
of g(t).

Let θ = (θ1, · · · , θn−1) be local coordinates on the round (n − 1)-sphere of
radius 1, and let dσ the volume form on the sphere. Since g(t) is rotationally
symmetric and n ≥ 3, we can write

g(t) = dr2 + f(r, t)2dσ g0 = dr2 + f0(r)2dσ (12)

where r be the radial coordinate on Rn depending on time t, i.e. ∂r
∂t 6= 0. It is

clear that f(r, 0) = f0(r). We want to solve (8) by maps of form

φ(t) : Rn → Rn (r, θ) → (ρ(r, t), θ). (13)
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2.2.1 The harmonic map flow equation. Using (12) and (13) it is easy
to calculate the energy functional

E(φ(t)) + 1
2

∫

Rn

|∇φ(t)|g(t),g0
dVg(t)

=
1
2

∫

Rn

[(
∂ρ

∂r

)2

+ (n− 1)f2
0 (ρ)f−2(r, t)

]
dVg(t).

If we have a compact-supported variation δρ = w, then

δE(φ(t))(w) =
1
2

∫

Rn

[
2
∂ρ

∂r

∂w

∂r
+ 2(n− 1)f0(ρ)

∂f0

∂ρ
f−2(r, t)w

]
dVg(t)

=
∫ +∞

0

[
fn−1(r, t)

∂ρ

∂r

∂w

∂r
+ (n− 1)f0(ρ)

∂f0

∂ρ
fn−3(r, t)w

]
dr ·

∫

Sn−1
dVdσ

=
∫

Rn

[
−f1−n ∂

∂r

(
∂ρ

∂r
fn−1

)
+ (n− 1)f0(ρ)

∂f0

∂ρ
f−2(r, t)

]
wdVg(t).

Hence for rotationally symmetric maps the harmonic map flow equation (8) has
the following form

dρ

dt
=

1
fn−1(r, t)

∂

∂r

(
fn−1(r, t)

∂ρ

∂r

)
− (n− 1)f−2(r, t)f0(ρ)

∂f0

∂ρ

∂ρ

∂t
=

∂2ρ

∂r2
+

n− 1
f(r, t)

∂f

∂r

∂ρ

∂r
− n− 1

f2(r, t)
f0(ρ)

∂f0

∂ρ
− ∂ρ

∂r

dr

dt
. (14)

Note that coordinate r on domain Rn depends on time t, this leads us to take
full derivative of ρ(r, t) with respect to t in above formula, dρ

dt = ∂ρ
∂t + ∂ρ

∂r
dr
dt .

2.2.2 An equation equivalent to the harmonic map flow. We want
to make change of variables and turn (14) to an equation more easily to solve.
Let

f(r, t) = ref̃(r2,t) f0(ρ) = ρef̃0(ρ
2).

Note that f̃(w, 0) = f̃0(w). We claim that f̃(w, t) and f̃0(w) are both smooth
functions of w ≥ 0 and t. Let f(r, t) = rf̂(r2, t), to see this claim we only
need to show that f̂(w, t) is a smooth function of w, t and f̂(0, t) 6= 0. Write
metric g(t) = gijdxidxj and let x1 = r̂ cos θ1, x2 = r̂ sin θ1 cos θ2, · · · , xn =
r̂ sin θ1 · · · sin θn−1, we compute f(r, t) by choosing r̂ = x1 and θ1 = · · · =
θn−1 = 0, i.e., x2 = · · · = xn = 0.

g(t) = g11(r̂, 0, · · · , 0, t)dr̂2 + g22(r̂, 0, · · · , 0, t)r̂2dσ.

So

r =
∫ r̂

0

√
g11(ŝ, 0, · · · , 0, t)dŝ = r̂

∫ 1

0

√
g11(r̂s, 0, · · · , 0, t)ds
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and

f̂(r2, t) =
r̂
√

g22(r̂, 0, · · · , 0, t)∫ r̂

0

√
g11(ŝ, 0, · · · , 0, t)dŝ

=

√
g22(r̂, 0, · · · , 0, t)∫ 1

0

√
g11(r̂s, 0, · · · , 0, t)ds

.

