
– Monday, June 20: Overview lecture by John Lott –

There is a separate pdf file containing John’s transparencies. It wasn’t necessary
to take any notes here.
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Tuesday, June 21 (John Lott)

Goal this week: Perelman’s no local collapsing theorem

Proof involves monotonic quantities for the Ricci flow: (I.1) Entropy (today +
tomorrow), (I.7) Reduced volume ( proof)

Generalities about Ricci flow

Mn closed manifold, g(t) family of Riemannian metrics parametrized by t

(time). Ricci flow equation: dg
dt = −2 Ric.

Local coordinates x1, ..., xn: g = gij(x1, ..., xn, t), ∂gij
∂t = −2Rij(x1, ..., xn, t)

(involves g, ∂xg, ∂x∂xg).

Claim: If g(t) is a Ricci flow solution, ϕ ∈ Diff(M), then ϕ∗g(t) is a Ricci flow
solution.

Proof: d
dtϕ
∗g(t) = ϕ∗ dgdt = ϕ∗(−2 Ric(g)) = −2 Ric(ϕ∗g). �

Formal picture of Ricci flow

M := {riemannian metrics on M}, infinite-dimensional manifold (formally). If
g ∈M, then think of TgM as {vij : v a symmetric covariant 2-tensor}.

Ricci vector field on M: g ∈ M 7→ −2 Ric ∈ TgM; Ricci flow = flow of Ricci
vector field.

Diff(M) acts onM, (ϕ, g) 7→ ϕ∗g. Ricci vector field is invariant under Diff(M);
flow of Ricci vector field commutes with Diff(M)  induced flow on M/Diff(M)
(what we care about; curvature, volume, ... invariant under Diff(M)).

Say g(t) is a Ricci flow solution, ϕ(t) a 1-parameter family of diffeos of M . Set
ĝ(t) = ϕ(t)∗g(t)  still a Ricci flow solution?

d

dt
ĝ(t) =

d

dt
(ϕ∗(t)g(t)) =

(
d

dt
ϕ(t)∗

)
g(t) + ϕ(t)∗

dg

dt

=
(
d

dt
ϕ∗(t)

)
(ϕ∗(t))−1ĝ(t)− 2ϕ(t)∗Ric(g)

=
(
d

dt
ϕ∗(t)

)
(ϕ∗(t))−1ĝ(t)− 2 Ric(ĝ(t))

= LV (t)ĝ(t)− 2 Ric(ĝ(t)),

V (t) = time-dependent vector field that generates {ϕ(t)}, (LV g)ij = ∇iVj +∇jVi.
Modified Ricci flow equation.
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Upshot: modified Ricci flow and honest Ricci flow give same trajectories on
M/Diff(M), i.e. may add Lie derivatives.

$64 question: Is Ricci flow the flow of a gradient field on M (M/Diff(M))?

Say X smooth finite-dimensional Riemannian manifold, f ∈ C∞(X), gradient
flow: dx

dt = ∇f(x) (algorithm for climbing Mount Everest if f height function).
Along flow line:

df

dt
=
〈
∇f, dx

dt

〉
= |∇f |2(x) ≥ 0

 monotonic quantity.

Answer: not in an obvious way

Forget about Ricci flow!

Entropy function:

F(g, f) =
∫
M

(|∇f |2 +R)e−fdvol

(g a metric, f a function, dvol = Riemannian volume form of g =
√

det gij dx1 ∧
... ∧ dxn). F :M× C∞(M)→ R.

Compute dF onM×C∞(M), i.e. δF(vij , h), vij covariant symmetric 2-tensor,
h function. Idea: (vij , h) ∈ TgM× TfC∞(M), vij = δgij , h = δf .

Computation: see Ben Chow. δF(vij , h) =

=
∫
M

(
−vij(Rij +∇i∇jf) +

(v
2
− h
)

(R− |∇f |2 + 2∆f)
)
e−f dvol,

v = trace of vij .

Recall:
δ(e−f dvol) = e−f (δf) dvol + e−fδ(dvol)

= −he−f dvol + e−f
1
2

tr(g−1δg) dvol

=
(v

2
− h
)
e−f dvol.

So let’s require in our variations: v
2 − h = 0, i.e. e−f dvol constant.

More coherently: fix a measure dm (nothing weird, just a smooth function
times dvol), relate f and g by e−f dvol = dm to preserve constraint, v

2 − h = 0.

Geometrically: had F on M×C∞(M), computed dF on M×C∞(M). Have
section s : M → M× C∞(M), g 7→ (g,− ln(dm/dvol(g))). Have Fm = s∗F , a
function on M, Fm(g) = F(g,− ln(dm/dvol(g))).

(dFm)(vij) = −
∫
M

vij • (Rij +∇i∇jf)e−f dvol,
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• = scalar product of tensors w.r.t. g.

dual vector field on M?

Say 〈vij , wij〉g =
∫
M
vij • wij dm, Riemannian metric on M (formally). Then

(up to a factor of 2) the gradient flow of Fm on M is
∂gij
∂t

= −2(Rij +∇i∇jf).

Get an equation for ∂f
∂t :

0 =
d

dt
(dm) =

d

dt
(e−f dvol) = −e−f df

dt
dvol + e−f

d

dt
dvol

= −e−f df
dt

dvol + e−f
1
2

tr
(
g−1 dg

dt

)
dvol

=⇒ df

dt
=

1
2

tr
(
g−1 dg

dt

)
= −(R+ ∆f).

Finally:
dF
dt

(g(t), f(t)) = −
∫
M

(−2)(Rij +∇i∇jf) • (Rij +∇i∇jf) e−f dvol

= 2
∫
M

|Rij +∇i∇jf |2e−f dvol ≥ 0.

Act by a 1-parameter family of diffeos to get honest Ricci flow:
dgij
dt

= −2(Rij +∇i∇jf) +∇iVj +∇jVi,
df

dt
= −∆f −R+ LV f

 take Vi = ∇if , (LV g)ij = 2∇i∇jf , LV f = 〈V,∇f〉 = |∇f |2.

Get: dgij
dt = −2Rij , df

dt = −∆f + |∇f |2 −R.

What about the evolution of F(g(t), f(t))? Still have
d

dt
F(g(t), f(t)) = 2

∫
M

|Rij +∇i∇jf |2e−f dvol ≥ 0,

because acting on g, f with a simultaneous diffeomorphism does not change F .

But: no longer have e−f dvol constant in t; at least we do have
∫
M
e−f dvol = 1

(total mass is not changed by diffeo).

Upshot: if we have a solution to the Ricci flow equation dg
dt = −2 Ric and we

have (∗) df
dt = −∆f + |∇f |2 −R, then F(g(t), f(t)) is nondecreasing in t.

Understand (∗) more clearly:

d

dt
(e−f ) = e−f

(
−df
dt

)
= −e−f (−∆f + |∇f |2 −R),

∆(e−f ) = ∇i∇ie−f = ∇i(−e−f∇if) = e−f |∇f |2 − e−f∆f,

=⇒ d

dt
(e−f ) = −∆(e−f ) +Re−f ,
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like a backward heat equation; possibly not solvable forward in time given initial
condition.

