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Abstract

In this short note we present a result of Perelman with detailed
proof. The result states that if g(t) is a Kähler Ricci flow on a compact,
Kähler manifold M with c1(M) > 0, the scalar curvature and diameter
of (M, g(t)) stay uniformly bounded along the flow, for t ∈ [0,∞). We
learned about this result and its proof from G.Perelman when he was
visiting MIT in the spring of 2003. This may be helpful to people
studying the Kähler Ricci flow.

1 Introduction

We will consider a Kähler Ricci flow,

d

dt
gij̄ = gij̄ − Rij̄ = ∂i∂j̄u, (1)

on a compact, Kähler manifold M , with c1(M) > 0, of an arbitrary complex
dimension n. Cao proved in ([1]) that (1) has a solution for all time t. One
of the most important questions regarding the Kähler Ricci flow is whether
it develops singularities at infinity, that is whether the curvature of g(t)
blows up as t → ∞. This question was only answered in the case curvature
operator or bisectional curvature is nonnegative (cf. [8], [7], [2]). In 2003,
Perelman made a surprising claim that the scalar curvature of g(t) does
not blow up as t → ∞. He also showed us a sketched proof.This result of
Perelman strengthens the belief that the Kähler Ricci flow converges to a
Kähler Ricci soliton as t tends to infinity, at least outside a subvariety of
complex codimension 2. Partial progress was already made ([?]).

The goal of this paper is to give a detailed proof of Perelman’s bound on
a scalar curvature and a diameter.
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Theorem 1 (Perelman). Let g(t) be a Kähler Ricci flow (1) on a compact,
Kähler manifold M of complex dimension n, with c1(M) > 0. There exists
a uniform constant C so that

• |R(g(t))| ≤ C,

• diam(M, g(t)) ≤ C,

• |u|C1 ≤ C.

The outline of the main steps of the proof of Theorem 1 is as follows:

1. Getting a uniform lower bound on Ricci potential u(t).

2. Bounding |∇u(t)| and a scalar curvature R(t) by C 0 norm of Ricci po-
tential u(t). This can be achieved by considering the evolution equa-

tions for |∇u|2

u+2B and −∆u
u+2B , where B is a uniform constant such that

u + B > 0, whose existence is guaranteed by step 1.

3. Step 2 tells us that
√

u + 2B is a Lipshitz function and that it is enough
to bound diam(M, g(t)) in order to have uniform bounds on |u(t)|C1

and scalar curvature R(t).

4. To show that the diamters are uniformly bounded along the flow, we
will argue by contradiction. We will assume that the diameters are
unbounded as we approach infinity. Using that, we will show that the
integral of the scalar curvature over some large annulus is bounded by
C · V , where C is a uniform constant and V is a volume of a slightly
larger annulus than the one we started with. We can find such an
annulus at every time t in the sequence of times for which diamters
go to infinity. By choosing similar cut off functions as in the proof of
Perelman’s noncollapsing theorem in [12] we will show that we get a
contradiction if the diameters are unbounded as we approach infinity.

The organization of the paper is as follows. In section 2 we will give
the proof of Theorem 1. In section 3 we will discuss the convergence of the
normalized Kähler Ricci flow, using Perelman’s results.

Acknowledgements: We would like to thank Perelman for his gener-
ousity for telling us about his results on the Kähler Ricci flow. The first
author would like to thank H.D.Cao for numerous useful discussions and
helpful suggestions.
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2 Ricci potential u(t)

In this section we will show that there is a uniform lower bound on u(x, t).
We will also show that it is enough to bound diameters of (M, g(t)) in order
to have Theorem 1.

By taking the trace of (1) we get ∆u = n − R. Let φ(t) be a metric
potential, that is,

gij̄(t) = gij̄(0) + ∂i∂j̄φ.

Then we can take u(t) = d
dtφ(t). Normalize so that

∫
M

e−u = (2π)n.

Define

µ(g, τ) = inf
{f |

R

M
e−f (4πτ)−n=1}

(4πτ)−n

∫
M

e−f{2τ(R + |∇f |) + f − 2n}dV,

to be Perelman’s functional for g(t) as in [12]. Perelman has proved that
µ(g, τ) is achieved. Take f = u and τ = 1/2. Then by monotonicity of
µ(g(t)) along the Kähler Ricci flow,

A = µ(g(0), 1/2) ≤ µ(g(t), 1/2)

≤
∫

M
(2π)−ne−u(R + |∇u|2 + u − n)

=

∫
M

(2π)−ne−u(−∆u + |∇u|2 − n + u)

=

∫
M

(2π)−n∆e−u − n + (2π)−n

∫
M

e−uu

= −n + (2π)−n

∫
M

e−uu. (2)

We have just proved the following lemma.

