
Calc. Var. (2009) 36:49–84
DOI 10.1007/s00526-009-0223-8 Calculus of Variations

Optimal transport and Perelman’s reduced volume

John Lott

Received: 18 May 2008 / Accepted: 9 January 2009 / Published online: 30 January 2009
© Springer-Verlag 2009

Abstract We show that a certain entropy-like function is convex, under an optimal transport
problem that is adapted to Ricci flow. We use this to reprove the monotonicity of Perelman’s
reduced volume.
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1 Introduction

One of the major tools introduced by Perelman is his reduced volume ˜V [21, Sect. 7]. This
is a certain geometric quantity which is monotonically nondecreasing in time when one has
a Ricci flow solution. Perelman’s main use of the reduced volume was to rule out local
collapsing in a Ricci flow.

Before giving his rigorous proof that ˜V is monotonic, Perelman gave a heuristic argument
[21, Sect. 6]. Given a Ricci flow solution (M, g(τ )) on a compact manifold M , where τ is
backward time, Perelman considered the manifold ˜M = M × SN ×R

+ with the Riemannian
metric

g̃ = g(τ )+ 2NτgSN +
(

N

2τ
+ R

)

dτ 2. (1.1)

Here R denotes the scalar curvature and gSN is the metric on SN with constant sectional
curvature 1. Perelman showed that the Ricci curvatures of ˜M vanish to leading order in N .
Now the Bishop–Gromov inequality says that if a complete Riemannian manifold Z has non-
negative Ricci curvature then r− dim(Z) vol(Br (z)) is nonincreasing in r . Perelman formally
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50 J. Lott

applied the Bishop-Gromov inequality to ˜M , translated the result back down to M and took
the limit when N → ∞, to get the monotonicity of ˜V .

In another direction, there has been recent work showing the equivalence between the
nonnegative Ricci curvature of a Riemannian manifold M , and the convexity (in time) of
certain entropy functions in an optimal transport problem on M [4,15,19,23–25]. A survey is
in [13] and a detailed exposition is in Villani’s book [28] (background information on optimal
transport is in Villani’s books [27,28]). In view of Perelman’s heuristic argument, it is natural
to wonder whether having a Ricci flow solution (M, g(t)) implies the convexity of an entropy
in some optimal transport problem on M . The idea is that the asymptotic nonnegative Ricci
curvature on ˜M should imply the asymptotic convexity of the entropy in an optimal transport
problem on ˜M , which should then translate to a statement about optimal transport on M .

It turns out that this can be done. The optimal transport problem on M has a cost function
coming from Perelman’s L-functional. This sort of transport problem was introduced by
Topping [26], as described below, with the purpose of constructing certain monotonic quan-
tities for a Ricci flow. Bernard–Buffoni [2] and Villani [28, Chaps. 7,10,13] gave analytic
results for general time-dependent cost functions.

In fact, there are three relevant costs for Ricci flow: one corresponding to Perelman’s
L-functional (which we will call L−), one corresponding to the Feldman–Ilmanen–Ni
L+-functional [6] and a third one which we call L0. In the case of the L−-cost, the main
result of the paper is the following.

Theorem 1 Suppose that (M, g(τ )) is a Ricci flow solution on a connected closed n-dimen-
sional manifold M, where τ denotes backward time. Let c(τ ) be the displacement interpo-
lation in an optimal transport problem between absolutely continuous probability measures
c(τ0) and c(τ1), with L−-cost. Then E(c(τ )) + ∫

M φ(τ)dc(τ ) + n
2 log(τ ) is convex in the

variable s = τ− 1
2 .

Here E(c(τ )) is the (negative) relative entropy of c(τ )with respect to the time-τ Riemann-
ian volume density. The functionφ(τ) is the potential for the velocity field in the displacement
interpolation.

We show that the monotonicity of Perelman’s reduced volume ˜V is a consequence of
Theorem 1; see Corollary 8.

There are two main approaches to optimal transport problems: the Eulerian approach
and the Lagrangian approach. Let P(M) denote the Borel probability measures on a static
Riemannian manifold M and let P∞(M) denote those with a smooth positive density. The
Eulerian approach of Benamou–Brenier considers smooth maps c : [t0, t1] → P∞(M) that
minimize an action E(c), among all such curves with the same endpoints [3]. In the associ-
ated Otto calculus, one considers P∞(M) to be an infinite-dimensional Riemannian manifold
and E(c) to be the corresponding energy of the curve c, so the Euler–Lagrange equation for
E becomes the geodesic equation on P∞(M) [18]. Otto and Villani used this approach to
compute the time-derivatives of the entropy function E along the curve c [19].

The Lagrangian approach to optimal transport considers a displacement interpolation c,
i.e. a geodesic in the Eulerian approach, to be specified by the family of geodesics in M that
describe the trajectories taken by particles in the original mass distribution c(t0), when trans-
porting it to the final mass distribution c(t1). In the case of optimal transport on Riemannian
manifolds, the Lagrangian approach was developed by McCann [16] and Cordero-Erausquin
et al. [4].

Comparing the two approaches, the Eulerian approach is perhaps more insightful whereas
the Lagrangian approach is better suited to deal with the regularity issues that arise in opti-
mal transport (see, however, the papers of Daneri–Savaré [5] and Otto–Westdickenberg [20],
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Optimal transport and Perelman’s reduced volume 51

which prove results about optimal transport in P(M) using the Eulerian approach along with
density arguments). Much of the present paper consists of describing an Otto calculus which
is adapted for the optimal transport of measures under a Ricci flow background.

There has been earlier work relating optimal transport to Ricci flow. The author [10] and
McCann–Topping [17] observed that under a Ricci flow background, if c1(t) and c2(t) are
solutions of the backward heat equation on P(M) then the Wasserstein distance W2(c1(t),
c2(t)) is monotonically nondecreasing in t . A detailed proof using the Lagrangian approach
appears in [17]. McCann–Topping noted that this monotonicity property characterizes
supersolutions to the Ricci flow equation. In follow-up work, Topping considered optimal
transport with the L−-cost function and showed the monotonicity of a certain distance func-
tion between the measures c1 and c2, when taken at different but related times. We refer to
[26] for the precise statement. He then used this to rederive the monotonicity of Perelman’s
W-functional. In the Lagrangian proof of Theorem 1 we use Topping’s calculations for the
τ -derivatives of E(c(τ )); see Remark 7.

The outline of this paper is as follows. In Sect. 2, we review the Otto calculus for optimal
transport on a manifold with a time-independent Riemannian metric. In Sect. 3, we use the
Otto calculus to prove that if (M, g(t)) is a Ricci flow solution and c1(t), c2(t) are solutions
of the backward heat equation in P∞(M) then the Wasserstein distance W2(c1(t), c2(t)) is
monotonically nondecreasing in t . In Sect. 4, we introduce the L0-cost. We give an Otto
calculus for optimal transport with L0-cost, under a background Ricci flow solution. We then
show the L0-analog of Theorem 1 above. In Sect. 5, we give the L0-analog of Topping’s
monotonicity statement regarding the distance between two solutions of the backward heat
equation on measures. We use this to reprove the monotonicity of Perelman’s F-functional.
In Sect. 6, we give an Otto calculus for optimal transport with L−-cost, under a background
Ricci flow solution. In Sect. 7, we prove Theorem 1 and we use it to reprove the monotonic-
ity of Perelman’s reduced volume. In Sect. 8, we discuss what Ricci flow should mean on a
smooth metric-measure space. In Appendix 8, we indicate how the results of Sects. 6 and 7
extend to the L+-cost.

Regarding the overall method of proof in this paper, calculations in the Eulerian formalism
can be considered to be either rigorous statements on P∞(M) or formal statements on P(M).
When a suitable density result is available, one can use the Eulerian methods to give rigorous
proofs on P(M). In this way, we give rigorous Eulerian proofs on P(M) of the statements
in Sects. 2 and 3, making use of the nontrivial Otto–Westdickenberg density result [20].
Sections 4–7 contain calculations in the Eulerian framework under a Ricci flow background.
We expect that one can extend these calculations to rigorous proofs on P(M), by adapting
the density methods of [5] or [20] to the setting of time-dependent cost functions. We do not
address this issue here. Consequently, we revert to Lagrangian methods when we want to
give rigorous proofs in P(M) of the statements in Sects. 4–7.

I thank Peter Topping and Cédric Villani for discussions, and the referee for helpful com-
ments. I thank the UC-Berkeley Mathematics Department and the IHES for their hospitality
while part of this research was performed.

2 Otto calculus

This section is mostly concerned with known results about optimal transport on a fixed
Riemannian manifold M . It is a warmup for the later sections, which extend the results to
the case when the Riemannian metric evolves under the Ricci flow.
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52 J. Lott

We use the Otto calculus to give rigorous proofs of certain statements about the space of
smooth probability measures P∞(M). These proofs can then be considered as formal proofs
of the analogous statements on the space of all probability measures P(M). The rigorous
proofs of the statements on P(M) are usually done by the Lagrangian approach, but one can
also use the density of P∞(M) in P(M) [5,20]. Most of the calculations in this section can
be extracted from [19] and [20].

In what follows, we use the Einstein summation convention freely.
Let (M, g) be a smooth connected closed (= compact boundaryless) Riemannian manifold

of dimension n > 0. We denote the Riemannian density by dvolM . Let P(M) denote the
space of Borel probability measures on M , equipped with the Wasserstein metric W2. For
relevant results about optimal transport and the Wasserstein metric, we refer to [15, Sects. 1
and 2] and references therein. A fuller exposition is in the books [27] and [28]. As P(M) is
a length space, it makes sense to talk about geodesics in P(M), which we will always take
to be minimizing and parametrized proportionately to arc-length.

Put

P∞(M) =
⎧

⎨

⎩

ρ dvolM : ρ ∈ C∞(M), ρ > 0,
∫

M

ρ dvolM = 1

⎫

⎬

⎭

. (2.1)

Then P∞(M) is a dense subset of P(M), as is the complement of P∞(M) in P(M). For the
purposes of this paper, we give P∞(M) the smooth topology (this differs from the subspace
topology on P∞(M) coming from its inclusion in P(M)). Then P∞(M) has the structure
of an infinite-dimensional smooth manifold in the sense of [8]. The formal calculations in
this section are rigorous calculations on the smooth manifold P∞(M).