Whole trick: will solve it backward in time!

Logic: Say we have a solution of dg
dt = −2 Ric on [t1, t2]. Specify f(t2); solve

equation (∗) backwards in time to get f on [t1, t2]. Conclusion: F(g(t), f(t)) is
nondecreasing.
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Wednesday, June 22 (John Lott)

Comment: ∂f̃
∂t = −∆f̃ +Rf̃ , why do we call that a backward heat equation?

Consider ∂f
∂t = ∆f .

d

dt

∫
M

f̃f dvol =
∫
M

((∆f) · f̃ + f · (−∆f̃ +Rf̃)−Rff̃) dvol = 0

 adjoint heat equation (in the time-dependent sense).

From last time: If we have a Ricci flow solution, dgdt = −2 Ric, and we can solve
∂
∂t (e

−f ) = (−∆ +R)(e−f ), then F(g(t), f(t)) is nondecreasing in t.

Back to Riemannian geometry: F(g, f) =
∫
M

(|∇f |2 +R)e−f dvol,

λ(g) :=
∫
f :
∫
M
e−f dvol=1

F(g, f).

What is that? Put h = e−f/2 (change of variable), ∇h = − 1
2e
−f/2∇f , |∇h|2 =

1
4e
−f |∇f |2, F =

∫
M

(4|∇h|2 +Rh2) dvol, and hence

λ(g) = inf
h>0,

∫
h2 dvol=1

∫
M

(4|∇h|2+Rh2) dvol = inf
h>0,

∫
h2 dvol=1

∫
M

h(−4∆+R)h dvol.

Recall: M self-adjoint real n× n matrix, eigenvalues λ1, ..., λn,

λ1 = inf
v∈Rn: ‖v‖2=1

〈v,Mv〉.

Similarly: smallest eigenvalue λ1 of −4∆+R is inf∫ h2=1

∫
M
h(−4∆+R)h dvol.

Fact from Schrödinger operators: lowest eigenvalue is simple; corresponding
eigenfunction h can be chosen uniquely to be normalized and positive.

Upshot: λ(g) is the smallest eigenvalue of −4∆ +R.

Theorem: If we have a Ricci flow solution on some time interval [t1, t2], then
λ(g(t1)) ≤ λ(g(t2)).

Proof: Look at time t2. λ(g(t2)) is the smallest eigenvalue of −4∆ + R at
time t2. Say: h(t2) corresponding normalized positive eigenfunction. λ(g(t2)) =
F(g(t2), f(t2)) where e−f(t2)/2 = h(t2).

Solve ∂
∂t (e

−f = −∆(e−f )+Re−f on [t1, t2] backwards with given value of f(t2)
at t2. Solution exists for all times, positive.

Last time ⇒ (∗) F(g(t1), f(t1)) ≤ F(g(t2), f(t2)) = λ(g(t2))

By definition, λ(g(t1)) = inf∫ e−f dvol=1 F(g(t1), f).

Last time ⇒
∫
M
e−f dvol is constant in t ⇒ f(t1) is appropriately normalized,

and λ(g(t1)) ≤ (∗). �
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Application: A Ricci flow solution g(t) on [t1, t2] is a breather if ∃ϕ ∈ Diff(M)
such that g(t2) = ϕ∗g(t1).

Proposition: Any breather solution satisfies Rij +∇i∇jf = 0 for some func-
tion f(t).

Proof: Have solution g(t). Look at λ(g(t)): λ(g(t2)) = λ(ϕ∗g(t1)) = λ(g(t1))
⇒ λ(g(t)) constant in t. Equality case of last proof: F(g(t), f(t)) is constant in t.
Recall: d

dtF(g(t), f(t)) = 2
∫
M
|Rij +∇i∇jf |2 dvol. �

Continue: Rij +∇i∇jf = 0. Tracing: R+ ∆f = 0.

∂gij
∂t

= −2Rij = 2∇i∇jf = L∇fg,

∂f

∂t
= −∆f + |∇f |2 −R = |∇f |2 = L∇ff,

=⇒ g(t) = ϕ∗t g(0), f(t) = ϕ∗t f(0),

where ϕt is the flow of ∇f .

Definition: The steady gradient soliton equation is Rij + ∇i∇jf = 0 (Rie-
mannian geometry).

Say ϕt is the flow of ∇f , ϕt1 = id. g(t) := ϕ∗t g(t1), f(t) := ϕ∗t f(t1). Get a
Ricci flow solution with (Rij +∇i∇jf)(t) = 0.

Examples: 1) if we have a Ricci flat metric and we take f to be a constant
2) cigar soliton (2d example)
3) Bryant soliton (3d example)

Claim: On a closed manifold, any steady gradient soliton is constant in time,
i.e. Ric ≡ 0, f ≡ const.

Proof: From proof of monotonicity of λ, e−f/2 is the normalized eigenfunction
for the lowest eigenvalue of −4∆ +R, i.e. (−4∆ +R)e−f/2 = λe−f/2.

∆(e−f/2) = ∇i∇i(e−f/2) = −1
2
∇i(e−f∇if) = e−f/2

(
1
4
|∇f |2 − 1

2
∆f
)
,

(−4∆ +R)(e−f/2) = e−f/2(−|∇f |2 + 2∆f) +Re−f/2 = λe−f/2,

−|∇f |2 + 2∆f +R = λ.

Soliton equation: R + ∆f = 0. Together: −|∇f |2 + ∆f = λ. Hence ∆(e−f ) =
−λe−f ⇒ λ = 0⇒ ∆(e−f ) = 0⇒ 0 =

∫
e−f∆(e−f ) dvol =

∫
|∇(e−f )|2 dvol. �

Ricci flow as a gradient flow

We showed that a modified Ricci flow is the gradient flow of Fm on M. dm is
a fixed smooth measure on M .
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Claim: The Ricci flow on M/Diff(M) is (up to a factor of 2) the gradient
flow of λ(g).

Precisions: 1) λ(g) = λ(ϕ∗(g)) for any ϕ ∈ Diff(M), so λ passes to a func-
tional on the quotient space.

2) Riemannian metric on M/Diff(M) is the quotient metric arising from fol-
lowing metric on M:

〈vij , wij〉g =
∫
M

gikgjlvijvkl h
2 dvol,

h = normalized eigenfunction of −4∆ +R corresponding to λ(g).
3)M/Diff(M) is a stratified infinite-dimensional Riemannian manifold (∃ non-

trivial symmetries/isotropy groups).

Next time: (I.7)
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Thursday, June 23 (John Lott)

(I.7) Reduced volume

Recall from Riemannian geometry: Fixed Riemannian metric on a manifold
M . Fix p ∈M , consider smooth curves γ : [0, t]→M , γ(0) = p.

Energy:

E(γ) =
∫ t

0

∣∣∣∣dγdt
∣∣∣∣2 dt.

Say q ∈M .

min{E(γ)|γ : [0, t]→M,γ(0) = p, γ(t) = q} =
d2(p, q)

t
.