Lemma 2. There is a uniform constant C1 = C1(A) so that
∫

e−uu ≥ C1.

Define a = −(2π)−n
∫
M ue−udV . In the following claim we will prove a

lower bound on a.

Claim 3. Moreover, there is a uniform constant C2 > 0 so that a ≥ −C2.
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Proof. Let u− = min{u, 0} and u+ = max{0, u}. Then we have

a = −(2π)−n

∫
M

ue−udV = −(2π)−n

∫
M

u−e−u−dV − (2π)−n

∫
M

u+e−u+dV

≥ −(2π)−n

∫
M

u+e−u+dV ≥ −C2,

for some constant C2 ≥ 0, since f(x) = xe−x is a bounded function for
x ≥ 0.

Remark 4. It is pretty well known that the scalar curvature is uniformly
bounded from below along the flow. We may assume R > 0.

Proof. Function u(t) satisfies,

∂i∂j̄ut = gj̄ − Rij̄ +
d

dt
∂i∂j̄ ln det(gij̄ + ∂i∂j̄φ)n

= ∂i∂j̄(u + ∆u),

which implies
d

dt
u = ∆u + u + a, (3)

where we can choose a = −
∫

ue−u(2π)n ≤ C, unifomly bounded from above
by the previous lemma.

Lemma 5. Function u(t) is uniformly bounded from below.

If the Ricci potential u is very negative for some time t0, say u(t0) ≤
−2(n + C1), from (3), by Lemma 2 and Remark 4 we have

d

dt
u = n − R + u + a ≤ n + C1 + u < 0, (4)

at t = t0, which implies that u(t) stays very negative for t ≥ t0. In other
words, if for some y0 we have u(y0) << 0 at some time t0, u(y) << 0 for all
y in some neighbourhood U of y0, at time t0. By (4), u(y) << 0 continues
holding in U , for all t ≥ t0. Then d

dtu ≤ C + u implies

u(t)(z) ≤ et−t0(C + u(t0)) ≤ −C̃et, (5)

for t ≥ t0, for all z ∈ U . Then φ̇ = u yields

φ(t)(z) ≤ φ(t0)(z) − C̃et−t0 ≤ −C1e
t, (6)
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for big enough t and all z ∈ U . On the other hand,
∫
M e−u(t) = (2π)n,

which tells us u(t) can not be very negative everywhere on M , that is,
there is a uniform constant C2 such that u(xt, t) = maxM u(t) ≥ −C2 and
Volg(0)(U) < Volg(0)(M). Since φ̇(t) = u(t), from (3) we get

u(xt, t) − φ(xt, t) ≤ max
M

(u(·, 0) − φ(·, 0)) + C̃t,

which implies,
d

dt
(u(t) − φ(t)) = n − R + a ≤ C̃,

by Lemma (2) and Remark 4. This implies

max
M

φ(t) ≥ −C3 − C̃t, (7)

for a uniform constant C3.
By taking a trace of g(t) = g(0) + ∂∂̄φ(t) at time t = 0, we get

−∆0φ(t) = −trg(0)g(t) + n ≤ n.

Consider a fixed metric g(0). By Green’s formula applied to φ(t) we have

φ(xt, t) =
1

Vol0(M)

∫
M

φ(y, t)dV0 −
1

Vol(M)

∫
M

∆0φ(y, t)G0(xt, y)dV0

≤ Vol0(M\U)

Vol0(M)
sup
M

φ(·, t) +
Vol0(U)

Vol0(M)

∫
U

φ(y, t)dV0 + C

≤ Vol0(M\U)

Vol0(M)
sup
M

φ(·, t) − C4e
t + C,

for t ≥ t0, where φ(xt, t) = maxM φ(y, t) and G0 is Green’s function as-
sociated with metric g(0) (recall that

∫
M G0(xt, y)dVy = const). Since

Vol0(M\U)
Vol0(M) < 1, we get

max
M

φ(·, t) ≤ −C5e
t + C6,

for some uniform constants C5, C6. This together with (7) yields a contra-
diction for big values of t. Therefore, there exists a uniform lower bound
on u(t), that is, there is some constant B such that u(x, t) ≥ B for all
(x, t) ∈ M × [0,∞).

Standard computation gives the following evolution equations for ∆u and
|∇u|2.