For any k > 0 suppose F (r̂, t) is an even function in r̂ and is differentiable up
to order 2k, it is clear that function wkF (

√
w, t), w ≥ 0 is differentiable up to

order k in w ≥ 0 and its (left-)derivatives up to order k − 1 at w = 0 are 0.
Since by rotational symmetry g22(r̂, 0, · · · , 0, t) is even in r̂ and by Taylor series
we can write for any k > 0

g22(r̂, 0, · · · , 0, t) = c0(t) + c1(t)r̂2 + · · ·+ ck−1(t)r̂2k−2 + r̂2kF (r̂, t)

for some smooth even function F (r̂, t). Let ĝ22(r̂2, 0, · · · , 0, t) = g22(r̂, 0, · · · , 0, t).
Since r̂2kF (r̂, t) has k-derivative, ĝ22(w, 0, · · · , 0, t) is a smooth function of
w ≥ 0, t. Similarly

√
g11(r̂s, 0, · · · , 0, t) is a smooth function of r̂2, t . Hence

we conclude that
√

g22(r̂,0,··· ,0,t)
∫ 1
0

√
g11(r̂s,0,··· ,0,t)ds

and r2 = r̂2
∫ 1

0

√
g11(r̂s, 0, · · · , 0, t)ds is a

smooth function of r̂2, t. Furthermore r2 is a smooth invertible function of r̂2.
We now conclude that f̂(w, t) is a smooth function of w ≥ 0, t.

Since

r−1 dr

dt
=

∫ 1

0
∂
∂t

√
g11(r̂s, 0, · · · , 0, t)ds∫ 1

0

√
g11(r̂s, 0, · · · , 0, t)ds

,

a simple consequence of above arguments is that r̃(w, t) is a smooth function

of w ≥ 0, t for r̃(r2, t) + r−1 dr
dt . Let B(w, t) + 1

2

∫ r2

0
r̃(w, t)dw. Clearly dr

dt =
∂
∂r B(r2, t) and B(w, t) is a smooth function of w ≥ 0, t.

We will solve (14) for solutions of form

ρ(r, t) = reρ̃(r,t).

Then some straight forward calculation shows that (14) becomes

1
r

dr

dt
+

∂ρ̃

∂t
=

∂2ρ̃

∂r2
+

n + 1
r

∂ρ̃

∂r
+ (n− 1)

∂f̃

∂r

(
r2, t

) ∂ρ̃

∂r
+

(
∂ρ̃

∂r

)2

+
n− 1

r2

[
1− e2f̃0(ρ2)−2f̃(r2,t)

]
+ 2 (n− 1)

∂f̃

∂w

(
r2, t

)

− 2 (n− 1) e2f̃0(ρ2)+2ρ̃−2f̃(r2,t) ∂f̃0

∂w
(ρ2)− 1

r

dr

dt
− dr

dt

∂ρ̃

∂r
.

Note that from the definition of f̃ (0, t) = 0 we can write f̃ (w, t) = wf̃∗(w, t)
and f̃0 (w) = wf̃∗0 (w) where both f̃∗(w, t) and f̃∗0 (w) are smooth functions. So

n− 1
r2

[
1− e2f̃0(ρ2)−2f̃(r2,t)

]
=

n− 1
r2

[
1− e2r2[e2ρ̃f̃∗0 (ρ2)−f̃∗(r2,t)]

]
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which is a smooth function of ρ̃, r2, t. Let

G1(r2, ρ̃, t) +n− 1
r2

[
1− e2f̃0(ρ2)−2f̃(r2,t)

]
+ 2 (n− 1)

∂f̃

∂w

(
r2, t

)

− 2 (n− 1) e2f̃0(ρ2)+2ρ̃−2f̃(r2,t) ∂f̃0

∂w
(ρ2)− 2

r

dr

dt
. (15)

G(w, ρ̃, t) is a smooth function.
Recall dr

dt = ∂
∂r B(r2, t). (14) can be written as

∂ρ̃

∂t
=

∂2ρ̃

∂r2
+

n + 1
r

∂ρ̃

∂r
+

[
(n− 1)

∂f̃

∂r
− ∂B

∂r

]
(
r2, t

) ∂ρ̃

∂r
+

(
∂ρ̃

∂r

)2

+ G1(r2, ρ̃, t).

Now we think ρ̃ as a rotational symmetric function defined on Rn+2 and let
G(x, ρ̃, t) + G1(

∑n+2
i=1 (xi)2, ρ̃, t). Then the equation above can be written as

∂ρ̃

∂t
= ∆ρ̃ +∇[(n− 1)f̃ −B] · ∇ρ̃ + |∇ρ̃|2 + G(x, ρ̃, t) (16)

where ∇ and ∆ are the Levi-Civita connection and Laplacian defined by Eu-
clidean metric on Rn+2 respectively. Note that f̃ = f̃(

∑n+2
i=1 (xi)2, t), B =

B(
∑n+2

i=1 (xi)2, t) are smooth functions on Rn+2.
From the nonnegativity of the curvature operator of g(t) and Lemma 1, we

have the following properties of f̃ , f̃0 for large r, ρ.

ef̃(r2,t) ∼ 1
(1− 2t)r

∂f̃

∂w
(r2, t) ∼ 1

r2

ef̃0(ρ) ∼ 1
ρ

∂f̃0

∂w
(ρ) ∼ 1

ρ2
(17)

r−1 ∂r

∂t
∼ 1

r2

∂B

∂r
(r2, t) ∼ 1

r
.