Geodesic equation:

∇XX = 0, X =
dγ

dt
.

expt map:
TpM →M, expt(v) = γ(t),

γ = t-geodesic from γ(0) = p in direction v.

Jacobi fields along γ; get estimates on vol(Br(p)), ∆ dist(p, ·)2. �

Say we have a Ricci flow solution g(t). M can be noncompact, but assume
that sectional curvature is bounded on each time slice. Fix t0, a possible time. Fix
p ∈M living on time slice t0. τ := t0 − t. Ricci flow equation: dg

dτ = 2 Ric.

Consider γ : [0, τ ] → M , γ(0) = p. Idea: γ(τ) lives in time τ slice (honestly,
it’s a curve in M , space-time is only a word).

Definition: L-length,

L(γ) :=
∫ τ

0

√
τ

(∣∣∣∣dγdτ
∣∣∣∣2
g(τ)

+R(γ(τ))

)
dτ.

Definition: L(q, τ) = inf{L(γ) : γ : [0, τ ]→M with γ(0) = p, γ(τ) = q}

Definition: reduced length,

l(q, τ) :=
L(q, τ)
2
√
τ
.

Definition: reduced volume,

Ṽ (τ) :=
∫
M

τ−
n
2 e−l(q,τ)dvolτ (q).

Theorem: Ṽ (τ) is nonincreasing in τ (nondecreasing in the honest time t).

(no Riemannian counterpart; Ricci flow equation accounts for magic cancella-
tions)
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Example: M = R
n, Ricci flow solution = Euclidean metric.

L(γ) =
∫ τ

0

√
τ

∣∣∣∣dγdτ
∣∣∣∣2 dτ.

Change of variable: s =
√
τ , dγ

dτ = 1
2
√
τ
dγ
ds , dτ = 2s ds.

L(γ) =
∫ s2

0

s
1

4s2

∣∣∣∣dγds
∣∣∣∣2 2s ds =

1
2

∫ s2

0

∣∣∣∣dγds
∣∣∣∣2 ds.

Minimize over γ such that γ(0) = p, γ(s) = q.

L(q, s) =
1
2
d(p, q)2

s
, L(q, τ) =

1
2
d(p, q)2

√
τ

, l(q, τ) =
d(p, q)2

4τ
,

Ṽ (τ) =
∫
Rn

τ−
n
2 e−

|q|2
4τ dnq = (4π)−

n
2 ,

constant in τ . �

Redo comparison geometry in order to prove the theorem.

γ : [τ1, τ2]→M , L(γ) =
∫ τ2
τ1

√
τ

(∣∣∣dγdτ ∣∣∣2 +R(γ(τ))
)
dτ -

Given γ(τ), consider variations, i.e. have a map γ̃ : [−ε, ε] × [τ1, τ2] → M ,
γ̃(0, τ) = γ(τ); γs(τ) := γ̃(s, τ). Write X = dγ

dτ , Y = dγ̃(s,τ)
ds |s=0 (variation vector

field of γ̃ along γ(τ)).

d
ds |s=0L(γs) = (δY L)(0) (Perelman). δY γ = X, δYX = ∇XY = ∇XY (because

[ ∂∂s ,
∂
∂t ] = 0).

δY L =
∫ τ2

τ1

√
τ(2〈X,∇XY 〉+ 〈∇R, Y 〉 dτ.

Want to integrate by parts: d
dτ 〈X,Y 〉 = 〈∇XX,Y 〉+ 〈X,∇XY 〉+ 2 Ric(X,Y ).

δY L =

∫ τ2

τ1

√
τ

(
2
d

dτ
〈X,Y 〉 − 2〈∇XY, Y 〉 − 4 Ric(X,Y ) + 〈∇R, Y 〉

)
dτ

= 2
√
τ〈X,Y 〉

∣∣∣∣τ2
τ1

−
∫ τ2

τ1

1
√
τ
〈X,Y 〉 dτ +

∫ τ2

τ1

√
τ(−2〈∇XX,Y 〉 − 4 Ric(X,Y ) + 〈∇R, Y 〉) dτ

= 2
√
τ〈X,Y 〉

∣∣∣∣τ2
τ1

+

∫ τ2

τ1

√
τ

〈
−

1

τ
X − 2∇XX − 4 Ric(X) +∇R, Y

〉
dτ.

If γ is a minimizer among curves with γ(τ1) = p, γ(τ2) = q, then

∇XX +
1
2τ
X + 2 Ric(X)− 1

2
∇R = 0

(L-geodesic equation).

Here: τ1 > 0. What happens if τ1 = 0? Put s =
√
τ .

L(γ) =
∫ s

0

(
1
2

∣∣∣∣dγds
∣∣∣∣2 + 2s2R(γ(s))

)
ds.
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In terms of s, a minimizer with γ(0) = p goes like γ(s) ∼s→0 p+ 2s~v, ~v ∈ TpM . So
in terms of τ , γ(τ) ∼τ→0 p+ 2

√
τ~v,
dγ

dτ
∼τ→0

1√
τ
~v.

Define the initial vector of the L-geodesic γ : [0, τ ]→M , γ(0) = p, as

~v = lim
τ→0

√
τ
dγ

dτ
∈ TpM.

Definition: L expτ : TpM → M , L expτ (v) = γ(τ), where γ is the L-geodesic
with γ(0) = p and initial vector v.

Time τ L-cut locus: Ωτ ⊂ TpM , Ωτ = {v ∈ TpM : the L-geodesic γ, γ(0) = p,
initial vector v, is the unique minimizing curve among curves γ̂ : [0, τ ] → M , and
dL expτ is nonsingular at v}. Time τ L-cut locus is M − L expτ (Ωτ ).

Fact: The time τ L-cut locus is a closed measure zero subset of M . L expτ ,
restricted to Ωτ , is a diffeo onto its image. Proof cf. Notes.

Change of variables:

Ṽ (τ) =
∫
M

τ−
n
2 e−l(q,τ) dvol(q) =

∫
Ωτ

τ−
n
2 e−l(L expτ (v),τ)J (v, τ) dnv.

Ωτ becomes smaller ⇒ enough to show: τ−
n
2 e−l(L expτ (v),τ)J (v, τ) nonincreasing

in τ for each v, i.e. to show: −n2 ln τ − l(L expτ (v), τ) + lnJ (v, τ) nonincreasing.

Want to compute: − n
2τ −

d
dτ (...) ≤ 0



12

Friday, June 24 (John Lott)

Dimensional discussion: time∼ length2 for Ricci flow. L ∼ length1, l ∼ length0,
Ṽ ∼ length0 ((4π)−

n
2 is the maximal value).

Say γ(τ) = L expτ (v). Need to understand L(γ(τ , τ) =
∫ τ

0

√
τ(|dγdτ |

2 +R) dτ .

dL(γ(τ), τ)
dτ

=
√
τ

(∣∣∣∣dγdτ
∣∣∣∣2 +R(γ(τ)

)
= ?