�(∆u) =
d

dt
∆u − ∆2u = −|∇∇̄u|2 + ∆u, (8)
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�(|∇u|2) =
d

dt
|∇u|2 − ∆|∇u|2 = −|∇∇u|2 − |∇∇̄u|2 + |∇u|2. (9)

Proposition 6. There is a uniform constant C so that

|∇u|2 ≤ C(u + C), (10)

R ≤ C(u + C). (11)

Proof. We will first prove an estimate (10) which we will need in the proof of
Lemma 11. By Lemma 5 we may assume u(x, t) > −B. The proof resembles

the arguments in [19] and [?]. If H = |∇u|2

u+2B , by (8) and (9) we get,

�H =
−|∇∇̄u|2 − |∇∇u|2

u + 2B
+

|∇u|2(2B − a)

(u + 2B)2
+

+
2∇̄u · ∇|∇u|2

(u + 2B)2
− 2|∇u|4

(u + 2B)3
. (12)

We can write

2∇̄u · ∇|∇u|2
(u + 2B)2

− 2|∇u|4
(u + 2B)3

= (2−ε)
∇̄u · ∇H

u + 2B
+ε

∇̄u · ∇|∇u|2
(u + 2B)2

−ε
|∇u|4

(u + 2B)3
,

(13)
for some small ε > 0. Since

∇īu∇i(∇ju∇j̄u) = ∇īu∇i∇ju∇j̄u + ∇īu∇ju∇i∇j̄u

≤ |∇u|2(|∇∇u| + |∇∇̄u|),

by Cauchy Schwartz inequality,

ε
|∇u · ∇|∇u|2|

(u + 2B)2
≤ Cε

|∇u|2(|∇∇u| + |∇∇̄u|)|
(u + 2B)3/2(u + 2B)1/2

≤ ε

2

|∇u|4
(u + 2B)3

+
2C2ε(|∇∇u|2 + |∇∇̄u|2)

u + 2B
. (14)

Choose ε small so that 2
√

Cε < 1/2. Combining (12), (13) and (14) yields

�H ≤ |∇u|2(2B − a)

(u + 2B)2
+ (2 − ε)

∇̄u · ∇H

u + 2B
− ε

2

|∇u|4
(u + 2B)3

. (15)

At a point at which H achieves its maximum we have that ∇H vanishes and
therefore by maximum principle, an estimate (15) reduces to

0 ≤ d

dt
Hmax ≤ |∇u|2

(u + 2B)2
(2B − a − ε

2

|∇u|2
u + 2B

). (16)
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If we assume that
|∇u|2 >> u + 2B, (17)

then a term on the right hand side of (16) becomes negative for large t
and we have that Hmax is decreasing for big values of t, which gives that
|∇u|2 ≤ C(u+2B) for some constant C. This contradicts (17) and therefore
we have (10).

Our next goal is to prove that −∆u is bounded by C(u+C) which yields
(11), since ∆u = n − R. Let K = −∆u

u+2B , where B is a uniform constant as
above. Similar computation as before gives that

�(− ∆u

u + 2B
) =

|∇∇̄u|2
u + 2B

+
(−∆u)(2B − a)

(u + 2B)2
+ 2

∇̄u · ∇K

u + 2B
.

Take b > 1. Then

�(
−∆u + b|∇u|2

u + 2B
) =

−b|∇∇u|2 − (b − 1)|∇∇̄u|2
u + 2B

+
(−∆u + b|∇u|2)(2B − a)

(u + 2B)2

+
2∇̄u∇(−∆u+b|∇u|2

u+2B )

u + 2B
.

Let G = −∆u+b|∇u|2

u+2B and by maximum principle,

d

dt
Gmax ≤ −(b − 1)

|∇∇̄u|2
u + 2B

+
(−∆u + b|∇u|2)(2B − a)

(u + 2B)2
.

In local coordinates,

(∆u)2 = (
∑

i

uīi)
2 ≤ n

∑
i

u2
īi = n|∇∇̄u|2,

and therefore,

d

dt
Gmax ≤ −(b − 1)

(∆u)2

n(u + 2B)
+

(−∆u + b|∇u|2)(2B − a)

(u + 2B)2

≤ (−∆u)

u + 2B
{2B − a

u + 2B
− 1

n

(−∆u)

u + 2B
} +

b|∇u|2(2B − a)

(u + 2B)2
. (18)

By Lemmas 2 and 5 we may assume that 2B−a
u+2B is bounded from above by a

uniform constant. We have also proved the estimate (10) on |∇u|. If

−∆u >> u + 2B, (19)
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by (18) we would have that d
dtGmax < 0 for big values of t. This would imply

−∆u(t) ≤ C(u + 2B), for some uniform constant C and all big values of t,
which contradicts (19). Therefore, there exists a uniform constant C such
that (11) holds.