2.2.3 The short time existence. We will show that equation (16) with
initial condition ρ̃(x, 0) = 0 has a solution on time interval [0, T ]. Let x, y be
two points in Rn+1 and

H(x, y, t) =
1

(4πt)(n+2)/2
e−

|x−y|2
4t

be the heat kernel of Rn+1. We solve (16) by successive approximation [LT].
Define

F (x, ρ̃,∇ρ̃, t) + ∇
[
(n− 1)f̃ −B

]
· ∇ρ̃ + |∇ρ̃|2 + G(x, ρ̃, t).

Let ρ̃0(x, t) = 0. For i ≥ 1 we define ρ̃i inductively by

ρ̃i =
∫ t

0

∫

Rn+2
H(x, y, t− s)F (y, ρ̃i−1,∇ρ̃i−1, s)dyds (18)

9



which solves
∂ρ̃i

∂t
= ∆ρ̃i + F (x, ρ̃i−1,∇ρ̃i−1, t) ρ̃i(x, 0) = 0. (19)

To show the existence of ρ̃i by induction, it suffices to prove the following
statement: for any i ≥ 1 if |ρ̃i−1|, |∇ρ̃i−1| are bounded, then ρ̃i exists and
|ρ̃i|, |∇ρ̃i| are bounded. Assume |ρ̃i−1| ≤ C1, |∇ρ̃i−1| ≤ C2 are bounded on
Rn+2× [0, T ], then it follows from (17) that G(x, ρ̃i−1, t) is bounded on Rn+2×
[0, T ]

|G(x, ρ̃i−1, t)| ≤ C3

where C3 depends on C1, C2. F (x, ρ̃i−1,∇ρ̃i−1, t) is bounded

|F (x, ρ̃i−1,∇ρ̃i−1, t)| ≤
[
(n− 1) sup |∇f̃ |+ sup |∇B|

]
C2 + C2

2 + C3 + C4.

Hence ρ̃i exists.
The bounds of |ρ̃i| and |∇ρ̃i| follow from the following estimates

|ρ̃i| ≤
∫ t

0

∫

Rn+2
H(x, y, t− s)C4dyds ≤ C4t,

and

|∇ρ̃i| = |
∫ t

0

∫

Rn+2
[∇xH(x, y, t− s)]F (y, ρ̃i−1,∇ρ̃i−1, s)dyds|

≤
∫ t

0

∫

Rn+2
|∇xH(x, y, t− s)|C4dyds

=
∫ t

0

∫

Rn+2

1
(4π(t− s))(n+2)/2

e−
|x−y|2
4(t−s)

|x− y|
2(t− s)

C4dyds

≤ (n + 2)C4√
π

∫ t

0

1√
t− s

ds =
2(n + 2)C4√

π

√
t.

If we define T1 + min{C1
C4

,
πC2

2
4(n+2)2C2

4
}, then for 0 ≤ t ≤ T1 we have for all i

|ρ̃i| ≤ C1 |∇ρ̃i| ≤ C2. (20)

We prove the convergence of ρ̃i to a solution of (16) by showing that it is
a Cauchy sequence in C1-norm. We assume 0 ≤ t ≤ T1. Note that ρ̃i − ρ̃i−1

satisfies
∂(ρ̃i − ρ̃i−1)

∂t
= ∆(ρ̃i − ρ̃i−1) + F (x, ρ̃i−1,∇ρ̃i−1, t)− F (x, ρ̃i−2,∇ρ̃i−2, t)

(ρ̃i − ρ̃i−1)(x, 0) = 0. (21)

where

F (x, ρ̃i−1,∇ρ̃i−1, t)− F (x, ρ̃i−2,∇ρ̃i−2, t)

=[(n− 1)∇f̃ −∇B +∇(ρ̃i−1 + ρ̃i−2)] · ∇(ρ̃i−1 − ρ̃i−2)
+ G(x, ρ̃i−1, , t)−G(x, ρ̃i−2, t)

10



By lengthy but straight-forward calculations one can verify the Lipschitz prop-
erty of G(x, ρ̃, t)

|G(x, ρ̃i−1, t)−G(x, ρ̃i−2, t)| ≤ C5 · |ρ̃i−1 − ρ̃i−2|
where C5 depends on C1. This and (20) implies

|F (x, ρ̃i−1,∇ρ̃i−1, t)− F (x, ρ̃i−2,∇ρ̃i−2, t)|
≤C5 · |ρ̃i−1 − ρ̃i−2|+ C6 · |∇ρ̃i−1 −∇ρ̃i−2| (22)

where C6 + [(n− 1) sup |∇f̃ |+ sup |∇B|+ 2C2).
Let

Ai(t) = sup
0≤s≤t,x∈Rn+2

|ρ̃i − ρ̃i−1|(x, s)

Bi(t) = sup
0≤s≤t,x∈Rn+2

|∇(ρ̃i − ρ̃i−1)|(x, s).