Givenφ∈C∞(M), define a vector field Vφ on P∞(M)by saying that for F ∈C∞(P∞(M)),

(VφF)(ρ dvolM ) = d

dε

∣

∣

∣

ε=0
F

(

ρ dvolM −ε ∇ i (ρ∇iφ) dvolM

)

= d

dε

∣

∣

∣

ε=0
F

(

�ε∗(ρ dvolM )
)

, (2.2)

where �ε(m) = expm(ε∇mφ). The map φ → Vφ passes to an isomorphism C∞(M)/R →
Tρ dvolM P∞(M). This parametrization of Tρ dvolM P∞(M) goes back to Otto’s paper [18];
see [1] for further discussion. Otto’s Riemannian metric G on P∞(M) is given [18] by

G(Vφ1 , Vφ2)(ρ dvolM ) =
∫

M

〈∇φ1,∇φ2〉ρ dvolM

= −
∫

M

φ1∇ i (ρ∇iφ2) dvolM . (2.3)

In view of (2.2), we write δVφ ρ = −∇ i (ρ∇iφ). Then

G(Vφ1 , Vφ2)(ρ dvolM ) =
∫

M

φ1δVφ2
ρ dvolM =

∫

M

φ2δVφ1
ρ dvolM . (2.4)

We now relate the Riemannian metric G to the Wasserstein metric W2. In [19] it was heu-
ristically shown that the geodesic distance coming from (2.4) equals the Wasserstein metric.
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Optimal transport and Perelman’s reduced volume 53

To give a rigorous relation, we recall that a curve c : [0, 1] → P(M) has a length given by

L(c) = sup
J∈N

sup
0=s0≤s1≤···≤sJ =1

J
∑

j=1

W2
(

c(s j−1), c(s j )
)

. (2.5)

From the triangle inequality, the expression
∑J

j=1 W2
(

c(s j−1), c(s j )
)

is nondecreasing
under a refinement of the partition 0 = s0 ≤ s1 ≤ · · · ≤ sJ = 1.

If c : [0, 1] → P∞(M) is a smooth curve in P∞(M) then we write c(s) = ρ(s) dvolM

and let φ(s) ∈ C∞(M) satisfy

∂ρ

∂s
= −∇ i (ρ∇iφ) . (2.6)

It is easy to see, using the spectral theory of the weighted Laplacian on L2(M, ρ(s) dvolM ),
thatφ(s) exists. Note thatφ(s) is uniquely defined up to an additive constant. The Riemannian
length of c, as computed using (2.3), is

1
∫

0

√

G(c′(s), c′(s))ds =
1

∫

0

⎛

⎝

∫

M

|∇φ(s)|2ρ(s) dvolM

⎞

⎠

1
2

ds. (2.7)

Theorem 2 [12, Proposition 1] If c : [0, 1] → P∞(M) is a smooth immersed curve then
the two notions of length agree, in the sense that

L(c) =
1

∫

0

√

G(c′(s), c′(s))ds. (2.8)

Next, consider the Lagrangian

E(c) = 1

2

1
∫

0

G
(

c′(s), c′(s)
)

ds = 1

2

1
∫

0

∫

M

|∇φ(s)|2ρ(s) dvolM ds. (2.9)

Theorem 3 [20, Proposition 4.3] Fix measuresρ0 dvolM , ρ1 dvolM ∈ P∞(M). Then the inf-
imum of E, over smooth paths in P∞(M)with those endpoints, is 1

2 W2(ρ0 dvolM , ρ1 dvolM )
2.

In general we cannot replace the “inf” in the statement of Theorem 3 by “min”, since the
Wasserstein geodesic connecting ρ0 dvolM and ρ1 dvolM may not lie entirely in P∞(M).

We now compute the first variation of E .

Proposition 1 Let

ρ dvolM : [0, 1] × [t0 − ε, t0 + ε] → P∞(M) (2.10)

be a smooth map, with ρ ≡ ρ(s, t). Let

φ : [0, 1] × [t0 − ε, t0 + ε] → C∞(M) (2.11)

be a smooth map that satisfies (2.6), with φ ≡ φ(s, t). Then

d E

dt

∣

∣

∣

∣

t=t0

=
∫

M

φ
∂ρ

∂t
dvolM

∣

∣

∣

∣

∣

∣

1

s=0

−
1

∫

0

∫

M

(

∂φ

∂s
+ 1

2
|∇φ|2

)

∂ρ

∂t
dvolM ds, (2.12)

where the right-hand side is evaluated at time t = t0.
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54 J. Lott

Proof We have

d E

dt
=

1
∫

0

∫

M

(〈

∇φ,∇ ∂φ
∂t

〉

ρ + 1

2
|∇φ|2 ∂ρ

∂t

)

dvolM ds. (2.13)

For a fixed f ∈ C∞(M), from (2.6),
∫

M

f
∂ρ

∂s
dvolM =

∫

M

〈∇ f,∇φ〉ρ dvolM . (2.14)

Hence
∫

M

f
∂2ρ

∂s∂t
dvolM =

∫

M

(〈

∇ f,∇ ∂φ
∂t

〉

ρ + 〈∇ f,∇φ〉∂ρ
∂t

)

dvolM . (2.15)

Taking f = φ gives
∫

M

φ
∂2ρ

∂s∂t
dvolM =

∫

M

(〈

∇φ,∇ ∂φ
∂t

〉

ρ + |∇φ|2 ∂ρ
∂t

)

dvolM . (2.16)

Equations (2.13) and (2.16) give

d E

dt
=

1
∫

0

∫

M

(

φ
∂2ρ

∂s∂t
− 1

2
|∇φ|2 ∂ρ

∂t

)

dvolM ds

=
1

∫

0

∫

M

(

∂

∂s

(

φ
∂ρ

∂t

)

−
(

∂φ

∂s
+ 1

2
|∇φ|2

)

∂ρ

∂t

)

dvolM ds, (2.17)

from which the proposition follows. ��
From (2.12), the Euler–Lagrange equation for E is

∂φ

∂s
= −1

2
|∇φ|2 + α(s), (2.18)

where α ∈ C∞([0, 1]). Changing φ by a spatially constant function, we can assume that
α = 0, so the Euler–Lagrange equation for E becomes the Hamilton–Jacobi equation

∂φ

∂s
= −1

2
|∇φ|2. (2.19)

If a geodesic in P(M) happens to be a smooth curve in P∞(M) then it will satisfy (2.19).
For any 0 ≤ s′ < s′′ ≤ 1, the viscosity solution of (2.19) satisfies

φ(s′′)(m′′) = inf
m′∈M

(

φ(s′)(m′)+ dM (m′,m′′)2

s′′ − s′

)

. (2.20)

Then the solution of (2.6) satisfies

ρ(s′′) dvolM = (Fs′,s′′)∗(ρ(s′) dvolM ), (2.21)

where the transport map Fs′,s′′ : M → M is given by

Fs′,s′′(m′) = expm′
(

(s′′ − s′)∇m′φ(s′)
)

. (2.22)

We now give some simple results in the Otto calculus.
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Proposition 2 Assuming (2.6) and (2.19), we have

d

ds

∫

M

φρ dvolM = 1

2

∫

M

|∇φ|2ρ dvolM (2.23)

and

1

2

d

ds

∫

M

|∇φ|2 ρ dvolM = 0. (2.24)

Proof First,

d

ds

∫

M

φ ρ dvolM = − 1

2

∫

M

|∇φ|2 ρ dvolM −
∫

M

φ ∇ i (ρ∇iφ) dvolM

= 1

2

∫

M

|∇φ|2 ρ dvolM . (2.25)

Next, using (2.18),

1

2

d

ds

∫

M

|∇φ|2 ρ dvolM

= −1

2

∫

M

〈∇φ, ∇(|∇φ|2)〉 ρ dvolM − 1

2

∫

M

|∇φ|2 ∇ i (ρ∇iφ) dvolM = 0. (2.26)

This proves the proposition. ��
Equation (2.24) is just the statement that a geodesic in P∞(M) has constant speed. Equa-

tion (2.23) says that
∫

M φ ρ dvolM is proportionate to the arc length along the geodesic.
The (negative) entropy E : P∞(M) → R is given by

E(ρ dvolM ) =
∫

M

ρ log(ρ) dvolM . (2.27)

We now compute its first two derivatives along a curve in P∞(M).

Proposition 3 Assuming (2.6), we have

dE
ds

=
∫

M

〈∇φ,∇ρ〉 dvolM = −
∫

M

∇2φ ρ dvolM (2.28)

and

d2E
ds2 = −

∫

M

(

∂φ

∂s
+ 1

2
|∇φ|2

)

∇2ρ dvolM

+
∫

M

(| Hess φ|2 + Ric(∇φ,∇φ)) ρ dvolM . (2.29)

Proof First,

dE
ds

= −
∫

M

(log(ρ)+ 1)∇ i (ρ ∇iφ) dvolM =
∫

M

〈∇φ,∇ρ〉 dvolM . (2.30)
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56 J. Lott

Then

d2E
ds2 =

∫

M

〈

∇
(

∂φ

∂s
+ 1

2
|∇φ|2

)

,∇ρ
〉

dvolM

−1

2

∫

M

〈∇ (|∇φ|2) ,∇ρ〉 dvolM +
∫

M

〈

∇φ,∇
(

−∇ i (ρ∇iφ)
)〉

dvolM

= −
∫

M

(

∂φ

∂s
+ 1

2
|∇φ|2

)

∇2ρ dvolM

+1

2

∫

M

∇2 (|∇φ|2) ρ dvolM −
∫

M

〈∇∇2φ,∇φ〉 ρ dvolM

= −
∫

M

(

∂φ

∂s
+ 1

2
|∇φ|2

)

∇2ρ dvolM +
∫

M

(| Hess φ|2 + Ric(∇φ,∇φ)) ρ dvolM ,

(2.31)

where we used the Bochner identity in the last line. This proves the proposition. ��
Corollary 1 Assuming (2.6) and (2.19), if Ric(M, g) ≥ 0 then d2E

ds2 ≥ 0. That is, E is convex
along geodesics in P∞(M).

Remark 1 In view of Proposition 2, Corollary 1 would still hold if we replaced E(ρ(s) dvolM )

by E(ρ(s) dvolM ) ± ∫

M φ(s)ρ(s) dvolM . This modification will be crucial in later sections.

Corollary 1 was proven in [19]. The extension of Corollary 1 to P(M) was proven in [4].
We now give a slight refinement of the first variation result.

Proposition 4 Under the assumptions of Proposition 1,

d E

dt

∣

∣

∣

∣

t=t0

=
∫

M

φ

(

∂ρ

∂t
− ∇2ρ

)

dvolM

∣

∣

∣

∣

1

s=0

−
1

∫

0

∫

M

(

∂φ

∂s
+ 1

2
|∇φ|2

)(

∂ρ

∂t
− ∇2ρ

)

dvolM ds

−
1

∫

0

∫

M

(| Hess φ|2 + Ric(∇φ,∇φ)) ρ dvolM ds, (2.32)

where the right-hand side is evaluated at time t = t0.

Proof Integrating (2.29) with respect to s gives

−
∫

M

φ∇2ρ dvolM

∣

∣

∣

∣

1

s=0

= −
1

∫

0

∫

M

(

∂φ

∂s
+ 1

2
|∇φ|2

)

∇2ρ dvolM ds

+
1

∫

0

∫

M

(| Hess φ|2 + Ric(∇φ,∇φ)) ρ dvolM ds. (2.33)

The proposition follows from combining (2.12) and (2.33). ��
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Optimal transport and Perelman’s reduced volume 57

Corollary 2 [18,20,25] Suppose that Ric(M, g) ≥ 0. Let et∇2
be the heat flow on P∞(M).

Then for µ0, µ1 ∈ P∞(M) and t ≥ 0,

W2

(

et∇2
µ0, et∇2

µ1

)

≤ W2(µ0, µ1). (2.34)

Proof Using Theorem 3, given ε > 0, choose a smooth curve c : [0, 1] → P∞(M) with
c(0) = µ0 and c(1) = µ1 so that E(c) ≤ 1

2 W2(µ0, µ1)
2+ε. Define ct : [0, 1] → P∞(M)by

ct (s) = et∇2
c(s). By Proposition 4, E(ct ) is nonincreasing in t . Hence 1

2 W2(ct (0), ct (1))2 ≤
E(ct ) ≤ E(c0) ≤ 1

2 W2(µ0, µ1)
2 + ε. As ε was arbitrary, the corollary follows. ��

We recall that n = dim(M). We now give a new convexity result concerning Wasserstein
geodesics.