Proposition 7. There is a C = C(A), such that Vol(B(x, 1)) ≥ C, for any
metric g satisfying |R| ≤ 1 on B(x, 1), where ∂B(x, 1) 6= ∅.

Proof. Let g(t) be as before, a solution to a normalized Kähler Ricci flow
equation, and let g̃(s) be a solution to the equation d

ds g̃(s) = −2Ric(g̃(s)).
Reparametrization between these two flows is given by g̃(s) = (1−2s)g(t(s)),
where t(s) = − ln(1 − 2s). The first flow has a solution for t ∈ [0,∞) and
the second one has a maximal solution for s ∈ [0, 1/2). The scalar curva-

ture rescales as R(g̃(s)) = R(g(t(s)))
1−2s ≤ 1

1−2s . The following improvement of
Perelman’s noncollapsing result (noticed by Perelman himself) that requires
only a scalar curvature bound can be found in [9]. The result was communi-
cated to Kleiner and Lott by Tian. It says that there is a universal constant
κ = κ(g̃(0)), so that for an unnormalized Ricci flow d

ds g̃(s) = −2Ric(g̃(s)),
if R(g̃(s) ≥ − 1

r2 in a ball Bg̃(s)(p, r), then Volg̃(s)Bg̃(s)(p, r) ≥ κr2n. The
detailed arguments of the proof can be found in [9] and [14], but for the
convenience of a reader we will include it here as well. We argue by contra-
diction, that is, assume there are sequences pk ∈ M and tk → ∞ so that
|R| ≤ C

r2
k

, but Vol(Bk)r
−2n
k → 0 as k → ∞, where Bk = Btk(pk, rk). Let

τ = r2
k. Define

uk = eCkφ(r−1
k dist(x, pk)) (20)

at tk, where φ is a smooth function on R, equal 1 on [0, 1/2], decreasing
on [1/2, 1] and equal 0 on [1,∞). Ck is a constant to make u satisfy the
constraint

(4π)n = e2Ckr−2n
k

∫
B(pk,rk)

φ(r−1
k dist(x, pk))

2dV

≤ e2Ckr−2n
k Vol(Bk).

8



Since r−n
k VolBk → 0, this shows that Ck → +∞. We compute

W(uk) = (4π)−nr−2n
k e2Ck

∫
B(pk,rk)

(4|φ′(r−1
k dist(x, pk))|2 − 2φ2 lnφ)dV

+ r2
k

∫
B(pk ,rk)

Ru2(4π)−nr−n
k dV − n − 2Ck

≤ (4π)−nr−2n
k e2Ck

∫
B(pk,rk)

(4|φ′|2 − 2φ2 lnφ)dV

+ r2
k max

Bk

R − n − 2Ck.

Let V (r) = Vol(B(pk, r)). The necessary ingredients of the argument are
that

(a) r−2n
k Vol(B(pk, rk)) → 0.

(b) r2
kR is uniformly bounded above.

(c) Vol(B(pk ,rk))
Vol(B(pk ,rk/2)) is uniformly bounded above.

Suppose that r−2n
k Vol(B(pk, rk)) → 0 and r2

kR ≤ n(n − 1) on Bk. If
Vol(B(pk ,rk))

Vol(B(pk ,rk/2)) < 3n for all k, we are done. If not, for a given k we have

that Vol(B(pk ,rk))
Vol(B(pk ,rk/2)) ≥ 3n. Let r′k = rk/2. We have (r′k)

−2nVol(B(pk, r
′
k)) ≤

r−2n
k Vol(B(pk, rk)) and (r′k)

2R ≤ n(n− 1) on B(pk, r
′
k). Replace rk by r′k. If

Vol(B(pk ,rk))
Vol(B(pk ,rk/2)) < 3n we stop. If not, then we repeat the process and replace

rk by rk/2. At some point we will achieve that Vol(B(pk ,rk))
Vol(B(pk ,rk/2)) < 3n. We

then take this new subsequence {pk, rk)}∞k=1 into further discussion. Hence
V (rk) − V (rk/2) ≤ C ′V (rk/2). Therefore

∫
B(pk ,rk)

(4|φ′|2 − 2φ2 lnφ)dV ≤ C (V (rk) − V (rk/2))

≤ CV (rk/2)

≤ C

∫
Bk

φ2dV.