From (21) and (22) we can estimate |ρ̃i − ρ̃i−1| and |∇(ρ̃i − ρ̃i−1)| in the same
way as we estimate |ρ̃i| and |∇ρ̃i| above, we conclude

Ai(t) ≤ [C5Ai−1(t) + C6Bi−1(t)] · t

Bi(t) ≤ 2(n + 2)[C5Ai−1(t) + C6Bi−1(t)]√
π

·
√

t.

Let C7 + max{C5, C6}, then we get

Ai(t) + Bi(t) ≤
(

C7t +
2(n + 2)C7

√
t√

π

)
· (Ai−1(t) + Bi−1(t)) .

If we choose T2 ∈ (0, T1] so that C7T2 + 2(n+2)C7
√

T2√
π

≤ 1
2 , then

Ai(t) + Bi(t) ≤ 1
2

(Ai−1(t) + Bi−1(t)) ,

so ρ̃i is a Cauchy sequence in C1(Rn+2).
Let limi→+∞ ρ̃i = ρ̃∞. Then ∇ρ̃i → ∇ρ̃∞ and F (x, ρ̃i−1,∇ρ̃i−1, t) →

F (x, ρ̃∞,∇ρ̃∞, t) uniformly. Hence we get from (18)

ρ̃∞ =
∫ t

0

∫

Rn+2
H(x, y, t− s)F (y, ρ̃∞,∇ρ̃∞, s)dyds (23)

The argument below is similar to the argument in [LT] p.21. Since ρ̃i is a smooth
solution of (19), ρ̃i(x, 0) = 0 and both ρ̃i and F (x, ρ̃i1 ,∇ρ̃i−1, t) are uniformly
bounded on Rn+2 × [0, T2], by Theorem 1.11 [LSU] p.211 and Theorem 12.1
[LSU] p.223, for any compact K ⊂ Rn+2 and any 0 < t∗ < T2, there is C8 and
α ∈ (0, 1) independent of i such that

|∇ρ̃i(x, t)−∇ρ̃i(y, s)| ≤ C8 ·
(
|x− y|α + |t− s|α/2

)

11



where x, y ∈ K and 0 ≤ t < s ≤ t∗. Let i →∞ we get

|∇ρ̃∞(x, t)−∇ρ̃∞(y, s)| ≤ C8 ·
(
|x− y|α + |t− s|α/2

)
. (24)

Hence ∇ρ̃∞ is Hölder continuous. From (23) we conclude that ρ̃∞ is a solution
of (16) on Rn+2 × [0, T2] with ρ̃∞(x, 0) = 0.

2.2.4 The asymptotic behavior of the solutions. In the rest of this
subsection we study the asymptotic behavior of solution ρ̃(x, t) as x →∞. First
we prove inductively that there is a constant λ and T3 ∈ (0, T2] such that for
x ∈ Rn+2, t ∈ [0, T3]

|ρ̃i(x, t)| ≤ λ

(1 + |x|)2 |∇ρ̃i(x, t)| ≤ λ

(1 + |x|)2 (25)

Clearly these estimates holds for i = 0. It follows from (20) and (17) that there
is a constant C9 independent of i such that

|G(x, ρ̃i, t)| ≤ C9

(1 + |x|)2
[
(n− 1)|∇f̃ |+ |∇B|

]
(x, t) ≤ C9

1 + |x| .

Now we assume the estimates hold for i, then for 0 ≤ t ≤ T2

|ρ̃i(x, t)| ≤
∫ t

0

∫

Rn+2
H(x, y, t− s)

[
C9λ

(1 + |y|)2 +
λ2

(1 + |y|)2 +
C9

(1 + |y|)2
]

dyds

=
∫ t

0

∫

Rn+2

1
(4π(t− s))(n+2)/2

e−
|x−y|2
4(t−s)

[
C9λ + λ2 + C9

(1 + |y|)2
]

dyds

≤ (C9λ + λ2 + C9) · C(n)t
(1 + |x|)2 .