Proposition 5 If Ric(M, g) ≥ 0 then sE + ns log(s) is convex along a Wasserstein geodesic
in P∞(M), defined for s ∈ [0, 1].
Proof From (2.29), d2E

ds2 ≥ 0. As

d2

ds2 (sE + ns log(s)) = s
d2E
ds2 + 2

dE
ds

+ n

s
, (2.35)

it suffices to show that
(

dE
ds

)2

≤ n
d2E
ds2 . (2.36)

Now

(

dE
ds

)2

=
⎛

⎝

∫

M

∇2φρ dvolM

⎞

⎠

2

≤
∫

M

(∇2φ)2ρ dvolM

≤ n
∫

M

| Hess φ|2ρ dvolM ≤ n
d2E
ds2 , (2.37)

which proves the proposition. ��
Remark 2 More generally, suppose that a background measure ν = e−
 dvolM ∈ P∞(M)
is such that (M, ν) has RicN ≥ 0 in the sense of [15, Definition 0.10]. Recall the class of
functions DC∞ in [15, Equation (0.5)]. Given U ∈ DC∞, define Uν : P∞(M) → R as in
[15, Equation (0.1)]. Then using the calculations of [15, Appendix D], one can show that
sUν + Ns log(s) is convex along a Wasserstein geodesic in P∞(M).

Now define E : P(M) → R ∪ {∞} by

E(µ) =
{

∫

M ρ log(ρ) dvolM if µ = ρ dvolM ,

∞ if µ is not absolutely continuous with respect to dvolM .

(2.38)

Proposition 6 If Ric(M, g) ≥ 0 then sE +ns log(s) is convex along a Wasserstein geodesic
in P(M).

Proof The proof uses the Lagrangian formulation of optimal transport [15, Pf. of
Theorem 7.3]. We omit the details. ��
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Remark 3 Similarly, in the setup of Remark 2, one has that sUν + Ns log(s) is convex along
a Wasserstein geodesic in P(M). It appears that most of the results of [15] could be derived
using the class of functions DC∞ and the functional sUν + Ns log(s). The paper [15] used
instead the class of functions DCN and the function Uν .

3 Wasserstein distance and Ricci flow

In this section we discuss a first monotonicity relation between Ricci flow and optimal trans-
port. Namely, suppose that the Ricci flow equation is satisfied and we have two solutions
c0(t), c1(t) of the backward heat flow, acting on probability measures on M . Then the Was-
serstein distance W2(c0(t), c1(t)) is nondecreasing in t . We first give a quick formal proof.
We then write out a rigorous proof using the Otto calculus. A proof using the Lagrangian
approach appears in [17].

Let (M, g(·)) be a solution to the Ricci flow equation

dg

dt
= −2 Ric . (3.1)

Then

d(dvolM )

dt
= −R dvolM . (3.2)

The metric G on P∞(M), from (2.3), is also t-dependent. Fix µ ∈ P∞(M) and δµ ∈
TµP∞(M). At time t , we can write µ = ρ dvolM and δµ = Vφ where ρ and φ are t-depen-
dent.

We now compute the first derivative of G with respect to t .

Proposition 7

dG

dt
(δµ, δµ) = −2

∫

M

Ric(∇φ,∇φ)dµ. (3.3)

Proof Letting g∗ denote the dual inner product on T ∗M , we can write

G(δµ, δµ) =
∫

M

g∗(dφ, dφ)dµ. (3.4)

Since the differential d is invariantly defined, we have d
dt dφ = d dφ

dt . Then

dG

dt
(δµ, δµ) = 2

∫

M

Ric(∇φ,∇φ)dµ+ 2
∫

M

g∗
(

dφ, d
dφ

dt

)

dµ. (3.5)

For any fixed f ∈ C∞(M), we have
∫

M

f d(δµ) =
∫

M

g∗(d f, dφ)dµ. (3.6)

Differentiating with respect to t gives

0 = 2
∫

M

Ric(∇ f,∇φ)dµ+
∫

M

g∗
(

d f, d
dφ

dt

)

dµ. (3.7)
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Putting f = φ gives

0 = 2
∫

M

Ric(∇φ,∇φ)dµ+
∫

M

g∗
(

dφ, d
dφ

dt

)

dµ. (3.8)

Equation (3.3) follows from combining (3.5) and (3.8). ��
Let grad E denote the formal gradient of E on P∞(M) and let Hess E denote its Hessian.

Now the Lie derivative of the metric G with respect to the vector field grad E is Lgrad E G =
2 Hess E . From Proposition 3,

(Hess E)(Vφ, Vφ) =
∫

M

(| Hess φ|2 + Ric(∇φ,∇φ)) ρ dvolM . (3.9)

Then from (3.3) and (3.9),

dG

dt
+ Lgrad E G ≥ 0. (3.10)

Let {φt } be the 1-parameter group generated by grad E . Equation (3.10) implies that
φ∗

t G(t) is nondecreasing in t . In particular, for any µ0, µ1 ∈ P∞(M) the Wasserstein dis-
tance dW (φt (µ0), φt (µ1)) is nondecreasing in t .

It remains to compute the flow {φt }. This is a well-known calculation.

Lemma 1 In Tρ dvolM P∞(M),

grad E = Vlog ρ. (3.11)

Proof From (2.28), for all Vφ ∈ Tρ dvolM P∞(M), we have

G(Vφ, grad E)(ρ dvolM ) = (VφE)(ρ dvolM ) =
∫

M

〈∇φ,∇ρ〉 dvolM

=
∫

M

〈∇φ,∇ log ρ〉ρ dvolM = G(Vφ, Vlog ρ)(ρ dvolM ),

(3.12)

from which the lemma follows. ��
Lemma 2 For µ ∈ P∞(M), if µt = φt (µ) then

dµt

dt
= −∇2µt . (3.13)

Equivalently, writing µt = ρt dvolM , we have

dρt

dt
= −∇2ρt + Rρt . (3.14)

Proof Given µ = ρ dvolM , we can write

− ∇ i (ρ∇i log ρ) dvolM = −(∇2ρ) dvolM = −∇2µ. (3.15)

Then (3.13) follows from (3.11) and (3.15). Equation (3.14) follows from (3.2). ��
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Thus we have formally shown that if g(t) satisfies the Ricci flow equation (3.1) and ρi,t

satisfies the backward heat equation

dρi,t

dt
= −∇2ρi,t + Rρi,t (3.16)

for i ∈ {0, 1} then the time-dependent Wasserstein distance dW (ρ0,t dvolM , ρ1,t dvolM ) is
nondecreasing in t .

We now translate this into a rigorous proof using the Otto calculus. We first derive a
general formula for the derivative of the energy functional E along a 1-parameter family of
smooth curves in P∞(M).

Proposition 8 Let g(·) solve the Ricci flow equation (3.1) for t ∈ [t0 − ε, t0 + ε]. Let

ρ dvolM : [0, 1] × [t0 − ε, t0 + ε] → P∞(M) (3.17)

be a smooth map, with ρ ≡ ρ(s, t). Let

φ : [0, 1] × [t0 − ε, t0 + ε] → C∞(M) (3.18)

be a smooth map that satisfies (2.6), with φ ≡ φ(s, t). Put

E(t) = 1

2

1
∫

0

∫

M

|∇φ|2ρ dvolM ds. (3.19)

Then

d E

dt

∣

∣

∣

∣

t=t0

=
∫

M

φ

(

∂ρ

∂t
+ ∇2ρ − Rρ

)

dvolM

∣

∣

∣

∣

1

s=0

−
1

∫

0

∫

M

(

∂φ

∂s
+ 1

2
|∇φ|2

)(

∂ρ

∂t
+ ∇2ρ − Rρ

)

dvolM

+
1

∫

0

∫

M

| Hess φ|2ρ dvolM ds, (3.20)

where the right-hand side is evaluated at time t = t0.

Proof We have

d E

dt
=

1
∫

0

∫

M

(

Ric(∇φ,∇φ)ρ +
〈

∇φ,∇ ∂φ
∂t

〉

ρ + 1

2
|∇φ|2 ∂ρ

∂t
− 1

2
R|∇φ|2ρ

)

dvolM ds.

(3.21)

For a fixed f ∈ C∞(M),
∫

M

f
∂ρ

∂s
dvolM =

∫

M

〈∇ f,∇φ〉ρ dvolM . (3.22)
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Hence
∫

M

f

(

∂2ρ

∂s∂t
− R

∂ρ

∂s

)

dvolM

=
∫

M

(

2 Ric(∇ f,∇φ)ρ +
〈

∇ f,∇ ∂φ
∂t

〉

ρ + 〈∇ f,∇φ〉∂ρ
∂t

− R〈∇ f,∇φ〉ρ
)

dvolM .

(3.23)

Taking f = φ gives
∫

M

φ

(

∂2ρ

∂s∂t
− R

∂ρ

∂s

)

dvolM

=
∫

M

(

2 Ric(∇φ,∇φ)ρ +
〈

∇φ,∇ ∂φ
∂t

〉

ρ + |∇φ|2 ∂ρ
∂t

− R|∇φ|2 ρ
)

dvolM .

(3.24)

Equations (3.21) and (3.24) give

d E

dt

=
1

∫

0

∫

M

(

φ
∂2ρ

∂s∂t
− Rφ

∂ρ

∂s
− 1

2
|∇φ|2 ∂ρ

∂t
− Ric(∇φ,∇φ)ρ + 1

2
R|∇φ|2ρ

)

dvolM ds

=
1

∫

0

∫

M

(

∂

∂s

(

φ
∂ρ

∂t

)

− Rφ
∂ρ

∂s
−

(

∂φ

∂s
+ 1

2
|∇φ|2

)

∂ρ

∂t
− Ric(∇φ,∇φ)ρ

+1

2
R|∇φ|2ρ

)

dvolM ds

=
∫

M

φ
∂ρ

∂t
dvolM

∣

∣

∣

∣

1

s=0

+
1

∫

0

∫

M

(

−Rφ
∂ρ

∂s
−

(

∂φ

∂s
+ 1

2
|∇φ|2

)

∂ρ

∂t
− Ric(∇φ,∇φ)ρ

+1

2
R|∇φ|2ρ

)

dvolM ds. (3.25)

From (2.33),

0 =
∫

M

φ∇2ρ dvolM

∣

∣

∣

∣

1

s=0

+
1

∫

0

∫

M

[| Hess φ|2 + Ric(∇φ,∇φ)] ρ dvolM ds

−
1

∫

0

∫

M

∇2ρ

(

∂φ

∂s
+ 1

2
|∇φ|2

)

dvolM ds. (3.26)

Finally,

∂

∂s

∫

M

Rφρ dvolM =
∫

M

(

R
∂φ

∂s
ρ + Rφ

∂ρ

∂s

)

dvolM , (3.27)
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so

0 = −
∫

M

Rφρ dvolM

∣

∣

∣

∣

1

s=0

+
1

∫

0

∫

M

(

R
∂φ

∂s
ρ + Rφ

∂ρ

∂s

)

dvolM ds. (3.28)

Adding (3.25), (3.26) and (3.28) gives the proposition. ��
Corollary 3 For i ∈ {0, 1}, let ci (t) be a solution of the backward heat equation (3.13) in
P∞(M). Then W2(c0(t), c1(t)) is nondecreasing in t.