Plugging this into the previous estimate for W and using the constraint
(4πτk)−n

∫
M e−ukdVtk = 1, we get

W(uk) ≤ C ′′ − 2Ck. (21)
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Since Ck → +∞ and µ(g(tk), r2
k) ≤ W(g(tk), uk, r2

k), we conclude that
µ(g(tk), r2

k) → −∞. By the condition (a) we have A ≤ µ(g(tk), r2
k) → −∞

which is impossible.
The previous argument, since R(g̃(s)) ≤ 1

1−2s implies Volg̃(s)Bg̃(s)(x,
√

1 − 2s) ≥
κ(1 − 2s)n, which by rescaling implies VolB(x, 1) ≥ κ at metric g(t), where
κ is a constant depending only on an initial metric g(0).

Claim 8. There is a uniform constant C such that

u(y, t) ≤ Cdist2t (x, y) + C,

R(y, t) ≤ Cdist2t (x, y) + C,

|∇u| ≤ Cdistt(x, y) + C,

where u(x, t) = miny∈M u(y, t).

Proof. By Lemma 5 we can assume u ≥ δ > 0, since otherwise we can
consider u + 2B + δ instead of u. From (10) it follows that

√
u is a Lipshitz

function since |∇(
√

u)| ≤ C = C(δ) and therefore,

|√u(y, t) −√
u(z, t)| ≤ |∇u|(p, t)

2
√

u
distt(y, z)

≤ C̄distt(y, z),

and therefore,

u(y, t) ≤ (C̃distt(y, z) +
√

u(x, t))2

≤ C1dist2t (x, y) + C1u(x, t).

Assume u(x, t) ≥ K(t). Then u(y, t) ≥ K(t) for all y ∈ M and we would
have,

(2π)n =

∫
M

e−udVt ≤ e−K(t)Vol(M) → 0,

if K(t) → ∞, which is not possible. Therefore, u(x, t) ≤ K, for a constant
that does not depend on t and finally

u(y, t) ≤ Cdist2t (y, x) + C̃, (22)

for some uniform constants C and C̃. Other two estimates in the claim
follow from (22) and Proposition 6.

By Claim 8 it follows that if we manage to estimate the diameter, we
will get uniform bounds on the scalar curvature and the C 1 norm of u.
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3 A uniform upper bound on diameters

In this section we want to prove the following proposition which will finish
the proof of Theorem 1.

Proposition 9. There is a uniform constant C such that diam(M, g(t)) ≤
C.

The proof goes by contradiction argument. Assume that the diame-
ters are unbounded in time. Denote by dt(z) = distt(x, z) where u(x, t) =
miny∈M u(y, t).

Let B(k1, k2) = {z : 2k1 ≤ dt(z) ≤ 2k2}. Consider an annulus B(k, k+1).
By Claim 8 we have that R ≤ C22k on B(k, k + 1). Interval [2k, 2k+1] fits
22k balls of radii 1

2k . By Claim 8 and Proposition 7 we have that at time t

Vol(B(k, k + 1)) ≥
∑

i

Vol(B(xi, 2
−k)) ≥ 22k2−2knC. (23)

Claim 10. For every ε > 0 we can find B(k1, k2), such that if diam(M, g(t))
is large enough, then
(a) Vol(B(k1, k2)) < ε and
(b) Vol(B(k1, k2)) ≤ 210nVol(B(k1 + 2, k2 − 2)).

Proof. Since Volt(M) is constant along the flow and therefore uniformly
bounded, if diameter is sufficiently big, there is k0 such that for all k2 ≥
k1 ≥ k0, we have that Vol(B(k1, k2)) < ε. If our estimate (b) did not hold,
that is, if

Vol(B(k1, k2)) ≥ 210nVol(B(k1 + 2, k2 − 2)),

we would consider B(k1 + 2, k2 − 2) instead and ask whether (b) holds for
that ball. Assume that for every p, at the p-th step we are still not able to
find our radii so that (a) and (b) are satisfied. In that case, at the p-th step
we would have

Vol(B(k1, k2)) ≥ 210npVol(B(k1 + 2p, k2 − 2p)).

In particular, assume we have the above estimate at the p-th step so that
k1 + 2p + 1 ∼ k2 − 2p, which is for 2p ∼ k2−k2−1

2 (*). Take k1 = k/2 and
k2 = 3k/2 for k >> 1. In that case (*) becomes p ∼ k/4, k1 + 2p ∼ k and
k2 − 2p ∼ k + 1. Combining this with (23) yields

ε > Vol(B(k1, k2)) ≥ 210nk/4Vol(B(k, k + 1)) ≥ 210nk/4C22k2−2nk.