Also we have

|∇ρ̃i(x, t)| ≤
∫ t

0

∫

Rn+2
|∇xH(x, y, t− s)|

[
C9λ + λ2 + C9

(1 + |y|)2
]

dyds

=
∫ t

0

∫

Rn+2

|x− y|
2(t− s)

1
(4π(t− s))(n+2)/2

e−
|x−y|2
4(t−s)

[
C9λ + λ2 + C9

(1 + |y|)2
]

dyds

≤ (C9λ + λ2 + C9) · C(n)
√

t

(1 + |x|)2 .

If we choose T3 ∈ (0, T2] such that

(C9λ + λ2 + C9) · C(n)T3 ≤ λ and (C9λ + λ2 + C9) · C(n)
√

T3 ≤ λ,

then (25) hold for all i. From the definition of ρ̃∞ we conclude

|ρ̃∞(x, t)| ≤ λ

(1 + |x|)2 |∇ρ̃∞(x, t)| ≤ λ

(1 + |x|)2 (26)

12



Now we consider ρ̃∞ as a solution of the following linear equation

∂υ

∂t
= ∆υ +∇[(n− 1)f̃ −B + ρ̃∞] · ∇υ + G(x, ρ̃∞, t)

υ(x, 0) = 0.

From (24) and (17) we know that ∇[(n−1)f̃−B+ ρ̃∞] has Cα,α/2-Holder-norm
bound. By some lengthy calculation we get

|G(x, ρ̃∞, t)|Cα,α/2 ≤ C10

(1 + |x|)2 .

By standard interior Schauder estimate for parabolic equation we conclude

|ρ̃∞|C2+α,1+α/2 ≤ C11

(1 + |x|)2 .

Using this estimate one can further show by calculation

|∇2[(n− 1)f̃ −B + ρ̃∞]|Cα,α/2 ≤ C12

|∇G(x, ρ̃∞, t)|Cα,α/2 ≤ C13

(1 + |x|)2 .

By high order interior Schauder estimates for parabolic equation we conclude

|∇ρ̃∞|C2+α,1+α/2 ≤ C13

(1 + |x|)2 .

We have proved the following

Proposition 5 For standard solution (Rn, g(t)), there is a rotationally sym-
metric solution φ(t)(x) = xeρ̃(x,t) to the harmonic map flow

∂φ(t)
∂t

= ∆g(t),g(0) φ(0)(x) = x,

and |∇iρ̃|(x, t) ≤ C14
(1+|x|)2 for 0 ≤ i ≤ 3.

3 The uniqueness of standard solutions

Let φ(t) be the solution of harmonic map flow from §2.2, in this section we
use the asymptotic behaviors of g(t) and of φ(t) to prove the uniqueness of
ĝ (t) =

(
φ−1

t

)∗
g (t). Then the uniqueness of standard solutions follows easily.

3.1 The uniqueness for the solutions of Deturk-Ricci flow

We prove the following general uniqueness result for Deturk-Ricci flow on open
manifolds.
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Proposition 6 Let G (t) and H (t) , 0 ≤ t ≤ T be two bounded solution of the
Deturk-Ricci flow on complete and noncompact manifold Mn with initial metric
G (0) = H (0) = g̃ and for some δ ∈ (0, 1)

(1− δ) g̃ ≤ G (t) ≤ (1 + δ) g̃

(1− δ) g̃ ≤ H (t) ≤ (1 + δ) g̃

‖G(t)‖C2(Ωb),g̃
< +∞

‖H(t)‖C2(Ωb),g̃
< +∞.

Suppose G (t) and H (t) has the same sequenctial asymptotical behavior at ∞ in
the sense that there is a sequence of exhausting submanifolds of Ωk ⊂ M with
Ωk ⊂ Ωk+1 and ∪Ωk = M . For any ε > 0, there is a k0 such that

|G (t)−H (t)|C1(∂Ωk0),g̃ ≤ ε,

Then G (t) = H (t), i.e., the Deturk-Ricci flow has uniqueness in above allowable
family of solutions.

Proof. Using the orthonormal frame of g̃ and the Ricci-Deturk flow (10)
for G and H we compute ∂

∂t (Gij (t)−Hij (t)) and then estimate

∂

∂t
|G (t)−H (t)|2g̃ = 2

〈
∂

∂t
(G (t)−H (t)) , G (t)−H (t)

〉

g̃

≤ 2Gαβ∇̃α∇̃β (Gij −Hij) (Gij (t)−Hij (t))

+ C14 |G (t)−H (t)|2g̃ + C14 |G (t)−H (t)|2g̃
+

(
C14 |G (t)−H (t)|g̃ + C14 |∇G (t)−∇H (t)|g̃

)
|G (t)−H (t)|g̃

≤ 2Gαβ∇̃α∇̃β |G (t)−H (t)|2g̃ − 4Gαβ∇̃α (G(t)−H(t)) · ∇̃β (G (t)−H (t))

+ C14 |G(t)−H(t)|2g̃ + C14 |∇ (G(t)−H(t))|g̃ |G(t)−H(t)|g̃
≤ 2Gαβ∇̃α∇̃β |G (t)−H (t)|2g̃ − 4 (1− δ) |∇ (G(t)−H(t))|2g̃
+ C14 |G(t)−H(t)|2g̃ + (1− δ) |∇ (G(t)−H(t))|2g̃ +

C2
14

4 (1− δ)
|G(t)−H(t)|2g̃ .