Proof Fix t0. Using Theorem 3, given ε > 0, choose a smooth curve c : [0, 1] → P∞(M)
so that c(0) = c0(t0), c(1) = c1(t0) and E(c) ≤ 1

2 W2(c0(t0), c1(t0))2 + ε. For t ≤ t0, define
ct : [0, 1] → P∞(M) by saying that ct0(s) = c(s) and ct (s) satisfies Eq. (3.13) in t . By
Proposition 8, E(ct ) is nondecreasing in t . Hence 1

2 W2(c0(t), c1(t))2 ≤ E(ct ) ≤ E(c0) ≤
1
2 W2(c0(t0), c1(t0))2 + ε. Since ε was arbitrary, the corollary follows. ��
Remark 4 To see the relation between Corollaries 2 and 3, suppose that M is Ricci flat, in
which case the Ricci flow on M is constant. Put τ = t0 − t . Then the backward heat equa-
tion (3.13) in t becomes a forward heat equation in τ . Corollary 2 says that the Wasserstein
distance between the heat flows is nonincreasing in τ , i.e. nondecreasing in t .

Corollary 3 was proven using Lagrangian methods in [17].

4 Convexity of the L0-entropy

In this section we consider an analog L0 of Perelman’s L-functional, which has the same
relationship to steady solitons as Perelman’s L-functional has to shrinking solitons. Under a
Ricci flow, we consider the transport equation associated to the problem of minimizing the
L0-cost. We show the convexity of a modified entropy functional.

Let M be a connected closed manifold and let g(·) be a Ricci flow solution on M .

Definition 1 If γ : [t ′, t ′′] → M is a smooth curve then its L0-length is

L0(γ ) = 1

2

t ′′
∫

t ′

(

g

(

dγ

dt
,

dγ

dt

)

+ R(γ (t), t)

)

dt, (4.1)

where the time-t metric g(t) is used to define the integrand.
Let Lt ′,t ′′

0 (m′,m′′) be the infimum of L0 over curves γ with γ (t ′) = m′ and γ (t ′′) = m′′.

The Euler–Lagrange equation for the L0-functional is easily derived to be

∇ dγ
dt

(

dγ

dt

)

− 1

2
∇ R − 2 Ric

(

dγ

dt
, ·
)

= 0. (4.2)

The L0-exponential map L0 expt ′,t ′′
m′ : Tm′ M → M is defined by saying that for V ∈ Tm′ M ,

one has

L0 expt ′,t ′′
m′ (V ) = γ (t ′′) (4.3)

where γ is the solution to (4.2) with γ (t ′) = m′ and dγ
dt

∣

∣

∣

t=t ′
= V .
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Definition 2 Given µ′, µ′′ ∈ P(M), put

Ct ′,t ′′
0

(

µ′, µ′′) = inf
�

∫

M×M

Lt ′,t ′′
0 (m′,m′′)d�(m′,m′′), (4.4)

where� ranges over the elements of P(M × M) whose pushforward to M under projection
onto the first (resp. second) factor is µ′ (resp. µ′′). Given a continuous curve c : [t ′, t ′′] →
P(M), put

A0(c) = sup
J∈Z+

sup
t ′=t0≤t1≤···≤tJ =t ′′

J
∑

j=1

C
t j−1,t j
0

(

c(t j−1), c(t j )
)

. (4.5)

We can think of A0 as a generalized energy functional associated to the generalized metric
C0. By [28, Theorem 7.21], A0 is a coercive action on P(M) in the sense of [28, Definition
7.13]. In particular,

Ct ′,t ′′
0

(

µ′, µ′′) = inf
c

A0(c), (4.6)

where c ranges over continuous curves c : [t ′, t ′′] → P(M)with c(t ′) = µ′ and c(t ′′) = µ′′.
We now consider the equations that come from minimizing the generalized energy func-

tional A0, when restricted to smooth curves in P∞(M). If c : [t0, t1] → P∞(M) is a smooth
curve in P∞(M) then we write c(t) = ρ(t) dvolM and let φ(t) ∈ C∞(M) satisfy

∂ρ

dt
= −∇ i (ρ∇iφ)+ Rρ. (4.7)

Note that φ(t) is uniquely defined up to an additive constant. Using (3.2), the scalar curvature
term in (4.7) ensures that

d

dt

∫

M

ρ dvolM = 0. (4.8)

Consider the Lagrangian

E0(c) = 1

2

t1
∫

t0

∫

M

(|∇φ|2 + R
)

ρ dvolM dt, (4.9)

where the integrand at time t is computed using g(t).

Proposition 9 Let

ρ dvolM : [t0, t1] × [−ε, ε] → P∞(M) (4.10)

be a smooth map, with ρ ≡ ρ(t, u). Let

φ : [t0, t1] × [−ε, ε] → C∞(M) (4.11)

be a smooth map that satisfies (4.7), with φ ≡ φ(t, u). Then

d E0

du

∣

∣

∣

∣

u=0

=
∫

M

φ
∂ρ

∂u
dvolM

∣

∣

∣

∣

∣

∣

t1

t=t0

−
t1

∫

t0

∫

M

(

∂φ

∂t
+ 1

2
|∇φ|2 − 1

2
R

)

∂ρ

∂u
dvolM dt,

(4.12)

where the right-hand side is evaluated at u = 0.
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Proof The proof is similar to that of Proposition 1. We omit the details. ��

From (4.12), the Euler–Lagrange equation for E0 is

∂φ

∂t
= −1

2
|∇φ|2 + 1

2
R + α(t), (4.13)

where α ∈ C∞([t0, t1]). Changing φ by a spatially constant function, we can assume that
α = 0, so

∂φ

∂t
= −1

2
|∇φ|2 + 1

2
R. (4.14)

If a smooth curve in P∞(M) minimizes E0, relative to its endpoints, then it will satisfy
(4.14). For each t0 ≤ t ′ < t ′′ ≤ t1, the viscosity solution of (4.14) satisfies

φ(t ′′)(m′′) = inf
m′∈M

(

φ(t ′)(m′)+ Lt ′,t ′′
0 (m′,m′′)

)

. (4.15)

Then the solution of (4.7) satisfies

ρ(t ′′) dvolM = (Ft ′,t ′′)∗
(

ρ(t ′) dvolM
)

, (4.16)

where the transport map Ft ′,t ′′ : M → M is given by

Ft ′,t ′′(m
′) = L0 expt ′,t ′′

m′
(∇m′φ(t ′)

)

. (4.17)

We now do certain calculations in an Otto calculus that is adapted to the Ricci flow
background.

Proposition 10 Suppose that (4.7) and (4.14) are satisfied. Then

d

dt

∫

M

φρ dvolM = 1

2

∫

M

(|∇φ|2 + R
)

ρ dvolM , (4.18)

1

2

d

dt

∫

M

|∇φ|2ρ dvolM =
∫

M

(

Ric(∇φ,∇φ)+ 1

2
〈∇ R,∇φ〉

)

ρ dvolM , (4.19)

d

dt

∫

M

ρ log(ρ) dvolM =
∫

M

(〈∇ρ,∇φ〉 + Rρ) dvolM , (4.20)

d

dt

∫

M

Rρ dvolM =
∫

M

(Rt + 〈∇ R,∇φ〉) ρ dvolM (4.21)

and

d

dt

∫

M

〈∇ρ,∇φ〉 dvolM

=
∫

M

(

| Hess φ|2 + Ric(∇φ,∇φ)− 2〈Ric,Hess φ〉 − 1

2
∇2 R

)

ρ dvolM . (4.22)
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Proof For (4.18),

d

dt

∫

M

φρ dvolM

=
∫

M

((

−1

2
|∇φ|2 + 1

2
R

)

ρ + φ
(

−∇ i (ρ∇iφ)+ Rρ
)

− Rφρ

)

dvolM

= 1

2

∫

M

(|∇φ|2 + R
)

ρ dvolM . (4.23)

For (4.19),

1

2

d

dt

∫

M

|∇φ|2ρ dvolM

=
∫

M

(

Ric(∇φ,∇φ)ρ +
〈

∇φ,∇
(

−1

2
|∇φ|2 + 1

2
R

)〉

ρ

+1

2
|∇φ|2

(

−∇ i (ρ∇iφ)+ Rρ
)

− 1

2
R|∇φ|2ρ

)

dvolM

=
∫

M

(

Ric(∇φ,∇φ)+ 1

2
〈∇ R,∇φ〉

)

ρ dvolM . (4.24)

For (4.20),

d

dt

∫

M

ρ log(ρ) dvolM

=
∫

M

(

(log(ρ)+ 1)
(

−∇ i (ρ∇iφ)+ Rρ
)

− ρ log(ρ)R
)

dvolM

=
∫

M

(〈∇ρ,∇φ〉 + Rρ) dvolM . (4.25)

For (4.21),

d

dt

∫

M

Rρ dvolM =
∫

M

(

Rtρ + R
(

−∇ i (ρ∇iφ)+ Rρ
)

− R2ρ
)

dvolM

=
∫

M

(Rt + 〈∇ R,∇φ〉) ρ dvolM . (4.26)

For (4.22),

d

dt

∫

M

〈∇ρ,∇φ〉 dvolM

=
∫

M

(

2 Ric(∇ρ,∇φ)+
〈

∇
(

− ∇ i (ρ∇iφ)+ Rρ
)

,∇φ
〉

+
〈

∇ρ,∇
(

−1

2
|∇φ|2 + 1

2
R

)〉

− R〈∇ρ,∇φ〉
)

dvolM . (4.27)
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Now

2
∫

M

Ric(∇ρ,∇φ) dvolM = −
∫

M

(〈∇ R,∇φ〉 + 2〈Ric,Hess φ〉) ρ dvolM (4.28)

and
∫

M

(

〈

∇
(

−∇ i (ρ∇iφ)
)

,∇φ
〉

+
〈

∇ρ,∇
(

−1

2
|∇φ|2

)〉)

dvolM

=
∫

M

(

−〈∇φ,∇(∇2φ)〉 + 1

2
∇2|∇φ|2

)

ρ dvolM

=
∫

M

(| Hess φ|2 + Ric(∇φ,∇φ)) ρ dvolM . (4.29)

Thus

d

dt

∫

M

〈∇ρ,∇φ〉 dvolM

=
∫

M

(| Hess φ|2 + Ric(∇φ,∇φ)− 2〈Ric,Hess φ〉) ρ dvolM

+
∫

M

(

−〈∇ R,∇φ〉ρ + 〈∇(Rρ),∇φ〉 + 1

2
〈∇ρ,∇ R〉 − R〈∇ρ,∇φ〉

)

dvolM

=
∫

M

(

| Hess φ|2 + Ric(∇φ,∇φ)− 2〈Ric,Hess φ〉 − 1

2
∇2 R

)

ρ dvolM . (4.30)

This proves the proposition. ��
Corollary 4 Under the hypotheses of Proposition 10,

d2

dt2

∫

M

ρ log(ρ) dvolM =
∫

M

(

| Ric − Hess φ|2 + 1

2
H(∇φ)

)

ρ dvolM , (4.31)

where

H(X) = Rt + 2〈∇ R, X〉 + 2 Ric(X, X) (4.32)

is Hamilton’s trace Harnack expression. Also,

d2

dt2

∫

M

(ρ log(ρ)− φρ) dvolM =
∫

M

| Ric − Hess φ|2ρ dvolM . (4.33)

In particular,
∫

M (ρ log(ρ)− φρ) dvolM is convex in t.