This leads to contradiction if we let k → ∞. This finishes the proof of our
claim.
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For every t for which diameter of (M, g(t)) becomes very big, find k1 and
k2 as in Claim 10. Then we have the following lemma.

Lemma 11. There exist r1, r2 and a uniform constant C such that 2k1 ≤
r1 ≤ 2k1+1, 2k2−1 ≤ r2 ≤ 2k2 and∫

B(r1 ,r2)
R ≤ CV,

where ε > 0 is the same as in Claim 10, B(r1, r2) = {z ∈ M : r1 ≤ distt(z) ≤
r2} and V = Vol(B(k1, k2)).

Proof. We will first prove the existence of r1, such that 2k1 ≤ r1 ≤ 2k1+1

and

VolS(r1) ≤ 2
V

2k1
, (24)

where S(r) is a metric sphere of radius r. We have that,

d

dr
Vol(B(r)) = VolS(r). (25)

Assume that for all r ∈ [2k1 , 2k1+1] we have Vol(S(r)) ≥ 2 V
2k1

. Integrate (25)
in r. Then,

Vol(B(k1, k1 + 1)) =

∫ 2k2

2k1

Vol(S(r))dr

> 2
V

2k1
2k1 = 2V = 2Vol(B(k1, k2)),

which is not possible, since k2 >> k1 by the proof of Claim 10. If for all
r ∈ [2k2−1, 2k2 ] we have that Vol(S(r)) ≥ 2 V

2k2
, similarly as above we would

get Vol(B(k2 − 1, k2)) > V = B(k1, k2), which is not possible. Therefore,
there exists r2 ∈ [2k2−1, 2k2 ] such that

VolS(r2) ≤ 2
V

2k2
. (26)

Estimates (24), (26), together with bounds on ∇u obtained in Claim 8 imply∫
B(r1,r2)

R =

∫
B(r1,r2)

(R − n) + nVol(B(r1, r2))

= −
∫

B(r1,r2)
∆u + nVol(B(r1, r2))

≤
∫

S(r1)
|∇u| +

∫
S(r2)

|∇u| ≤ V

2k1
C2k1+1 +

V

2k2
C2k2+1

= C̃V < C̃ε.

12



We can now finish the proof of Proposition 9.

Proof of Proposition 9. The proof of the proposition is similar to the proof
of Perelman’s noncollapsing theorem from [12]. Assume diam(M, g(t)) is not
uniformly bounded in t, that is, there exists a sequence ti → ∞ such that
diam(M, g(ti)) → ∞. Let εi → 0 be a sequence of positive numbers. By
Claim 10 we can find sequences ki

1 and ki
2 such that

VoltiBti(k
i
1, k

i
2) < εi, (27)

Vol(Bti(k
i
1, k

i
2)) ≤ 210nVol(B(ki

1 + 2, ki
2 − 2)). (28)

For each i, find ri
1 and ri

2 as in Lemma 11. Let φi be a sequence of cut off

functions such that φ(z) = 1 for z ∈ [2ki
1
+2, 2ki

2
−2] and equal zero for z ∈

(−∞, ri
1]∪ [ri

2,∞). Let ui(x) = eCiφi(distti(x, pi)) such that (2π)−n
∫
M u2

i =
1. This implies

(2π)n = e2Ci

∫
M

φ2
i

≤ e2CiVoltiBti(k
i
1, k

i
2 + 1)

≤ e2Ciεi.

Since εi → 0, this is possible only if limi→∞ Ci = −∞. By Perelman’s
monotonicity formula,

A ≤ W(g(ti), ui, 1/2)

= (2π)−ne2Ci

∫
Bti

(ri
1
,ri

2
)
(4|φ′

i(distti(y))|2 − 2φ2
i lnφi)dVti

+ (2π)−n

∫
Bti

(ri
1
,ri

2
)
Ru2

i dVti − 2n − 2Ci. (29)

First of all by Lemma 11 and (28) we have

∫
Bti

(ri
1
,ri

2
)
Ru2

i ≤ e2Ci

∫
Bti

(ri
1
,ri

2
)
R

≤ C̃e2CiVoltiBti(k
i
1, k

i
2)

≤ C̃e2Ci210nVoltiBti(k
i
1 + 2, ki

2 − 2)

≤ C̃210n

∫
M

u2
i dVti = C̃210n(2π)n.