We have proved

∂

∂t
|G (t)−H (t)|2g̃ ≤ 2Gαβ∇̃α∇̃β |G (t)−H (t)|2g̃ + C15 |G (t)−H (t)|2g̃ (27)

pointwise on Ωa with C15 depends only on n, δ, ‖G(t)‖C2(Ωb),g̃
and ‖H(t)‖C2(Ωb),g̃

.

If G (t) 6= H (t), then there is a point x0 such that |G (t0)−H (t0)|2g̃ (x0) > ε0
for some t0 > 0 and some ε0 > 0. We choose a k0 such that x0 ∈ Ωk0 and

sup
x∈∂Ωb

|g (t)− h (t)|2g̃ (x) ≤ ε (28)
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where ε > 0 is a constant to be chosen later. Recall we have initial condition
|G (0)−H (0)|2g̃ = 0. Applying maximum principle to |G (t)−H (t)|2g̃ in (27)
on domain Ωk0 , we get

e−C15t |G (t)−H (t)|2g̃ (x) ≤ ε. for all x ∈ Ωb.

This is a contradiction if we choose ε ≤ ε0e
−C15T . The proposition is proved.

Let g(t) and g∗(t) be two standard solutions with same initial condition. By
Proposition 4 there are φ(t) for g(t) and φ∗(t) for g∗(t) which are two solutions
of the harmonic map flow, 0 ≤ t ≤ T3. Let Ĝ(t) + (φ−1(t)) ∗ g(t) and Ĥ(t) +
(φ−1
∗ (t)) ∗ g∗(t). Then Ĝ(t) and Ĥ(t) are two solutions of Ricci-Deturk flow

with Ĝ(0) = Ĥ(0). Choose T4 ∈ (0, T3] such that Ĝ(t) and Ĥ(t) is δ-close
to Ĝ(0) as required in Proposition 5. It follows from Lemma 1 and the decay
estimate in Proposition 4 that Ĝ(t) and Ĥ(t) are bounded solutions and they
have same sequential asymptotic behavior at infinity. We can apply Proposition
5 to conclude Ĝ(t) = Ĥ(t) on 0 ≤ t ≤ T4. We have proved

Lemma 7 The Ricci-Deturk solutions Ĝ(t) and Ĥ(t) constructed from standard
solutions g(t) and g∗(t) with g(0) = g∗(0) are the same, Ĝ(t) = Ĥ(t) for t ∈
[0, T4].

Remark 8 Another way to prove the uniqueness of Ricci-DeTurk flow is to use
maximum principle on open manifolds, then we do not need using the asymptotic
behavior.

Proposition 9 Let ĥ(0) be a metric on complete manifold with injectivity ra-
dius lower bound δ1 > 0 and curvature bound

|∇iĥ(0)Rmĥ(0)|ĥ(0) ≤ C for i = 0, 1, 2.

Let ĥ1(t) and ĥ2(t), 0 ≤ t ≤ T are two solutions of the Ricci-Deturk flow with
ĥ1(0) = ĥ2(0) = ĥ(0). Suppose

(
1− 1

256000n10

)
ĥ(0) ≤ ĥ (t) ≤

(
1 +

1
256000n10

)
ĥ(0), 0 ≤ t ≤ T

Then h1(t) = h2(t), 0 ≤ t ≤ T .

Proof. Let u(x, t) +
∣∣∣ĥ1 (t)− ĥ2 (t)

∣∣∣
2

ĥ0

. By (11) and the computation of

(27) we obtain that u is bounded and

∂

∂t
u ≤ 3∆ĥ(0)u + C15u u(x, 0) = 0

If one check the proof of [Sh2] Theorem 4.6, it is clear the positive sectional
curvature requirement in Assumption (A) can be replaced by lower bounded of
sectional curvature. The requirement is used for constructing cut-off function
on [Sh2] p310 which can be replaced by the injectivity radius assumption. We
can apply [Sh2] Theorem 4.6 to conclude u(x, t) = 0
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3.2 The uniqueness of standard solutions

Recall the following procedure of converting the solution ĥ (t) of Deturk-Ricci
flow in §2.1 back to solution h (t) of the Ricci flow (see [CK], p.89-90). Given
two metrics g and g∗, we define 1-form

W (g, g∗)j + gjkg pq
(
Γk

pq (g)− Γk
pq (g∗)

)
.