Proof This follows from Proposition 10, along with the equation

Rt = ∇2 R + 2| Ric |2. (4.34)

��
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We now give the analog of Corollary 4 for P(M), using results from [2] and [28, Chaps. 7,
10, 13]. Let c : [t0, t1] → P(M) be a minimizing curve for A0 relative to its endpoints, which
we assume to be absolutely continuous probability measures. Then c(t) = (Ft0,t )∗c(t0),
where there is a semiconvex function φ0 ∈ C(M) so that Ft0,t (m0) = L0 expt0,t

m0 (∇m0φ0).
Define φ(t) ∈ C(M) by

φ(t)(m) = inf
m0∈M

(

φ0(m0)+ Lt0,t
0 (m0,m)

)

. (4.35)

Define E : P(M) → R ∪ {∞} as in (2.38).

Proposition 11 E(c(t))− ∫

M φ(t) dc(t) is convex in t.

Proof The proof is along the lines of the proof of Proposition 16 ahead. ��
Remark 5 The function φ also enters as a solution of the dual Kantorovitch problem. See
[28, Theorem 7.36] (where what we call φ is called ψ).

Remark 6 Suppose that the Ricci flow solution (M, g(·)) is a gradient steady soliton, mean-
ing that it is a Ricci flow solution with Ric + Hess ( f ) = 0, where f satisfies ∂ f

∂t = |∇ f |2.
Differentiating spatially and temporally, one shows that |∇ f |2 + R = C for some constant
C . Then there is a solution of (4.13) with φ = − f and α = − 1

2 C . If ρ is transported along
the static vector field −∇ f , i.e. satisfies (4.7), then (4.33) says that

∫

M (ρ log(ρ)+ fρ) dvolM

is linear in t .

5 Monotonicity of the L0-cost under a backward heat flow

In this section we discuss the L0-cost between two measures that each evolve under the
backward heat flow. The results are analogs of results of Topping for the L-cost [26]. We
first compute the variation of E0 with respect to a one-parameter family of curves that begin
and end at shifted times. We use this to show, within the Otto calculus, that if measures
c′(·) and c′′(·) evolve under the backward heat flow then the L0-cost between c′(t ′ + u)
and c′′(t ′′ + u) is nondecreasing in u. We then show that this implies the monotonicity of
Perelman’s F-functional, in analogy to what Topping did for Perelman’s W-functional.

Proposition 12 Take t0 < t ′ < t ′′ < t1. For small ε, suppose that c : [t ′, t ′′] × (−ε, ε) →
P∞(M) is a smooth map, where c ≡ c(t, u). Define cu : [t ′ + u, t ′′ + u] → P∞(M) by
cu(t) = c(t − u, u). Put µ′ = c0(t ′) and µ′′ = c0(t ′′). Suppose that c0 is a minimizer for E0

among curves from [t ′, t ′′] to P∞(M) whose endpoints are µ′ and µ′′. Put V (t) = ∂c
∂u

∣

∣

∣

u=0
.

Then

d E0(cu)

du

∣

∣

∣

∣

u=0
=

t ′′
∫

t ′

∫

M

| Ric − Hess φ|2ρ dvolM dt

+
∫

M

φ(t)
(

V (t)+ ∇2ρ dvolM
)

∣

∣

∣

∣

∣

∣

t ′′

t=t ′

. (5.1)

Proof For any u ∈ (−ε, ε), we can write

E0(cu) = 1

2

t ′′
∫

t ′

⎛

⎝G

(

∂c

∂t
,
∂c

∂t

)

+
∫

M

Rc(t, u)

⎞

⎠ dt, (5.2)

123



68 J. Lott

where the integrand is evaluated using the metric at time t + u, and the c(t, u) in the term
R c(t, u) is taken to be a measure on M . There is a well-defined notion of covariant deriv-
ative on P∞(M) [12, Proposition 2]. Letting D denote directional covariant differentiation
on P∞(M),

d E0(cu)

du

∣

∣

∣

∣

u=0

=
t ′′
∫

t ′

⎛

⎝

1

2
Gt

(

dc0

dt
,

dc0

dt

)

+ G

(

dc0

dt
, D dc0

dt
V (t)

)

+ 1

2

∫

M

Rt c0(t)+ 1

2

∫

M

RV (t)

⎞

⎠ dt

=
t ′′
∫

t ′

⎛

⎝

1

2
Gt

(

dc0

dt
,

dc0

dt

)

+ G

(

D dc0
dt

(

dc0

dt

)

, V (t)

)

+ 1

2

∫

M

Rt c0(t)

+1

2

∫

M

RV (t)

⎞

⎠ dt + G

(

dc0

dt
, V (t)

) ∣

∣

∣

∣

t ′′

t=t ′
. (5.3)

As c0 is a minimizer,

d E0(cu)

du

∣

∣

∣

∣

u=0

=
t ′′
∫

t ′

⎛

⎝

1

2
Gt

(

dc0

dt
,

dc0

dt

)

+ 1

2

∫

M

Rt c0(t)

⎞

⎠ dt + G

(

dc0

dt
, V (t)

)

∣

∣

∣

∣

∣

∣

∣

t ′′

t=t ′

.

(5.4)

For any f ∈ C∞(M),
d

dt

∫

M

fρ dvolM =
∫

M

〈∇ f,∇φ〉ρ dvolM . (5.5)

This gives dc0
dt in terms of φ. Then from (2.4) and Proposition 7,

d E0(cu)

du

∣

∣

∣

∣

u=0
=

t ′′
∫

t ′

∫

M

⎛

⎝− Ric(∇φ,∇φ)ρ dvolM +1

2

∫

M

Rt c0(t)

⎞

⎠ dt +
∫

M

φ(t)V (t)

∣

∣

∣

∣

∣

∣

t ′′

t=t ′

.

(5.6)

From (4.30),

∫

M

〈∇ρ,∇φ〉 dvolM

∣

∣

∣

∣

t ′′

t ′

=
t ′′

∫

t ′

∫

M

(

| Hess φ|2 + Ric(∇φ,∇φ)− 2〈Ric,Hess φ〉 − 1

2
∇2 R

)

ρ dvolM dt.

(5.7)

The proposition follows from the curvature evolution equation (4.34), (5.6) and (5.7). ��
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Optimal transport and Perelman’s reduced volume 69

Corollary 5 Under the hypotheses of Proposition 12, suppose that each cu is a minimizer
for E0 relative to its endpoints. Suppose that the endpoint measures cu(t ′ + u) = c(t ′, u)
and cu(t ′′ + u) = c(t ′′, u) each satisfy the backward heat equation, in the variable u:

dc

du
= −∇2c. (5.8)

Then Ct ′+u,t ′′+u
0 (cu(t ′ + u), cu(t ′′ + u)) is nondecreasing in u.

We now give the general statement about the monotonicity of the L0-cost for two measures
that evolve under the backward heat flow, without the extra assumption in Corollary 5 that
minimizers cu stay in P∞(M). Its proof is an analog of Topping’s proof of the corresponding
statement for the L-cost [26].

Proposition 13 Suppose that c′ : [t0, t1] → P∞(M) and c′′ : [t0, t1] → P∞(M) satisfy

(3.13). Then Ct ′+u,t ′′+u
0 (c′(t ′ + u), c′′(t ′′ + u)) is nondecreasing in u.

Using Proposition 13, we now reprove the fact that Perelman’s F-functional is monotonic
[21]. The proof is along the lines of Topping’s proof [26] of the corresponding result for
Perelman’s W-functional.

Corollary 6 Suppose that α : [t0, t1] → P∞(M) is a solution of (3.13). Write α(t) =
ρ(t) dvolM . Then

F =
∫

M

(|∇ log(ρ)|2 + R
)

ρ dvolM (5.9)

is nondecreasing in t.

Proof Put c′ = c′′ = α. Take t ′′ > t ′. By Corollary 5, if u > 0 then Ct ′+u,t ′′+u
0 (α(t ′ + u),

α(t ′′ + u)) ≥ Ct ′,t ′′
0 (α(t ′), α(t ′′)), so

Ct ′+u,t ′′+u
0 (α(t ′ + u), α(t ′′ + u))

t ′′ − t ′
≥ Ct ′,t ′′

0 (α(t ′), α(t ′′))
t ′′ − t ′

. (5.10)

From (4.4),

lim
t ′′→t ′

1

t ′′ − t ′
Ct ′,t ′′

0 (α(t ′), α(t ′′)) = 1

2

∫

M

(|∇φ|2 + R
)

ρ dvolM , (5.11)

where φ satisfies (4.7) and the right-hand side is evaluated at time t ′. As ρ satisfies (3.14),
we can take φ = log(ρ). The corollary follows. ��

6 Convexity of the L−-entropy

In this section we extend the results of Sect. 4 from the L0-functional to the L−-functional.
Optimal transport with an L−-cost was considered in [26]. As the results of this section are
analogs of those in Sect. 4, we only indicate the needed changes.

Let M be a connected closed manifold and let g(·) be a Ricci flow solution on M . We put
τ = t0 − t and write the Ricci flow equation in terms of τ , i.e.

dg

dτ
= 2 Ric(g(τ )). (6.1)
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Definition 3 If γ : [τ ′, τ ′′] → M is a smooth curve with τ ′ > 0 then its L−-length is

L−(γ ) = 1

2

τ ′′
∫

τ ′

√
τ

(

g

(

dγ

dτ
,

dγ

dτ

)

+ R(γ (τ ), τ )

)

dτ, (6.2)

where the time-τ metric g(τ ) is used to define the integrand.

Let Lτ
′,τ ′′

− (m′,m′′) be the infimum of L− over curves γ with γ (τ ′) = m′ and γ (τ ′′) = m′′.

The Euler–Lagrange equation for the L−-functional is easily derived [21, (7.2)] to be

∇ dγ
dτ

(

dγ

dτ

)

− 1

2
∇ R + 1

2τ

dγ

dτ
+ 2 Ric

(

dγ

dτ
, ·
)

= 0. (6.3)

The L−-exponential map L− expτ
′,τ ′′

m′ : Tm′ M → M is defined by saying that for V ∈ Tm′ M ,
one has

L− expτ
′,τ ′′

m′ (V ) = γ (τ ′′) (6.4)

where γ is the solution to (6.3) with γ (τ ′) = m′ and dγ
dτ

∣

∣

∣

τ=τ ′ = V . Note that our L−-expo-

nential map differs slightly from Perelman’s L-exponential map.