13



By (28) we also have

e2Ci

∫
Bti

(ri
1
,ri

2
)
(4|φ′

i(distti(y))|2 − 2φ2
i lnφi)dVti ≤

≤ Ce2CiVoltiBti(k
i
1, k

i
2) ≤ e2CiC210nVoltiBti(k

i
1 + 2, ki

2 − 2)

≤ C210n

∫
M

u2
i = C210n(2π)n.

By (29) we get
A ≤ C̄ − 2Ci → −∞,

as i → ∞ and we get a contradiction. Therefore, there is a uniform bound on
(M, g(t)), which gives us uniform bounds on scalar curvatures and |u(y, t)|C1 .

4 Convergence of the Kähler Ricci flow

In this section we will apply Perelman’s boundness results on the scalar
curvature and the diameter of the Kähler Ricci flow to show its sequential
convergence towards singular metrics that are smooth and satisfy the Kähler
Ricci soliton equation outside a singular set. We would like to understand
more closely a singular metric that we get as a limit in Theorem 12. Our
final goal as a long term project is to prove that a singular set S is a variety,
that is, that it has some structure than only being a closed set.

Theorem 12. Let g(t) be a Kähler Ricci flow on a compact, Kähler manifold
M , given by

d

dt
gij̄ = gij̄ − Rij̄ = ∂i∂j̄u.

Assume the Ricci curvature is uniformly bounded along the flow. For every
sequence ti → ∞ there is a subsequence so that (M, g(ti + t)) converges to
(M∞, g∞(t)) in the following sense:

(i) M∞ is smooth outside a singular set S which is of codimension at least
4 and the convergence is smooth off S.

(ii) A singular metric g∞(t) satisfies a Kähler Ricci soliton equation g∞−
Ric(g∞) = ∂∂̄f∞, with (f∞)ij = (f∞)̄ij̄ = 0 outside S.

(iii) A potential function f∞ is smooth off S and there is a uniform constant
C so that |f∞(t)|C1(M∞\S) ≤ C.

14



In [15] we have proved that if the Ricci curvatures are uniformly bounded,
i.e. |Ric| ≤ C for all times t, then for every sequence ti → ∞ there exists a
subsequence such that (M, g(ti + t)) → (M∞, g∞(t)) and the convergence is
smooth outside a singular set S, which is at least of codimension four and
M∞ is a smooth manifold off S. We also showed that a singular set S does
not depend on time t. Moreover, g∞(t) solves the Kähler-Ricci flow equation
on M∞\S. We want to show that g∞(t) is actually a Kähler Ricci soliton
off the singular set.

Due to Perelman we have the following uniform estimates for the Kähler
Ricci flow: there are uniform constants C and κ such that for all t,

1. |u(t)|C1 ≤ C,

2. diam(M, g(t)) ≤ C,

3. |R(g(t))| ≤ C,

4. (M, g(t)) is κ-noncollapsed.

This together with the uniform lower bound on the Ricci curvatures along
the flow gives a uniform Sobolev constant, that is, there is a uniform constant
CS so that for any v ∈ C1

0 (M) we have that

(

∫
M

v
4n

2n−2 dVg(t))
2n

2n−2 ≤ CS

∫
M

|∇v|2dVg(t), (30)

for all times t ≥ 0. This enables us to work with integral estimates. The
proof of Theorem 12 will be completed after we prove Proposition 13 and
Proposition 14.

Proposition 13. A singular metric g∞ that arises in Theorem 12 satisfies
the Kähler Ricci soliton equation on M∞\S.

Proof. Notice that µ(g(t), 1/2) ≤ W(g(t), u(t), 1/2) ≤ C, for a uniform con-
stant C, due to Perelman’s estimates mentioned above (recall that u(t) is
the Ricci potential of metric g(t)). This yields a finite limt→∞ µ(g(t), 1/2).
Let ft be a minimizer of W with respect to metric g(t) and let ft(s) be a
solution of the equation

d

ds
ft(s) = −∆ft(s) + |∇ft(s)|2 − R(s) + 2n, (31)
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for s ∈ [0, t]. Fix A > 0. By monotonicity of Perelman’s functional W we
also have

0 ≤ (2π)−n

∫ A

0

∫
M

|Rjk̄ + ∇j∇̄kfti+A(ti + s) − gjk̄|2e−fti+A(ti+s)dVti+sds +

+ (2π)n

∫ A

0

∫
M

(|∇j∇kfti+A(ti + s)|2 + |∇̄j∇̄kfti+A(ti + s)|2)e−fti+A(ti+s)dVti+sds

= W(g(ti + A), fti+A, 1/2) −W(g(ti), fti+A(ti), 1/2)