Case of Rn: L(γ, τ) = d2(p,q)
2
√
τ

. L-geodesics: γ(τ) = p + 2
√
τ~v. L(γ(τ), τ) =

2
√
τ |~v|2, l(γ(τ), τ) = |~v|2. �

(∗) d

dτ
(|X|2 +R(γ(τ), τ)) = 2〈X,∇XX〉+ 2 Ric(X,X) + 〈∇R,X〉+

∂R

∂τ
.

L-geodesic equation (∇XX + 2 Ric(X)− 1
2∇R+ 1

2τX = 0) ⇒

(∗) = −4 Ric(X,X) + 〈∇R,X〉 − 1
τ
|X|2 + 2 Ric(X,X) + 〈∇R,X〉+

∂R

∂τ

=
(
−2 Ric(X,X) + 2〈∇R,X〉+

∂R

∂τ
+
R

τ

)
︸ ︷︷ ︸

Hamilton’s trace Harnack expression −H(X)

−1
τ

(|X|2 +R)

=⇒ d

dτ
(|X|2 +R) = −H(X)− 1

τ
(|X|2 +R)

=⇒
∫ τ

0

τ
3
2
d

dτ
(|X|2 +R) dτ︸ ︷︷ ︸

τ
3
2 (|X|2+R)(τ=τ)− 3

2

∫ τ
0 τ

1
2 (|X|2+R) dτ

= −
∫ τ

0

τ
3
2H(X) dτ︸ ︷︷ ︸
=: K

−
∫ τ

0

τ
1
2 (|X|2 +R) dτ

=⇒ τ
3
2 (|X|2 +R)(τ = τ) = −K +

1
2
L,

so
dL(γ(τ), τ)

dτ
= τ

1
2 (|X|2 +R) =

1
τ

(
−K +

1
2
L

)
.

Finally:
dl

dτ
= −1

4
τ−

3
2L+

1
2
τ−

1
2 · 1

τ
·
(
−K +

1
2
L

)
= −1

2
τ−

3
2K

(this is how curvature influences dl
dτ ; compare to Rn).

Next term: J (v, τ) = det(dL expτ )v, want to see how this varies with τ .

Euclidean case: L expτ (v) = p+2
√
τv, J (v, τ) = (2

√
τ)n ⇒ d

dτ lnJ (v, τ) = n
2τ .

General case: d
dτ lnJ (v, τ) ≤ n

2τ −
1
2τ
− 3

2K (proof is skipped; quite similar to
Riemannian geometry volume comparison, need L-Jacobi fields).
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Put everything together: Care about −n2 ln τ − l(γ(τ), τ)+ lnJ (v, τ). d
dτ (...) ≤

− n
2τ + 1

2τ
− 3

2K + ( n2τ −
1
2τ
− 3

2K) = 0.

Conclusion: Ṽ (τ) is nonincreasing in τ ! �

Riemannian geometry: p ∈M . Using Jacobi fields, you get estimates (in terms
of curvature) on vol(Br(p)), ∆d2(·, p).

Say L(q, τ) = 2
√
τL(q, τ).

Claim: ∆L+ Lτ ≤ 2n (proof: Jacobi field methods).

⇒ ∆(L− 2nτ) + ∂
∂τ (L− 2nτ) ≤ 0. Maximum principle ⇒ minq(L(q, τ)− 2nτ)

is nonincreasing. Heuristics: τ → 0, euclidean approximation. In Rn: L(q, τ) =
d2(p, q), minq(L(q, τ)− 2nτ) = −2nτ .

Corollary: For all τ > 0, minq(L(q, τ)− 2nτ) ≤ 0. ⇒ minq l(q, τ) ≤ n
2 .

Corollary: ∀τ > 0 ∃q ∈ M ∃L-geodesic γ : [0, τ ] → M , γ(0) = p, γ(τ) = q,
such that L(γ) ≤ n

√
τ .

Second variation arguments

L =
∫ τ

0

√
τ(|X|2 +R) dτ , X = dγ

dτ , Y variation field.

δY L =
∫ τ

0

√
τ(2〈X,∇YX〉+ 〈∇R, Y 〉) dτ

(integration by parts  L-geodesic equation).

δ2
Y L =

∫ τ

0

√
τ(2〈∇YX,∇YX〉+ 2〈X,∇Y∇XY 〉+ (HessR)(Y, Y )) dτ

=
∫ τ

0

√
τ(2|∇XY |2 + 2〈X,∇X∇Y Y 〉+ 2〈X,R(Y,X)Y 〉+ (HessR)(Y, Y )) dτ.

Define index form: Q(Y, Y ) = δ2
Y L − δ∇YXL (Hessian of L on path space).

Compute d
dτ 〈X,∇Y Y 〉 to replace 〈X,∇X∇Y Y 〉:

Q(Y, Y ) =
∫ τ

0

√
τ(2|∇XY |2 + 2〈X,R(Y,X)Y 〉+ (HessR)(Y, Y ) +

+ 4(∇Y Ric)(Y,X) + 2∇X Ric(Y, Y )) dτ.

Minimizers of Q(Y, Y ) with fixed endpoints give L-Jacobi fields: Say γ(τ) stays
away from the cut locus. Fix Y (τ). Say Y (τ), Y (0) = 0, is an L-Jacobi field. For
any other variation Ỹ with Ỹ (0) = 0, Ỹ (τ) = Ỹ (τ), Q(Y, Y ) ≤ Q(Ỹ , Ỹ ).
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Monday, June 27 (John Lott)

No local collapsing theorem

Mn, g(t) Ricci flow defined for t ∈ [0, T ), T ≤ ∞

Definition (parabolic r-ball): Say (x0, t0) ∈ M × [0, T ). Given r > 0, put
P (x0, t0, r) := {(x, t) ∈M × [0, T ) : distt0(x, x0) < r, t ∈ [t0 − r2, t0]} (time t slices
are not metric balls w.r.t. g(t)!) Denote t0-ball by Bt0(x0, r).

Definition: Our Ricci flow solution is κ-noncollapsed at a scale ρ if ∀r < ρ
∀(x0, t0): |Rm | ≤ 1

r2 on P (x0, t0, r) ⇒ vol(Bt0(x0, r)) ≥ κrn (invariant under par-
abolic rescaling). It is κ-noncollapsed at all scales if the same κ works for all ρ.

Examples: 1) Rn, euclidean metric (∀t), κ-noncollapsed for κ appropriate.
2) Tn−1 × R, flat metric. ∀ρ∃κρ: κρ-noncollapsed at scale ρ. However, not

κ-noncollapsed at all scales no matter how you choose κ (ρ� 1: vol(Br(x0)) ∼ r).
3) shrinking cylinder Sn−1×R, n ≤ 3, on [0, 1), is κ-noncollapsed at all scales,

for some κ.

Theorem: If Mn is closed and T < ∞, then ∀ρ > 0 there’s some κ(ρ) > 0
such that it’s κ-noncollapsed at scale ρ.

Remark: If solution defined on [0, T ], result obvious, because manifold com-
pact. Real content: What’s happening at small scales, near a singularity?