Definition 4 Given µ′, µ′′ ∈ P(M), put

Cτ ′,τ ′′
− (µ′, µ′′) = inf

�

∫

M×M

Lτ
′,τ ′′

− (m′,m′′)d�(m′,m′′), (6.5)

where� ranges over the elements of P(M × M) whose pushforward to M under projection
onto the first (resp. second) factor is µ′ (resp. µ′′). Given a continuous curve c : [τ ′, τ ′′] →
P(M), put

A−(c) = sup
J∈Z+

sup
τ ′=τ0≤τ1≤···≤τJ =τ ′′

J
∑

j=1

C
τ j−1,τ j
− (c(τ j−1), c(τ j )). (6.6)

We can think of A− as a generalized length functional associated to the generalized metric
C−. By [28, Theorem 7.21], A− is a coercive action on P(M) in the sense of [28, Definition
7.13]. In particular,

Cτ ′,τ ′′
− (µ′, µ′′) = inf

c
A−(c), (6.7)

where c ranges over continuous curves c : [τ ′, τ ′′] → P(M) with c(τ ′) = µ′ and c(τ ′′) =
µ′′.

If c : [τ0, τ1] → P∞(M) is a smooth curve in P∞(M), with τ0 > 0, then we write
c(τ ) = ρ(τ) dvolM and let φ(τ) satisfy

∂ρ

dτ
= −∇ i (ρ∇iφ)− Rρ. (6.8)

Note that φ(τ) is uniquely defined up to an additive constant. The scalar curvature term in
(6.8) ensures that

d

dτ

∫

M

ρ dvolM = 0. (6.9)
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Consider the Lagrangian

E−(c) =
τ1
∫

τ0

∫

M

√
τ
(|∇φ|2 + R

)

ρ dvolM dτ, (6.10)

where the integrand at time τ is computed using g(τ ).

Proposition 14 Let

ρ dvolM : [τ0, τ1] × [−ε, ε] → P∞(M) (6.11)

be a smooth map, with ρ ≡ ρ(τ, u). Let

φ : [τ0, τ1] × [−ε, ε] → C∞(M) (6.12)

be a smooth map that satisfies (6.8), with φ ≡ φ(τ, u). Then

d E−
du

∣

∣

∣

∣

u=0

= 2
√
τ

∫

M

φ
∂ρ

∂u
dvolM

∣

∣

∣

∣

τ1

τ=τ0

−2

τ1
∫

τ0

∫

M

√
τ

(

∂φ

∂τ
+ 1

2
|∇φ|2 − 1

2
R + 1

2τ
φ

)

∂ρ

∂u
dvolM dτ, (6.13)

where the right-hand side is evaluated at u = 0.

Proof The proof is similar to that of Proposition 9. We omit the details. ��

From (6.13), the Euler–Lagrange equation for E− is

∂φ

∂τ
= −1

2
|∇φ|2 + 1

2
R − 1

2τ
φ + α(τ), (6.14)

where α ∈ C∞([τ0, τ1]). Changing φ by a spatially constant function, we can assume that
α = 0, so

∂φ

∂τ
= −1

2
|∇φ|2 + 1

2
R − 1

2τ
φ. (6.15)

If a smooth curve in P∞(M) minimizes E−, relative to its endpoints, then it will satisfy
(6.15). For each τ0 ≤ τ ′ < τ ′′ ≤ τ1, the viscosity solution of (6.15) satisfies

2
√
τ ′′φ(τ ′′)(m′′) = inf

m′∈M

(

2
√
τ ′φ(τ ′)(m′)+ Lτ

′,τ ′′
− (m′,m′′)

)

. (6.16)

Then the solution of (6.8) satisfies

ρ(τ ′′) dvolM = (Fτ ′,τ ′′)∗
(

ρ(τ ′) dvolM
)

, (6.17)

where the transport map Fτ ′,τ ′′ : M → M is given by

Fτ ′,τ ′′(m′) = L− expτ
′,τ ′′

m′
(∇m′φ(τ ′)

)

. (6.18)

Our function φ is related to the function ϕ of [26] by φ = − ϕ

2
√
τ

.
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Proposition 15 Suppose that (6.8) and (6.15) are satisfied. Then

d

dτ

∫

M

φρ dvolM = 1

2

∫

M

(|∇φ|2 + R
)

ρ dvolM − 1

2τ

∫

M

φρ dvolM , (6.19)

1

2

d

dτ

∫

M

|∇φ|2ρ dvolM =
∫

M

(

− Ric(∇φ,∇φ)+ 1

2
〈∇ R,∇φ〉

)

ρ dvolM

− 1

2τ

∫

M

|∇φ|2ρ dvolM , (6.20)

d

dτ

∫

M

ρ log(ρ) dvolM =
∫

M

(〈∇ρ,∇φ〉 − Rρ) dvolM , (6.21)

d

dτ

∫

M

Rρ dvolM =
∫

M

(Rτ + 〈∇ R,∇φ〉) ρ dvolM (6.22)

and

d

dτ

∫

M

〈∇ρ,∇φ〉 dvolM

=
∫

M

(

| Hess φ|2 + Ric(∇φ,∇φ)+ 2〈Ric,Hess φ〉 − 1

2
∇2 R

)

ρ dvolM

− 1

2τ

∫

M

〈∇ρ,∇φ〉 dvolM . (6.23)

Proof The proof is similar to that of Proposition 10. We omit the details. ��

Corollary 7 Under the hypotheses of Proposition 15,

(

τ
1
2

d

dτ

)2 ∫

M

ρ log(ρ) dvolM = τ

∫

M

(

| Ric + Hess φ|2 + 1

2
H(∇φ)

)

ρ dvolM ,

(6.24)

where

H(X) = −Rτ − 2〈∇ R, X〉 + 2 Ric(X, X)− R

τ
(6.25)

is Hamilton’s trace Harnack expression. Also,

(

τ
3
2

d

dτ

)2
⎛

⎝

∫

M

(ρ log(ρ)+ φρ) dvolM +n

2
log(τ )

⎞

⎠

= τ 3
∫

M

∣

∣

∣Ric + Hess φ − g

2τ

∣

∣

∣

2
ρ dvolM . (6.26)

In particular,
∫

M (ρ log(ρ)+ φρ) dvolM + n
2 log(τ ) is convex in τ− 1

2 .
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Proof This follows from Proposition 15, along with the equation

Rτ = −∇2 R − 2| Ric |2, (6.27)

after some calculations. ��
Remark 7 In [26] it is shown, for transport in P(M) between two elements of P∞(M), that

(

τ
1
2

d

dτ

)2 ∫

M

ρ log(ρ) dvolM ≥ 1

2
τ

∫

M

H(∇φ)ρ dvolM (6.28)

and
(

τ
3
2

d

dτ

)2 ∫

M

ρ log(ρ) dvolM ≥ 1

2
τ 3

∫

M

H(∇φ)ρ dvolM −n

4
τ. (6.29)

7 Monotonicity of the reduced volume

In this section we give the extension of Corollary 7 to P(M). We then reprove the monoto-
nicity of Perelman’s reduced volume [21].

Let c : [τ0, τ1] → P(M) be a minimizing curve for A− relative to its endpoints. We
assume that c(τ0) are c(τ1) are absolutely continuous with respect to a Riemannian volume
density on M . Then c(τ ) = (Fτ0,τ )∗c(τ0), where there is a semiconvex function φ0 ∈ C(M)
so that Fτ0,τ (m0) = L− expτ0,τ

m0 (∇m0φ0) [2], [28, Chaps. 10, 13]. Define φ(τ) ∈ C(M) by

2
√
τφ(τ)(m) = inf

m0∈M

(

2
√
τoφ0(m0)+ Lτ0,τ− (m0,m)

)

. (7.1)

Define E : P(M) → R ∪ {∞} as in (2.38).

Proposition 16 E(c(τ ))+ ∫

M φ(τ)dc(τ )+ n
2 log(τ ) is convex in s = τ− 1

2 .

Proof From [26], E(c(τ )) is semiconvex in τ and its second derivative in the Alexandrov
sense satisfies

(

τ
3
2

d

dτ

)2 ∫

M

ρ log(ρ) dvolM ≥ 1

2
τ 3

∫

M

H(∇φ(τ))c(τ )− n

4
τ. (7.2)

(Strictly speaking, the paper [26] assumes that c(τ0), c(τ1) ∈ P∞(M), but the proof works
when c(τ0) and c(τ1) are just absolutely continuous probability measures). Now

∫

M

φ(τ)dc(τ ) =
∫

M

(φ(τ) ◦ Fτ0,τ )dc(τ0). (7.3)

From [28, Theorem 7.36], for c(τ0)-almost all m0 ∈ M one has

(φ(τ) ◦ Fτ0,τ )(m0)− (φ(τ0))(m) = Lτ0,τ− (m0, Fτ0,τ (m0)), (7.4)

with Fτ0,τ (m0) describing an L−-geodesic parametrized by τ .
Given such an m0 ∈ M , put γ (τ) = Fτ0,τ (m0) and write X = dγ

dτ . We evaluate
(

τ
3
2 d

dτ

)2
φ(γ (τ)) using formulas from [21, Sect. 7]; see also [7, Section 18]. Write
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X (τ ) = dγ
dτ . Then

d

dτ

(

2
√
τφ(γ (τ))

) = d

dτ
Lτ0,τ− (m0, γ (τ )) = √

τ
(

R(γ (τ ), τ )+ |X (τ )|2) , (7.5)

so

τ
3
2

d

dτ
φ(γ (τ)) = −1

2

√
τφ(γ (τ))+ 1

2
τ

3
2
(

R(γ (τ ), τ )+ |X (τ )|2) . (7.6)

From [21, (7.3)],

d

dτ

(

R(γ (τ ), τ )+ |X (τ )|2) = −H(X)− 1

τ

(

R(γ (τ ), τ )+ |X (τ )|2) . (7.7)

Using (7.6) and (7.7), one obtains
(

τ
3
2

d

dτ

)2

φ(γ (τ)) = −1

2
τ 3 H(X). (7.8)

For c(τ0)-almost all m0 ∈ M , we have [28, Chapter 13]

X (τ ) = (∇φ(τ)) (γ (τ )). (7.9)

Equations (7.3) and (7.8) give
(

τ
3
2

d

dτ

)2 ∫

M

φ(τ)dc(τ ) =
∫

M

(

H(∇φ(τ)) ◦ Fτ0,τ

)

dc0(τ ) =
∫

M

H(∇φ(τ))dc(τ ).

(7.10)

As
(

τ
3
2

d

dτ

)2

log(τ ) = 1

2
τ, (7.11)

the proposition follows. ��
Remark 8 We expect that one can prove Proposition 16 using the Eulerian approach and a
density argument, along the lines of [5], but we do not pursue this here.

We now consider the limiting case when τ0 = 0 and c(0) = δp . We remark that the
preceding results of this section are valid if we just assume that only c(τ1) is absolutely
continuous with respect to a Riemannian volume density [28, Chapter 13]. Fix p ∈ M and,
following the notation of [21, Section 7], put L(m, τ ) = L0,τ

− (p,m). Choose c(τ1) ∈ P(M)
to be absolutely continuous with respect to a Riemannian measure. For each m1 ∈ M , choose
a (minimizing) L−-geodesic γm1 : [0, τ1] → M with γm1(0) = p and γm1(τ1) = m1. It is
uniquely defined for almost all m1 ∈ M [7, Section 17]. Let Rτ : M → M be the map given
by Rτ (m1) = γm1(τ ). Then as τ ranges in [0, τ1], c(τ ) = (Rτ )∗c(τ1) describes a minimiz-
ing curve for A− relative to its endpoints. If τ > 0 then c(τ ) is absolutely continuous with
respect to a Riemannian volume density [28, Chap. 13].