≤ µ(g(ti + A), 1/2) − µ(g(ti), 1/2),

where the right hand side of the previous estimate tends to zero as i → ∞,
since there is a finite limt→∞ µ(g(t), 1/2). Moreover, for any compact set
K ⊂ M∞\S we have

lim
i→∞

∫ A

0

∫
K
|Rjk̄(ti + s) + ∇j∇̄kfti+A(ti + s) − gjk̄(ti + s)|2e−fti+A(ti+s)dVti+sds +

+

∫ A

0

∫
K

(|∇j∇kfti+A(ti + s)|2 + |∇̄j∇̄kfti+A(ti + s)|2)e−fti+A(ti+s)dVti+sds = 0,

which implies for almost all s ∈ [0, A] and almost all x ∈ K,

• limi→∞ |Rjk̄(ti + s)+∇j∇̄kfti+A(ti + s)− gjk̄(ti + s)|2e−fti+A(ti+s) = 0.

• limi→∞ |∇j∇kfti+A(ti + s)|2e−fti+A(ti+s) = 0.

Let Dl ⊂ M∞ be a sequence of open sets where S ⊂ Dl and D̄l → S as
l → ∞. We know that g(ti + t) → g∞(t) smoothly on M∞\Dl. Function
fti+A(ti + s) satisfies an evolution equation (31) and we have the geome-
tries g(ti + s) are uniformly bounded on M∞\Dl for all i and all s ∈ [0, A]
(those bounds depend on l, that is, on the closeness to the singular set S).
Standard parabolic estimates as in [15] and [16] give there are uniform con-
stants C(p, q, l) so that | ∂p

∂sp∇qfti+A(ti + s)| ≤ C(p, q, l). Using the uniform
derivative bounds from above, by Arzela Ascoli theorem and diagonalizing
the sequence (by letting l bigger and bigger) we can find a subsequence so

that fti+A(ti + s)
Ck(M∞\S)→ f∞(s). Moreover, this limit f∞(s) satisfies

Rjk̄(g∞(s)) + ∇j∇̄kf∞(s) − (g∞)jk̄(s) = 0. (32)

∇i∇jf∞ = ∇̄i∇̄jf∞ = 0. (33)
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Relations (32) and (33) give,

sup
M∞\S

|D2f∞| ≤ C < ∞. (34)

The previous estimate helps us prove the following proposition.

Proposition 14. There is a constant C so that |f∞|C1(M∞\S) ≤ C.

Proof. We will first mention few results and some notation from [3] and [4],
which our proof will rely upon.

A point y ∈ M∞ is called regular, if for some k, every tangent cone at
y is siometric to R2n. Let Rk denote the set of k-regular points and put
R = ∪kRk, the regular set. A point y ∈ M∞ is acalled singular, if it is not
regular. Denote by S the set of singular points. In [3] it has been shown
that under the assumption |Ric(g(t))| ≤ C, we have R = Rn. Moreover,
one of the results in [5] is that dimS ≤ n − 4. The ε-regular set, Rε,
consists of those points y, such that every tangent cone, (Yy, y∞), satisfies
dGH(B1(y∞, B1(0)) < ε. In [3] it was shown that for the uniform bound on
the Ricci curvatures, there is an ε0, so that for every ε < ε0, Rε = R and
Rε ∩ S = ∅. That means we can write

M∞ = Rε ∪ S,

for ε < ε0. Fix x0 ∈ R. By Theorem 3.9 in [4], there exists C(x0) ⊂ R, with
ν(M∞\C(x0)) = 0 (ν is the unique limit measure, which in our noncollapsed
case is exactly Hausdorff measure), such that for all y ∈ C(x0) and ε > 0,
there exists a minimal geodesic from x0 to y, which is contained in Ṙε. If
we choose ε small enough, Rε = R and R is an open set. This means for
almost all y ∈ R there is a minimal geodesic, call it γ, connecting x0 and y,
all contained in R. For such y, we have

|Df∞(x0) − Df∞(y)| ≤ C sup
M∞\S

|D2f∞|length(γ) ≤ C̃,

since we have an estimate (34) and since length(γ) ≤ D, where D is a
uniform bound on the diameters of (M, g(t)). Since |Df∞(x0)| is a finite
number, we get |Df∞|(x) ≤ C̃1 for almost all x ∈ R. On the other hand,
since f∞ is a smooth function on R = M∞\S, we get

sup
M∞\S

|Df∞| ≤ C̃1.

By similar arguments, we also have

sup
M∞\S

|f∞| ≤ C̃2.
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