Proof: Fix ρ > 0. Suppose theorem is not true. Then we have a sequence
{rk} in (0, ρ], points {xk} in M , times {tk} in [0, T ), such that

• we do have |Rm | ≤ 1
r2
k

on P (xk, tk, rk), but

• εk := r−1
k vol(Btk(xk, rk))

1
n → 0.

Must have tk → T (away from singularity time, theorem is trivially true). Write
Bk = Btk(xk, rk).

Take (pk, tk) as a base point to compute reduced volume Ṽk(τ), τ ≡ tk−t. Will
show:

1) Ṽk(εkr2
k)→ 0 (k →∞),

2) Ṽk(tk) ≥ c > 0 (real time 0).

ad 1):

Ṽ (εkr2
k) =

∫
M

(εkr2
k)−

n
2 e−l(q,εkr

2
k) dvoltk−εkr2

k
(q)

=
∫

Ω
εkr

2
k

(εkr2
k)−

n
2 e
−l(L exp

εkr
2
k

(v),εkr
2
k) J (v, εkr2

k) dvol(v)

= (Ṽ1 + Ṽ2)(εkr2
k),
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where Ṽ1 is result of integrating over v with |v| ≤ 1
10ε
− 1

2
k .

Claim: If γ(τ) = L expτ (v), |v| ≤ 1
10ε
− 1

2
k , then γ(τ) ∈ Bk for τ ∈ [0, εkr2

k].

Example: Rn. γ(τ) = pk + 2
√
τ~v,

d(γ(τ), pk) = 2
√
τ |~v| ≤ 2(εkr2

k)
1
2 (

1
10
ε
− 1

2
k ) ≤ 1

5
rk.

Also true in general (have curvature bound, so time is too short for curvature
to matter much), so

Ṽ1(εkr2
k) ≤

∫
Bk

(εkr2
k)−

n
2 e−l(q,εkr

2
k) dvol(q).

Need: lower bound on

l(q, εkr2
k) =

1
2
√
εkr2

k

L(q, εkr2
k) =

1
2
√
εkr2

k

∫ εkr
2
k

0

√
τ

(∣∣∣∣dγdτ
∣∣∣∣2︸ ︷︷ ︸

≥0

+ R(γ(τ))︸ ︷︷ ︸
bounded in Bk

)
dτ

≥ − 1
2
√
εkr2

k

∫ εkr
2
k

0

√
τn(n− 1)

1
r2
k

dτ = −1
3
n(n− 1)εk,

so
Ṽ1(εkr2

k) ≤ (εkr2
k)−

n
2 e

1
3n(n−1)εkvoltk−εkr2

k
(Bk),

but εk = r−1
k (voltk(Bk))

1
n . Since we have curvature bound on P (xk, tk, rk), we get

that
voltk−εkr2

k
(Bk) ≤ econst·(εkr

2
k)r−2

k voltk(Bk)

(just volume variation formula under Ricci flow), so

Ṽ1(εkr2
k) ≤ (εkr2

k)−
n
2 e

1
3n(n−1)εkeconst·εk(εkrk)n ≤ 2ε

n
2
k

for large k.

Ṽ2(εkr2
k): From before: τ−

n
2 e−l(L expτ (v),τ)J (v, τ) is nonincreasing in τ . When

τ → 0: τ−
n
2 e−|v|

2
τ
n
2 2n (euclidean approximation), so

Ṽ2(εkr2
k) ≤

∫
|v|≥ 1

10 ε
− 1

2
k

2ne−|v|
2
dv ≤ e−

1
1000εk

(k large).

Step 1 finished. It remains to show that Ṽk(tk) ≥ c > 0 for all k.

From last time: ∃qk: l(qk, tk − T
2 ) ≤ n

2 (real time T
2 ).

To bound Ṽk(tk), need upper bound on l(q, tk) = 1
2tk
L(q, tk), independent of k.

Take γ̂ a minimizing L-geodesic, γ̂ : [0, tk− T
2 ]→M , with γ̂(0) = pk, γ̂(tk− T

2 ) = qk.

⇒ L(γ̂) ≤ n
√
tk − T

2 . Concatenate γ̂ with curves from (qk, T2 ) to (q, 0) (second co-
ordinate = real time)  compact parameters. �
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Remark: Also work if M is noncompact. Assume bounded curvature on each
time slice and, at time 0, injectivity radius ≥ i0 > 0. Then ∀ρ we have κ-noncollapse
on scale ρ where κ = κ(ρ, supM |(g(0))|, i0,T) can be estimated. Your bound gets
worse as T →∞ (graph manifold parts in geometrization).

Corollary of NLC theorem: Any rescaling limit of a finite-time singularity
is κ-noncollapsed on all scales, for some κ > 0.

Corollary: R × cigar cannot arise as a blowup limit from a finite-time singu-
larity (good, because otherwise could not do surgery).
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Tuesday, June 28 (Bruce Kleiner)

κ-solutions (section I.11)

A Ricci flow (N,h(·)) is a κ-solution if

• Time slices are complete.
• It is ancient: it is defined on an interval of the form (−∞, t] for some
t ∈ R.
• It has nonnegative curvature operator: Rm ≥ 0 (〈R(X,Y )Z,W 〉 is skew-

symmetric under X ↔ Y , Z ↔ W , and symmetric under (X,Y ) ↔
(Z,W ), so it defines a symmetric bilinear form Rm on ∧2TpM)
• The curvature |Rm | (or equivalently the scalar curvature R, since R =

tr Rm as a bilinear form on ∧2TpM) is bounded on each time slab.
• (N,h(·)) has everywhere positive scalar curvature.
• (N,h(·)) is κ-noncollapsed: if the normalized |Rm | of a parabolic ball
P (x, t, r) is ≤ 1, then the normalized volume of the ball B(x, t, r) is at
least κ.

(An effectively equivalent definition of being κ-noncollapsed is: if the
normalized curvature of a parabolic ball P (x, t, r) is ≤ 1, then the nor-
malized injectivity radius of B(x, t, r) is at least κ.)

Where are we heading?

Main assertion (cf. I.12.1): Pick ε > 0 and T < ∞. Then there are
constants R0 = R0(ε, T ), and κ = κ(ε, T ), such that if (M, g(·)) is a 3-dimensional
Ricci flow with normalized initial condition, and R(x, t) ≥ R0, then the pointed flow
(M, g(·), x, t), after being parabolically rescaled by R(x, t), is ε-close to a pointed
κ-solution.

Remark: Due to a theorem of Hamilton-Ivey, for Ricci flows with normalized
initial conditions, a point in space-time has large scalar curvature if and only if the
curvature tensor has large norm.

Not at all clear that you can apply compactness; only have R(x, t) ≤ 1 at a
single point. Want to prove it for any sequence of base-points where curvature is
blowing up, not only for those where maximum curvature is attained.

Logic: Need to study κ-solutions first.