Define a family diffeomorphisms ϕt by solving the following ode

d

dt
(ϕt)

i = ĥij(t)W
(
ĥ(t), h(0)

)
j
,

ϕ0 = Id.

Then h(t) = ϕ∗(t)ĥ(t).
For the rest of this subsection, we adopt the notation at the end of §3.1.

Define diffeomorphisms ϕ1(t) and ϕ2(t) by

d

dt
(ϕ1(t))

i = Ĝij(t)W
(
Ĝ(t), Ĝ(0)

)
j

ϕ1(0) = Id

d

dt
(ϕ2(t))

i = Ĥij(t)W
(
Ĥ(t), Ĥ(0)

)
j

ϕ2(0) = Id.

Since Ĝ(t) = Ĥ(t) by Lemma 6, W
(
Ĝ, Ĝ(0)

)
= W

(
Ĥ, Ĥ(0)

)
and hence

ϕ1(t) = ϕ2(t). We have g(t) = ϕ∗1(t)Ĝ(t) = ϕ∗2(t)Ĥ(t) = g∗(t) for 0 ≤ t ≤ T4.
To show g(t) = g∗(t) for 0 ≤ t ≤ T , we repeat above argument using new

initial time T4. This proves the uniqueness of the standard solutions.

Theorem 10 Let g(t) and g∗(t), 0 ≤ t ≤ T be two standard solutions of the
Ricci flow as defined in §1. Suppose g(0) = g∗(0), then g(t) = g∗(t) for 0 ≤ t ≤
T .

4 Appendix: Shi’s local derivative estimate
when initial metrics have higher regularity

If initial metric has better curvature bound, we can improve Shi’s local derivative
estimates as following.

Theorem 11 For any α, K,K1, r, l ≥ 0, n and m ∈ N, there exists C =
C (α,K, Kl, r, l, n, m) depending only on α, K, Kl, r, l, n and m such that if Mn

is a manifold, p ∈ M, and g (t) , t ∈ [0, τ ] , 0 < τ ≤ α/K, is a solution to the
Ricci flow on an open neighborhood U of p containing B̄g(0) (p, r) as a compact
subset, and if

|Rm(x, t)| ≤ K for all x ∈ U and t ∈ [0, τ ],∣∣∇β Rm(x, 0)
∣∣ ≤ Kl for all x ∈ U and β ≤ l
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then
|∇m Rm(y, t)| ≤ C

tmax{m−l,0}/2

for all y ∈ Bg(0) (p, r/2) and t ∈ (0, τ ]. In particular if m ≤ l we have

|∇m Rm(y, t)| ≤ C.

Proof. Below the constant C may change from line to line and depends on
some or all α, K, Kl, r, n, l and m.

If l = 0, this is Shi’s local estimates for higher derivatives.
Consider

Fm =
(
C + tmax{m−l,0} |∇m Rm|2

)
tmax{m−l+1,0} ∣∣∇m+1 Rm

∣∣2 ,

where C is to be chosen. The main calculation is given by

Lemma 12
(

∂

∂t
−∆

)
Fm ≤ − c

tsign{max{m−l+1,0}} (Fm)2 +
C

tsign max{m−l+1,0} .

We can easily obtain the theorem from the lemma. Let η be a cutoff func-
tion with η = 1 on Bg(0)

(
p, r/2m+1

)
and support in Bg(0) (p, r/2m) . When

sign {max {m− l + 1, 0}} ≤ 0, then we have
(

∂

∂t
−∆

)
Fm ≤ −c (Fm)2 + C.

We compute
(

∂

∂t
−∆

)
(ηFm) ≤ η

(
−c (Fm)2 + C

)
−∆η · F − 2∇η · ∇F.

Let (x0, t0) be the point where ηFm attains its maximum in Bg(0) (p, r/2m) .
The maximum is finite by the assumption of the theorem. Then if t0 = 0, the
estimate follows. If t0 > 0, then a simple maximum principle argument shows
that ηFm is bounded.

When sign {max {m− l + 1, 0}} > 0, again we use a maximum principle
argument. We compute the evolution inequality for ηFm and conclude that
ηFm is bounded. The theorem then follows from induction on m.

Proof of the lemma. Given l, we argue by induction, assume that for
j = 1, . . . , m there exist constants Cj depending only on α, K, Kl, r, n, l and m.
such that for x ∈ Bg(0)

(
p, r/2j

)
and t ∈ [0, τ ],

tmax{j−l,0}/2
∣∣∇j Rm(x, t)

∣∣ ≤ Cj .