From (7.5),

φ(τ) = l(·, τ ) = L(·, τ )
2
√
τ
. (7.12)

Proposition 17 E(c(τ ))+ ∫

M φ(τ)dc(τ )+ n
2 log(τ ) is nondecreasing in τ .
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Proof Put s = τ− 1
2 . If we can show that E(c(τ )) + ∫

M φ(τ) dc(τ ) + n
2 log(τ ) approaches

a constant as s → ∞, i.e. as τ → 0, then the convexity in s will imply that E(c(τ )) +
∫

M φ(τ) dc(τ )+ n
2 log(τ ) is nonincreasing in s, i.e. nondecreasing in τ .

Let L exp(τ ) : Tp M → M be the L-exponential map of [21, Section 7]. That is, for
V ∈ Tp M , (L exp(τ )) (V ) = γ (τ)where γ : [0, τ ] → M is the L−-geodesic with γ (0) = p
and limτ→0

√
τγ ′(τ ) = V .

Let �τ1 be the set of vectors V ∈ Tp M for which {L exp(τ ′)(V )}τ ′∈[0,τ1] is L−-mini-
mizing relative to its endpoints. Put ĉ(τ1) = (L exp(τ1)

−1
)

∗ c(τ1), a measure on �τ1 . Then
c(τ ) = L exp(τ )∗ĉ(τ1). Computing

E(c(τ ))+
∫

M

φ(τ)dc(τ )+ n

2
log(τ ) (7.13)

with respect to the metric g(τ ) on M is the same as computing

E (̂c(τ1))+
∫

�τ1

(φ(τ) ◦ L exp(τ )) dĉ(τ1)+ n

2
log(τ ) (7.14)

with respect to the metric ĝ(τ ) = Lexp(τ )∗g(τ ) on �τ1 .
As τ → 0, one approaches the Euclidean situation; see [7, Section 16]. One can check

that (φ(τ) ◦ Lexp(τ )) (V ) approaches |V |2 uniformly on the compact set �τ1 , where |V |2
is the norm squared of V ∈ Tp M with respect to gTp M . Thus

lim
τ→0

∫

�τ1

(φ(τ) ◦ Lexp(τ )) dĉ(τ1) =
∫

�τ1

|V |2dĉ(τ1). (7.15)

Also, ĝ(τ )
4τ approaches the flat Euclidean metric gTp M on�τ1 . Writing ĉ(τ1) = ρ1 dvol(gTp M ),

for small τ the density of ĉ(τ1) relative to dvol(ĝ(τ )) is asymptotic to (4τ)− n
2 ρ1. Thus

lim
τ→0

(

E (̂c(τ1))+ n

2
log(τ )

)

= lim
τ→0

⎛

⎜

⎝

∫

�τ1

(4τ)−
n
2 ρ1 · log((4τ)−

n
2 ρ1) · (4τ) n

2 dvolTp M +n

2
log(τ )

⎞

⎟

⎠

=
∫

�τ1

ρ1 log(ρ1) dvolTp M −n

2
log(4). (7.16)

The proposition follows. ��

Corollary 8 τ− n
2
∫

M e−l dvolM is nonincreasing in τ .

Proof Given 0 < τ ′ < τ ′′ < τ1, take

c(τ ′′) = e−φ(τ ′′) dvolM
∫

M e−φ(τ ′′
) dvolM

. (7.17)

123



76 J. Lott

Then

E(c(τ ′′))+
∫

M

φ(τ ′′)dc(τ ′′)+ n

2
log(τ ′′) = − log

⎛

⎝(τ ′′)−
n
2

∫

M

e−φ(τ ′′) dvolM

⎞

⎠ .

(7.18)

Applying Proposition 17, with τ1 replaced by τ ′′, gives

E(c(τ ′))+
∫

M

φ(τ ′)dc(τ ′)+ n

2
log(τ ′) ≤ E(c(τ ′′))+

∫

M

φ(τ ′′)dc(τ ′′)+ n

2
log(τ ′′).

(7.19)

However, E(µ)+∫

M φ(τ
′)dµ+ n

2 log(τ ′) is minimized by − log((τ ′)− n
2
∫

M e−φ(τ ′) dvolM ),
as µ ranges over probability measures that are absolutely continuous with respect to a Rie-
mannian measure on M . Thus

− log

⎛

⎝(τ ′)−
n
2

∫

M

e−φ(τ ′) dvolM

⎞

⎠ ≤ − log

⎛

⎝(τ ′′)−
n
2

∫

M

e−φ(τ ′′) dvolM

⎞

⎠ . (7.20)

The corollary follows. ��
Remark 9 This procedure of converting a convexity statement to a monotonicity statement
works for the L−-cost and the L+-cost but does not work for the L0-cost.

8 Ricci flow on a smooth metric-measure space

In this section we give a definition of Ricci flow on a smooth metric-measure space. Our
approach is to consider the Ricci flow on a warped product manifold M and compute the
induced flow on the base M . This is in analogy to what works in defining Ricci tensors for
smooth metric-measure spaces [9].

It turns out that there is a 1-parameter family of such generalized Ricci flows, depending
on a parameter N ∈ [dim(M),∞]. In the case N = ∞, there is the curious fact that the
(smooth positive) measure can be absorbed by diffeomorphisms of M , so one just reduces
to the usual Ricci flow equation on M .

Let T q have a fixed flat metric given in local coordinates by
∑q

i=1 dx2
i . Put M = M ×T q

with a time-dependent warped-product metric

g(t) =
n

∑

α,β=1

gαβ(t)dxαdxβ + u(t)
2
q

q
∑

i=1

dx2
i . (8.1)

We also write u = e−
 . If M is compact then the pushforward of the normalized volume

density
dvolM
vol(M)

under the projection M → M is u dvolM
∫

M u dvolM
.

The scalar curvature R of M equals

Rq = R − 2u−1∇2u +
(

1 − 1

q

)

u−2|∇u|2

= R + 2∇2
 −
(

1 + 1

q

)

|∇
|2, (8.2)
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which is the modified scalar curvature considered in [11]. From [14, Section 4], the Ricci
flow equation on M becomes

∂u

∂t
= ∇2u,

(8.3)
∂gαβ
∂t

= −2Rαβ + 2u−1u;αβ −
(

2 − 2

q

)

u−2u;αu;β .

Note that
∂

∂t
(u dvolM ) = −Rqu dvolM . (8.4)

Equivalently,

∂


∂t
= ∇2
 − |∇
|2,

(8.5)
∂gαβ
∂t

= −2

(

Rαβ +
;αβ − 1

q

;α
;β

)

.

The right-hand side of (8.5) involves the modified Ricci curvature

Ricq = Ric + Hess 
 − 1

q
d
 ⊗ d
 (8.6)

considered in [9] and [22]. If u dvolM is a (smooth positive) probability measure then
we consider (8.5) to be the N -Ricci flow equations for the smooth metric-measure space
(M, g, u dvolM ), with N = n + q . This is in analogy to the N -Ricci curvature considered
in [15]. (If N = n then we require 
 to be locally constant and just use the usual Ricci
flow equation on M . That is, in the noncollapsing situation we take the measure to be the
n-dimensional Hausdorff measure).

Taking q = ∞, we consider the ∞-Ricci flow equations to be

∂


∂t
= ∇2
 − |∇
|2,

(8.7)
∂gαβ
∂t

= −2
(

Rαβ +
;αβ
)

.

Remark 10 The occurrence of the Bakry-Émery tensor on the right-hand side of (8.7) is
different from its occurrence in Perelman’s modified Ricci flow [21]. In (8.7) the function
u = e−
 satisfies a forward heat equation, whereas in Perelman’s work the corresponding
measure e− f dvolM satisfies a backward heat equation.

Example 1 We now give a trivial example of collapsing of Ricci flow solutions. For u dvolM ∈
P∞(M), put u j = 1

j u. Give M the corresponding warped-product metric g j . Suppose that

g(t) and u(t) satisfy (8.3). Consider the corresponding solution (M, g j (·)) to the Ricci flow

equation. For any time t , as j → ∞, the metric-measure spaces

(

M, g j (t),
dvolM j

vol(M j )

)

con-

verge in the measured Gromov–Hausdorff topology to (M, g(t), u(t) dvolM ), which satisfies
(8.3) by construction.

Example 2 To give another example, consider the most general T q -invariant Ricci flow on
M . We can write

g(t) =
n

∑

α,β=1

gαβ(t)dxαdxβ +
q

∑

i, j=1

Gi j (t)
(

dxi + Ai (t)
) (

dx j + Ai (t)
)

. (8.8)
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Put u = √

det(Gi j ), Xi
j,α = ∑q

k=1 Gik∂αGkj − 2
q u−1∂αuδi

j and Fi
αβ = ∂αAi

β−∂β Ai
α . From

[14, Section 4], the Ricci flow equation on M implies that the evolution of u and gαβ is given
by

∂u

∂t
= ∇2u − u

4

∑

gαγ gβδGkl Fk
αβFl

γ δ,

∂gαβ
∂t

= −2Rαβ + 2u−1u;αβ−
(

2− 2

q

)

u−2u;αu;β +
∑

gγ δGi j Fi
αγ F j

βδ + 1

2
Tr(XαXβ).

(8.9)

As before, by uniformly rescaling the torus fibers we can construct a sequence of Ricci flow

solutions

(

M, g j (t),
dvolM j

vol(M j )

)

which, for each time, converge in the measured Gromov–

Hausdorff topology to (M, g(t), u(t) dvolM ), satisfying (8.9). Note that instead of satisfying
the N -Ricci flow equations (8.3), a solution of (8.9) satisfies the inequalities,

∂u

∂t
− ∇2u ≤ 0,

(8.10)
∂gαβ
∂t

+ 2Rαβ − 2u−1u;αβ +
(

2 − 2

q

)

u−2u;αu;β ≥ 0.

End of example.

Returning to (8.5), adding a Lie derivative with respect to ∇
 to the right-hand side gives
the equations

∂


∂t
= ∇2
,

(8.11)
∂gαβ
∂t

= −2Rαβ + 2

q

;α
;β.

Note that

∂

∂t

(

e−
 dvolM
) = − Tr(Ricq)e

−
 dvolM . (8.12)

In particular, the ∞-Ricci flow equations (8.7) become

∂


∂t
= ∇2
,

(8.13)
∂gαβ
∂t

= −2Rαβ .