Theorem I.11.4: If (M, g(·)) is an n-dimensional ancient κ-solution defined
at t, then V(M, g(t)) = 0. (For any Riemannian manifold X, sec ≥ 0,

V := lim
r→∞

vol(B(p, r))
rn

exists by Bishop-Gromov: asymptotic volume of X).
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Furthermore, if M is noncompact, then the asymptotic scalar curvature ratio

R := lim
r→∞

sup{R(x, t)d2
t (x, p)|dt(x, p) ≥ r} =∞

and there is a sequence of points xi ∈M such that dt(xi, p)→∞, and if we rescale
the Ricci flows (M, g(·), (xi, t)) by R(xi, t), then they subconverge in the pointed
smooth topology to a pointed κ-solution (N,h(·), (x∞, 0)) such that N splits iso-
metrically as a product Y × R (Y is a κ′-solution). �

Now: discuss consequences, where you can see the tools at work which are
used in the proof.

Consequences: A) The only 2D κ-solutions are round shrinking S2, RP 2.
B) If (M, g(·)) is a noncompact 3D κ-solution, then rescaling (M, g(·), xi, t)

by scalar curvature we get a sequence of Ricci flows which subconverges to round
cylindrical flow.

A) ⇒ B): Apply (11.4) to the κ-solution; easy to check: Y is a κ′-solution. A)
tells you that Y is a round shrinking sphere.

Sketch of proof of A), assuming (11.4):

Step 0: Any 2D κ-solution is compact (else apply (11.4), but product of 1-
manifolds is flat). � (Step 0)

Step 1: ∃C = C(κ) such that if (M, g(·)) is a κ-solution defined at time t,
Rmax := maximum scalar curvature of (M, g(t)), then Rmax · diam2(M, g(t)) ≤ C.

Proof: If not, ∃ sequence (Mi, gi(xi, ti)) of 2D κ-solutions such that Rmax(ti) =
Rgi(xi), Rmax(ti) · diam2(Mi, gi(ti))→∞, and, by rescaling, Rmax(ti) = 1.

New tool: Hamilton’s Harnack inequality

Suppose (M, g(·)) is an ancient Ricci flow with Rm ≥ 0, and bounded curvature
on compact time intervals. If t1 < t2, x1, x2 ∈M , then

R(x2, t2) ≥ exp
(
−
d2
t1(x1, x2)

2(t2 − t1)

)
R(x1, t1).

Applications:

• The functions t 7→ R(x, t) is a nondecreasing function for every x ∈M .
• If R(x, t) = 0 somewhere, then Rm ≡ 0.
• To apply the compactness theorem to a sequence of κ-solutions (Mi, gi(·), (xi, ti)),

it suffices to show that for everyD <∞, there is a C <∞ such thatR < C
on B(xi, ti, D).

Note: A priori the limit will be an ancient Ricci flow which is noncol-
lapsed at all scales and satisfies Rm ≥ 0, but one might not have bounded
curvature on time slabs.

� (Harnack)
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Next thing we need to show is lower bound on volume (if B is a Riemannian unit
ball, then a lower bound on vol(B) is equivalent to a lower bound on injrad(B, p)).
Apply HCG compactness to get a limit (M∞, g∞(·), (x∞, 0)). This is a κ-solution.
Noncompact, because diam(Mi, gi(ti))→∞. Contradiction to Step 0. � (Step 1)

Step 2: W := {(M, g(·), (x, t)) κ-solution | R(x, t) = 1 = Rmax(t)}. W is
compact in the pointed smooth topology (this is what Step 1 really tells us). Now
let F be a scale invariant continuous functional on Riemannian metrics which is
nondecreasing for Ricci flow, and constant only at shrinking solitons. F is bounded
on time slices of κ-solutions  limiting values at −∞ and the final time ω. I.e.
in the limit of blowing up towards −∞ or ω, we get a shrinking soliton. ⇒ S2,
RP 2 ⇒ F has the same limiting values as t→ −∞, t→ ω. Monotonicity of F ⇒
constant ⇒ whole thing is a shrinking soliton. �
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Wednesday, June 29 (Bruce Kleiner)

Review of nonnegative curvature

Similarity with theory of convex sets 0 ∈ C ⊂ Rn (via ∂C). Two phenomena:

• cone at infinity (rays in C starting at 0; same as scaling down)
• splitting: If C contains a complete line, then C = C ′ × R ⊂ Rn−1 × R.

In particular, given any C, xi ∈ C, xi →∞, then λi · (C − xi)→ C∞ splitting off
a line if d(0, xi) · λi →∞.

Suppose now X is a complete Riemannian manifold of nonnegative sectional
curvature. Then the following hold for X:

• Toponogov’s triangle comparison theorem.
• ⇒ Monotonicity of comparison angles (won’t use it).
• If X contains a line (i.e. a complete geodesic γ which is minimizing be-

tween any two of its points; example: S2 × R; non-examples: {y = 0} in
paraboloid {z = x2 + y2}, hyperboloid {z2 = x2 + y2 + 1}), then X splits
isometrically as a product of another manifold with R.

Definition: An Alexandrov space of nonnegative curvature is a complete ge-
odesic space which satisfies the conclusion of the Toponogov triangle comparison
theorem.

Gromov-Hausdorff limits

Definition: Pick ε > 0. An ε-isometry (or Hausdorff approximation) is a (not
necessarily continuous) map f : X → Y between metric spaces, such that

1. For every pair of points x, x′ ∈ X, |d(x, x′)− d(f(x), f(x′))| < ε.
2. For every y ∈ Y , the distance from y to f(X) is at most ε.

Example: The inclusion of the integer lattice Z2 into R2 is an ε-isometry
where ε =

√
2

2 .

Definition: Let Xi, Y be metric spaces. Then Xi converges to Y in the
Gromov-Hausdorff topology if for each i there is an εi-isometry fi : Xi → Y where
εi → 0.

Example: If Z is a metric space, and Vi ⊂ Z is a 1
i -net in Z, then Vi converges

to Z in the Gromov-Hausdorff topology (no good example, because classical notion
of Hausdorff convergence already applies).

In noncompact case, appropriate to allow for convergence on compact subsets.

Definition: A sequence of pointed metric spaces (Xi, xi) converges in the
Gromov-Hausdorff topology to a pointed metric space (Y, y) if there is a sequence
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of εi-isometries fi : B(xi, ε−1
i )→ B(y, ε−1

i ) for some sequence εi → 0.

Example: Let Xi be the standard n-sphere of diameter i, equipped with the
Riemannian distance, and pick xi ∈ Xi. Then (Xi, xi) converges to (Rn, 0) in the
pointed Gromov-Hausdorff topology, but there is no limit in the usual Gromov-
Hausdorff topology.

Analogy between nonnegatively curved manifolds and convex sets (C ⊂ R
n

convex, ∂C smooth ⇒ Rm∂C ≥ 0):

Definition: A pointed metric space (Z, z) is a Euclidean cone if

• Z is a union of geodesic rays starting at z.
• Given any two geodesic rays γ1, γ2 starting at z, the union γ1 ∪ γ2 iso-

metrically embeds into the plane R2.

(only Riemannian manifold which is a Euclidean cone is flat Rn)

Theorem: Suppose X is a Riemannian manifold of nonnegative sectional cur-
vature.