Recall that

∂

∂t

∣∣∇k Rm
∣∣2 ≤ ∆

∣∣∇k Rm
∣∣2 − 2

∣∣∇k+1 Rm
∣∣2 +

k∑

`=0

∣∣∇` Rm
∣∣ ∣∣∇k−` Rm

∣∣ ∣∣∇k Rm
∣∣ .

(29)
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Hence

∂

∂t

(
tmax{k−l,0} ∣∣∇k Rm

∣∣2
)
≤ ∆

(
tmax{k−l,0} ∣∣∇k Rm

∣∣2
)

− 2tmax{k−l,0} ∣∣∇k+1 Rm
∣∣2 + tmax{k−l,0}

k∑

i=0

∣∣∇i Rm
∣∣ ∣∣∇k−i Rm

∣∣ ∣∣∇k Rm
∣∣

+ max {k − l, 0} tmax{k−l,0}−1
∣∣∇k Rm

∣∣2 .

In particular, using our induction hypothesis that tmax{j−l,0}/2
∣∣∇j Rm(x, t)

∣∣ ≤
Cj on Bg(0) (p, r/2m)×[0, τ ] for j = 1, . . . , m,, we have with ml + max {m− l + 1, 0}

∂

∂t

(
tml

∣∣∇m+1 Rm
∣∣2

)
≤ ∆

(
tml

∣∣∇m+1 Rm
∣∣2

)
− 2tml

∣∣∇m+2 Rm
∣∣2

+ tml

m+1∑

i=0

∣∣∇i Rm
∣∣ ∣∣∇m−i Rm

∣∣ ∣∣∇m+1 Rm
∣∣ + mlt

ml−1
∣∣∇m+1 Rm

∣∣2

≤ ∆
(
tml

∣∣∇m+1 Rm
∣∣2

)
− 2tml

∣∣∇m+2 Rm
∣∣2

+ Ctml/2
∣∣∇m+1 Rm

∣∣ + (2t |Rm|+ ml) tml−1
∣∣∇m+1 Rm

∣∣2

≤ ∆
(
tml

∣∣∇m+1 Rm
∣∣2

)
− 2tml

∣∣∇m+2 Rm
∣∣2

+ Ctml−1
∣∣∇m+1 Rm

∣∣2 +
C

tsign{ml} .

Let m̂l + max {m− l, 0}. From (29) and the induction hypothesis, we have

∂

∂t

(
tm̂l |∇m Rm|2

)
≤ ∆

(
tm̂l |∇m Rm|2

)

− 2tm̂l
∣∣∇m+1 Rm

∣∣2 + m̂lt
m̂l−1 |∇m Rm|2 + C.

18



Hence if C is chosen so that 4tmax{m−l,0} |∇m Rm|2 ≤ C, then
(

∂

∂t
−∆

) [(
C + tm̂l |∇m Rm|2

)
tml

∣∣∇m+1 Rm
∣∣2

]

≤
(
C + tm̂l |∇m Rm|2

) (
−2tml

∣∣∇m+2 Rm
∣∣2 + Ctml−1

∣∣∇m+1 Rm
∣∣2 +

C

tsign{ml}

)

+
(
−2tm̂l

∣∣∇m+1 Rm
∣∣2 + m̂lt

m̂l−1 |∇m Rm|2 + C
)

tml
∣∣∇m+1 Rm

∣∣2

− 2tm̂l+ml∇|∇m Rm|2 · ∇
∣∣∇m+1 Rm

∣∣2

≤ −10tm̂l+ml |∇m Rm|2 ∣∣∇m+2 Rm
∣∣2

− 8tm̂l+ml |∇m Rm|
∣∣∇m+1 Rm

∣∣2 ∣∣∇m+2 Rm
∣∣− 2tmax{m−l,0}+ml

∣∣∇m+1 Rm
∣∣4

+
(
C + tm̂l |∇m Rm|2

) (
Ctm̂l

∣∣∇m+1 Rm
∣∣2 +

C

tsign{ml}

)

+
(
max {m− l, 0} tm̂l−1 |∇m Rm|2 + C

)
tml

∣∣∇m+1 Rm
∣∣2

≤ − 2
5tsign{ml}

(
tml

∣∣∇m+1 Rm
∣∣2

)2

+ C (1 + τ) tm̂l
∣∣∇m+1 Rm

∣∣2 +
C

tsign{ml}

≤ − c

tsign{ml}

[(
C + tm̂l |∇m Rm|2

)
tml

∣∣∇m+1 Rm
∣∣2

]2

+
C

tsign{ml} .

The lemma follows.

Peng Lu, Dept of Math, University of Oregon, Eugene, OR 97403

Gang Tian, Dept of Math, Princeton University, Princeton, NJ 08544
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