That is, we obtain a forward heat equation coupled to an ordinary Ricci flow.
We now consider convexity of the entropy function for the system (8.3), where the entropy

is computed relative to the background measure u dvolM . Consider the transport equations
on M :

∂ρ

∂t
= −u−1∇α(ρu∇αφ)+ Rρ,

(8.14)
∂φ

∂t
= −1

2
|∇φ|2 + 1

2
R.

Note that
∫

M ρu dvolM is constant in t , so we can take ρu dvolM to be a probability
measure. Applying Corollary 4 to M implies that if (8.3) and (8.14) are satisfied then
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∫

M (ρ log(ρ) − φρ)u dvolM is convex in t . Equivalently, in terms of the Eqs. (8.11), if ρ
and φ satisfy

∂ρ

∂t
= −∇α(ρ∇αφ)+ 〈∇
,∇ρ〉 + 〈∇
,∇φ〉ρ + Rρ,

(8.15)
∂φ

∂t
= −1

2
|∇φ|2 + 〈∇
,∇φ〉 + 1

2
R

then
∫

M (ρ log(ρ)− φρ) e−
 dvolM is convex in t .
When q → ∞, so that (8.13) holds, we claim that this convexity is no more than the

convexity of Corollary 4 when applied to M , after a change of variables. Namely, when
q → ∞, if we put

ρ̃ = e−
ρ,
(8.16)

˜φ = φ −


then Eqs. (8.15) are equivalent to

∂ρ̃

∂t
= −∇α(ρ̃∇α˜φ)+ Rρ̃,

(8.17)
∂˜φ

∂t
= −1

2
|∇˜φ|2 + 1

2
R.

From Corollary 4, we know that
∫

M

(

ρ̃ log(ρ̃) − ˜φ ρ̃
)

dvolM is convex in t . This is the
same as saying that

∫

M (ρ log(ρ) − φ ρ) e−
 dvolM is convex in t .
To summarize, for each N ∈ [n,∞] there is a N -Ricci flow (8.3). Its right-hand side

involves the N -Ricci curvature tensor. A background solution of the N -Ricci flow equation
implies a convexity result for the transport equations (8.14). In the special case when N = ∞,
one can decouple the (smooth positive) measure within the metric flow by performing diffe-
omorphisms, to recover a forward heat equation coupled to the usual Ricci flow (8.7).

Appendix A: The L+-entropy

In this section, we give the analogs of Sects. 6 and 7 for the L+-functional that was con-
sidered in [6]. This is for possible future reference. We reprove the monotonicity of the
Ilmanen–Feldman–Ni forward reduced volume.

Let M be a connected closed manifold and let g(·) be a Ricci flow solution on M , i.e.
(3.1) is satisfied.

Definition 5 If γ : [t ′, t ′′] → M is a smooth curve with t ′ > 0 then its L+-length is

L+(γ ) = 1

2

t ′′
∫

t ′

√
t

(

g

(

dγ

dt
,

dγ

dt

)

+ R(γ (t), t)

)

dt, (A.1)

where the time-t metric g(t) is used to define the integrand.
Let Lt ′,t ′′

+ (m′,m′′) be the infimum of L+ over curves γ with γ (t ′) = m′ and γ (t ′′) = m′′.

The Euler–Lagrange equation for the L+-functional is easily derived to be

∇ dγ
dt

(

dγ

dt

)

− 1

2
∇ R + 1

2t

dγ

dt
− 2 Ric

(

dγ

dt
, ·
)

= 0. (A.2)
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The L+-exponential map is defined by saying that for V ∈ Tm′ M , one has

L+ expt ′,t ′′
m′ (V ) = γ (t ′′) (A.3)

where γ is the solution to (A.2) with γ (t ′) = m′ and dγ
dt

∣

∣

∣

t=t ′
= V .

Definition 6 Given µ′, µ′′ ∈ P(M), put

Ct ′,t ′′
+ (µ′, µ′′) = inf

�

∫

M×M

Lt ′,t ′′
+ (m′,m′′) d�(m′,m′′), (A.4)

where� ranges over the elements of P(M × M) whose pushforward to M under projection
onto the first (resp. second) factor is µ′ (resp. µ′′). Given a continuous curve c : [t ′, t ′′] →
P(M), put

A+(c) = sup
J∈Z+

sup
t ′=t0≤t1≤···≤tJ =t ′′

J
∑

j=1

C
t j−1,t j
+ (c(t j−1), c(t j )). (A.5)

We can think of A+ as a generalized length functional associated to the generalized metric
C+. By [28, Theorem 7.21], A+ is a coercive action on P(M) in the sense of [28, Definition
7.13]. In particular,

Ct ′,t ′′
+

(

µ′, µ′′) = inf
c

A+(c), (A.6)

where c ranges over continuous curves with c(t ′) = µ′ and c(t ′′) = µ′′.
If c : [t0, t1] → P∞(M) is a smooth curve in P∞(M) with t0 > 0 then we write

c(t) = ρ(t) dvolM and let φ(t) satisfy

∂ρ

dt
= −∇ i (ρ∇iφ)+ Rρ. (A.7)

Note that φ(t) is uniquely defined up to an additive constant. The scalar curvature term in
(A.7) ensures that

d

dt

∫

M

ρ dvolM = 0. (A.8)

Consider the Lagrangian

E+(c) =
t1

∫

t0

∫

M

√
t
(|∇φ|2 + R

)

ρ dvolM dt, (A.9)

where the integrand at time t is computed using g(t).

Proposition 18 Let

ρ dvolM : [t0, t1] × [−ε, ε] → P∞(M) (A.10)

be a smooth map, with ρ ≡ ρ(t, u). Let

φ : [t0, t1] × [−ε, ε] → C∞(M) (A.11)
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be a smooth map that satisfies (A.7), with φ = φ(t, u). Then

d E+
du

∣

∣

∣

∣

u=0
= 2

√
t
∫

M

φ
∂ρ

∂u
dvolM

∣

∣

∣

∣

t1

t=t0

−2

t1
∫

t0

∫

M

√
t

(

∂φ

∂t
+ 1

2
|∇φ|2 − 1

2
R + 1

2t
φ

)

∂ρ

∂u
dvolM dt, (A.12)

where the right-hand side is evaluated at u = 0.

Proof The proof is similar to that of Proposition 14. We omit the details. ��
From (A.12), the Euler–Lagrange equation for E+ is

∂φ

∂t
= −1

2
|∇φ|2 + 1

2
R − 1

2t
φ + α(t), (A.13)

where α ∈ C∞([t0, t1]). Changing φ by a spatially constant function, we can assume that
α = 0, so

∂φ

∂t
= −1

2
|∇φ|2 + 1

2
R − 1

2t
φ. (A.14)

If a smooth curve in P∞(M) minimizes E+, relative to its endpoints, then it will satisfy
(A.14). Given t0 ≤ t ′ < t ′′ ≤ t1, the viscosity solution of (A.14) satisfies

2
√

t ′′φ(t ′′)(m′′) = inf
m′∈M

(

2
√

t ′φ(t ′)(m′)+ Lt ′,t ′′
+ (m′,m′′)

)

. (A.15)

Then the solution of (A.7) satisfies

ρ(t ′′) dvolM = (Ft ′,t ′′)∗(ρ(t ′) dvolM ), (A.16)

where the transport map Ft ′,t ′′ : M → M is given by

Ft ′,t ′′(m
′) = L+ expt ′,t ′′

m′
(∇m′φ(t ′)

)

. (A.17)

Proposition 19 Suppose that (A.7) and (A.14) are satisfied. Then

d

dt

∫

M

φρ dvolM = 1

2

∫

M

(|∇φ|2 + R
)

ρ dvolM − 1

2t

∫

M

φρ dvolM , (A.18)

1

2

d

dt

∫

M

|∇φ|2ρ dvolM =
∫

M

(

Ric(∇φ,∇φ)+ 1

2
〈∇ R,∇φ〉

)

ρ dvolM

− 1

2t

∫

M

|∇φ|2ρ dvolM , (A.19)

d

dt

∫

M

ρ log(ρ) dvolM =
∫

M

(〈∇ρ,∇φ〉 + Rρ) dvolM , (A.20)

d

dt

∫

M

Rρ dvolM =
∫

M

(Rt + 〈∇ R,∇φ〉) ρ dvolM (A.21)
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and

d

dt

∫

M

〈∇ρ,∇φ〉 dvolM

=
∫

M

(

| Hess φ|2 + Ric(∇φ,∇φ)− 2〈Ric,Hess φ〉 − 1

2
∇2 R

)

ρ dvolM

− 1

2t

∫

M

〈∇ρ,∇φ〉 dvolM . (A.22)

Proof The proof is similar to that of Proposition 15. We omit the details. ��
Corollary 9 Under the hypotheses of Proposition 19,

(

t
1
2

d

dt

)2 ∫

M

ρ log(ρ) dvolM = t
∫

M

(

| Ric − Hess φ|2 + 1

2
H(∇φ)

)

ρ dvolM , (A.23)

where

H(X) = Rt + 2〈∇ R, X〉 + 2 Ric(X, X)+ R

t
(A.24)

is Hamilton’s trace Harnack expression. Also,

(

t
3
2

d

dt

)2
⎛

⎝

∫

M

(ρ log(ρ)− φρ) dvolM +n

2
log(t)

⎞

⎠

= t3
∫

M

∣

∣

∣Ric − Hess φ + g

2t

∣

∣

∣

2
ρ dvolM . (A.25)

In particular,
∫

M (ρ log(ρ)− φρ) dvolM + n
2 log(t) is convex in t− 1

2 .

Proof This follows from Proposition 19, along with the curvature evolution equation (4.34).
��

Let c : [t0, t1] → P(M) be a minimizing curve for A+ relative to its endpoints. We
assume that c(t0) are c(t1) are absolutely continuous with respect to a Riemannian volume
density on M . Then c(t) = (Ft0,t )∗c(t0), where there is a semiconvex function φ0 ∈ C(M)
so that Ft0,t (m0) = L+ expt0,t

m0 (∇m0φ0) [2], [28, Chapters 10,13]. Define φ(t) ∈ C(M) by

2
√

tφ(t)(m) = inf
m0∈M

(2
√

toφ0(m0)+ Lt0,t+ (m0,m)). (A.26)

Define E : P(M) → R ∪ {∞} as in (2.38).

Proposition 20 E(c(t))− ∫

M φ(t)dc(t)+ n
2 log(t) is convex in s = t− 1

2 .

Proof The proof is similar to that of Proposition 16. We omit the details. ��
We now consider the limiting case when t0 = 0 and c(0) = δp . Fix p ∈ M . Choose

c(t1) ∈ P(M) to be absolutely continuous with respect to a Riemannian measure. For each
m1 ∈ M , choose a (minimizing) L+-geodesic γm1 : [0, t1] → M with γm1(0) = p and
γm1(t1) = m1. It is uniquely defined for almost all m1 ∈ M . Let Rt : M → M be the
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map given by Rt (m1) = γm1(t). Then as t ranges in [0, t1], c(t) = (Rt )∗c(t1) describes a
minimizing curve for A+ relative to its endpoints.

Take

φ(t) = l+(·, t) = L0,t
+ (p, ·)
2
√

t
. (A.27)

Proposition 21 E(c(t))− ∫

M φ(t)dc(t)+ n
2 log(t) is nondecreasing in t.

Proof The proof is similar to that of Proposition 17. We omit the details. ��
Corollary 10 t− n

2
∫

M el+ dvolM is nonincreasing in t.

Proof The proof is similar to that of Corollary 8. We omit the details. ��
Remark 11 In the Euclidean case, l+(x, t) = |x |2

4t . Because l+ occurs with a positive sign

in the exponential in Corollary 10, we cannot expect t− n
2
∫

M el+ dvolM to make sense if
M is noncompact. This is in contrast to what happens for Perelman’s reduced volume
τ− n

2
∫

M e−l dvolM , which makes sense if the Ricci flow has bounded sectional curvature
on compact time intervals.
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