1. If p ∈ X, and λi → 0, then the sequence (λiX, p) converges in the pointed
Gromov-Hausdorff topology to a Euclidean cone (X∞, p∞). The limit is
independent of the basepoint p, and is a locally compact Alexandrov space
of nonnegative curvature.

2. If p ∈ X, xi ∈ X, λi > 0, and d(xi, p) → ∞, λi · d(xi, p) → ∞, then
(λiX,xi) subconverges to a pointed Alexandrov space (Z, z) which splits
off an R-factor.

Examples: (solid) hyperboloid  cone over a circle (disk). In general, the
asymptotic cone is much less smooth: (solid) parabolid  real half-line.

Indication for 1) ⇒ 2): Pick yi on the ray from p to xi such that d(p, xi) =
d(xi, yi). The segment [p, yi] will give a complete line in the limit. Apply Topono-
gov splitting. �

Now turn to proof of (11.4).

(Mn, g(·)) n-dimensional κ-solution, (Mn, g(t)) time-t slice, noncompact

Rescale the slice, get a limit. Maximum principle for curvature operator (Shi)
⇒ splitting in the limit.

What’s wrong? Limit is Alexandrov space!  must rescale in such a way that
points are disappearing quickly enough, but with curvature control.

Plan: xi ∈M , xi →∞, (M, g(·), (ximt)). Scale byR(xi, t), get (M,hi(·), (xi, 0))
(∗), apply Hamilton’s compactness. Need: dhi(xi, p)→∞⇔ lim infi→∞Rgt(xi, t) ·
d2
t (xi, p) =∞ ⇔ R =∞. Call this Case I.
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In (∗), have curvature control only pointwise  need point selection: xi ∈M ,
dt(xi, p) → ∞, Rt(xi, t)d2

t (xi, p) → ∞. Get a new sequence {yi} of points in M
and Di →∞ such that

1) yi →∞
2) R(yi, t)d2

t (yi, p)→∞
3) R ≤ 2R(yi, t) on the ball (∗∗) B(yi, t,Di(R(yi, t))−1/2).

Argument: First for some fixed D. Either xi works already, or you find a bad point
x′i with too large scalar curvature; take ball of type (∗∗) around x′i  radius scaled
down by 1√

2
! Either this works, or ... (have scalar curvature blowing up if process

does not terminate).

Non-collapsing theorem ⇒ injrad bound. Can now apply HCG compactness:
(M,hi(·), (yi, 0)) subconverge in the pointed C∞ topology to (M∞, h∞(·), (y∞, 0)),
scalar curvature R ≤ 2, |Rm | ≤ C, ancient. Also know R(y∞, 0) = 1. Noncollaps-
ing passes to limits, R > 0 somewhere, hence everywhere (Harnack).

⇒ in the limit, get κ-solution!

Considering time slices at 0: GH-subconverge to an Alexandrov space splitting
off a factor.

Together: (M∞, h∞(0)) is Alexandrov of curvature ≥ 0, splitting as a metric
space. Now maximum principle ⇒ all earlier time slices split R factor. � (Case 1)
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Thursday, June 30 (Bruce Kleiner)

Where are we? (M, g(·), (x, t)) κ-solution; showed that if M is noncompact and
R := limr→∞ sup{R(x, t)d2(x, p)|d(x, p) ≥ r} = ∞, then ∃ sequence xi → ∞ such
that if we rescale by scalar curvature at (xi, t) and take (xi, t) as basepoints, there
is a sublimit in the pointed smooth topology which splits off an R factor.

Now: case 2 (0 < R <∞), case 3 (R = 0); want: contradiction!

Case 2. If dt(xi, p) → ∞, then R(xi, t) · d2(xi, p) ≤ 2R (∃l < ∞ such that
if d(x, p) ≥ l, then R(x, t) · d2(x, p) ≤ 2R). Pick xi ∈ M , xi → ∞, such that
R(xi, t) · d2(xi, p) = R(xi, t) · r2

i ≥ R2 . Pick 0 < a < 1 < b.

Claim: ∃C = C(a) such that for large i: R ≤ C ·R(xi, t) on Ann(p, ari, bri).

Proof: y ∈ Ann(p, ari, bri). i large ⇒ l < ari ≤ d(y, p) ≤ bri.

R(y, p) · d2(y, p) ≤ 2R =⇒ R(y, p) ≤ 2R
d2(y, p)

≤ 2R
a2 · d2(xi, p)

≤ 4
a2
R(xi, t).

� (claim)

Rescale (M, g(·), (xi, t)) by R(xi, t)→ 0; get (M,hi(·), (xi, 0)).√
R/2 < riR(xi, ti)1/2 <

√
2R,

i.e. distance between xi and p in (M,hi(0)) remains bounded, i.e. limits pointed
at xi resp. p do not differ ⇒ (M,hi(0), (xi, 0)) GH-subconverges to (X∞, x∞),
euclidean cone (x∞ 6= vertex).

Look at B(xi, 0, α) ⊂ (M,hi(0)): (B(xi, 0, α), hi(·), (xi, 0)) subconverge in C∞

to (N,h∞(·), (x∞, 0)) (incomplete; reason: above claim).

⇒ (N,h∞(0), (x∞, 0)) locally is a Riemannian Euclidean cone, R(x∞, 0) = 1.
Also: final time slice of a Ricci flow. Rm ≥ 0,

∂ Rm
∂t

= ∆ Rm +Q(Rm).

Pick an h∞(0)-ONB for Tx∞N such that e1 = outward direction, e2, e3 span
a 2-plane with strictly positive curvature (OK because any 2-plane spanned by e1

and vector tangent to distance sphere has 0 curvature, and R(x∞) = 1). Want to
show: 〈∂t Rm(e1, e2)e2, e1〉 > 0 (⇒ contradiction to Rm ≥ 0, since e1, e2 span a
2-plane with zero curvature).

〈∂t Rm(e1, e2)e2, e1〉 = 〈∆ Rm(e1, e2)e2, e1〉+ 〈Q(Rm)(e1, e2)e2, e1〉︸ ︷︷ ︸
≥0 (basic property of Q)

≥
n∑
i=1

〈(∇2
ei,ei Rm)(e1, e2)e2, e1〉 ≥ 0
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(look at geodesics through x∞ in direction ei; function is ≥ 0 everywhere, = 0 at
the point). Claim: 〈(∇2

e3,e3 Rm)(e1, e2)e2, e1〉 > 0. Cf. Notes. � (Case 2)

Case 3. R = 0 (Notes). Pick xi → ∞, scale by d(xi, p)−2  (M,hi(·), (xi, 0))
 incomplete, flat limit, which, as a metric space, can be completed by a point  
special structure, essentially determined by π1. � (case 3)

Finally, let’s check that V = 0 for all κ-solutions.
• All 2D κ-solutions are compact.
• n ≥ 3. Assume statement true for dim ≤ n − 1. (M, g(·)) n-dimensional
κ-solution, wlog noncompact. Know: ∃xi ∈ M , dt(xi, p) →∞, such that
rescaling (M, g(·), (xi, t)) by R(xi, t), we get limit (M∞, g∞(·), (x∞, 0))
splitting as R×Y . V(Y ) = 0 by induction, hence V(R×Y ) = V(M∞) = 0.
Now if V(M) > 0, then all ratios vol(Br(q)/rn, q ∈M , would be bounded
from below  contradiction in the limit.

� (11.4)

Consequences of I.11.4

Volume controls curvature: For all A > 0 there is a B < ∞ such that if
B(x, t, r) is an r-ball in a κ-solution and vol(B(x, t, r))/rn ≥ A, then R(x, t)r2 < B.

Proof: Equivalent: vol(B(x, t, 1)) ≥ A⇒ R(x, t) < B. If false, ∃ (Mi, gi(·), (xi, ti))
pointed κ-solutions such that vol(B(xi, ti, 1)) ≥ A, but R(xi, ti) → ∞. Point se-
lection ⇒ can find sequence yi ∈ B(xi, ti, 1), Di → ∞, such that R(yi, ti) → ∞,
R ≤ 2R(yi, ti) on B(yi, ti, Di(R(yi, ti))−1/2).

Scale by R(yi, ti): (Mi, hi(·), (yi, 0)), R ≤ 2 on B(yi, 0, Di). Harnack⇒ control
backwards in time. HCG⇒ ∃ limit (M∞, h∞(·), (y∞, 0)), Rm ≥ 0, κ-noncollapsed,
R(y∞, 0) = 1. (11.4) ⇒ V(M∞) = 0.

0← 1
rn

vol(B(y∞, 0, r)) = lim
i→∞

vol(B(yi, ti, r · (R(yi, ti))−1/2))
(r ·R(yi, ti)−1/2)n

≥ lim
i→∞

vol(B(yi, ti, Di(R(yi, ti))−1/2))
(Di(R(yi, ti))−1/2)n

≥ vol(B(yi, ti, 1)) ≥ A :

contradiction. �
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Friday, July 1 (Bruce Kleiner)

Precompactness: For allA > 0, the collection of pointed κ-solutions (M, g(·), (x, t))
with vol(V (x, t, 1)) > A is precompact in the pointed smooth topology. Any
sequence from this family has a subsequence which converges to an ancient κ-
noncollapsed Ricci flow (which a priori may not have bounded curvature on time
slabs or strictly positive scalar curvature). However, the limit will satisfy Hamil-
ton’s Harnack inequality,

R(x2, t2) ≥ exp
(
−
d2
t1(x1, x2)

2(t2 − t2)

)
R(x1, t1).

Proof: If y ∈M , let ρ := dt(y, x); then by Bishop-Gromov volume comparison,

vol(B(y, t, 1))
1n

≥ vol(B(y, t, ρ+ 1))
(ρ+ 1)n

≥ A

(ρ+ 1)n
.

Therefore R(y, t) is bounded above by a function of ρ. By applying the Harnack
inequality, we get that R(y, t′) is bounded above by the same function of ρ, for all
t′ ≤ t. Now HCG-compactness applies, and we’re done. �

Derivative estimates: There is an η <∞ such that the following inequalities
hold at any point in a κ-solution:

∂R

∂t
≤ ηR2, |∇R| ≤ ηR 3

2 .

Proof: Contradiction argument; exploit scale invariance of the estimates and
apply a precompactness lemma (see below). �

Curvature controls volume: For all A < ∞ there is a B > 0 such that if
R(x, t) · r2 < A then vol(B(x, t, r)) · r−n > B.

Proof: If not, for some A < ∞ there is a sequence (Mi, gi(·), (xi, ti)) of κ-
solutions such that R(xi, ti) < A and vol(B(xi, ti, 1))→ 0. Pick ri > 0 such that

vol(B(xi, ti, ri))
rni

=
cn
2

where cn is the volume of a Euclidean unit ball B(0, 1) ⊂ Rn (exists for large enough
i, because of relative volume comparison). Note that

cn
2
rni = vol(B(xi, ti, ri)) ≤ vol(B(xi, ti, 1)),

so ri → 0.

Rescale the pointed sequence (Mi, gi(·), (xi, ti)) by r−2
i , to get a new pointed

sequence (Mi, hi(·), (xi, 0)). Then

volhi(0)(B(xi, 0, 1)) =
vol(B(xi, ti, ri))

rni
=
cn
2
.

Therefore the precompactness theorem applies (note: curvature ∼ r2
i → 0), and so a

subsequence converges in the pointed smooth topology to some (M∞, g∞(·), (x∞, 0)),
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which is ancient, κ-noncollapsed, has Rm ≥ 0, and satisfies Hamilton’s Harnack in-
equality.

Suppose (M∞, g∞(0)) were flat. Since

vol(B(x∞, 0, 1)) = lim
i→∞

vol(B(xi, ti, ri))
rni

=
cn
2
,

it could not be flat Rn.

Fact: A complete flat manifold other than Rn has zero asymptotic volume.

Thus a parabolic ball P (x∞, 0, r) would have Rm ≡ 0, but its final time slice
satisfies vol(B(x∞, 0, r))/rn → 0. This contradicts the fact that (M∞, g∞) is κ-
noncollapsed.

Therefore (M∞, g∞(0)) is not flat, and by the Harnack inequality, we must
have R(x∞, 0) > 0.

Therefore 0 < R(x∞, 0) = limi→∞R(xi, ti)r2
i = 0, which is a contradiction. �

Precompactness II: For any A < ∞, the collection of pointed κ-solutions
(M, g(·), (x, t)) with R(x, t) < A is precompact in the pointed smooth topology.
In particular for such normalized κ-solutions the curvature R(y, t) is uniformly
bounded by a function of the distance dt(y, x).

Proof: By the preceding result, we know that vol(B(x, t, 1)) is bounded away
from zero uniformly. Therefore the earlier precompactness theorem applies. �

• For all A < ∞ there is a B < ∞ such that if R(x, t) · d2
t (x, y) < A, then

R(y, t) · d2
t (x, y) < B.

Proof: If not, after rescaling byR(xi, ti), we would have sequences (Mi, gi(·), (xi, ti)),
yi ∈Mi, where R(xi, ti) = 1, dti(xi, yi) < A, but R(yi, ti)→∞. �

Compactness of 3-dimensional κ-solutions

• The collection of 3-dimensional κ-solutions (M, g(·), (x, t)) with R(x, t) = 1
is compact in the pointed smooth topology.

Sketch of proof: Let (Mi, gi(·), (xi, ti)) be a sequence of pointed 3-dimensional
κ-solutions. By the precompactness result, a subsequence will converge in the
pointed smooth topology to a limitng Ricci flow (M∞, g∞(·), (x∞, 0)) which is an-
cient, has Rm ≥ 0, is κ-noncollapsed, satisfies the Harnack inequality, and has
R(x∞, 0) = 1. Therefore, it suffices to show (by contradiction) that R is boundes
on the final time slice (M∞, g∞(0)).

If there exists yk ∈M∞ such that R(yk, 0)→∞, then by repeating the R =∞
case of the proof of 11.4, one concludes that there is a possibly different sequence
zk ∈ M∞ such that d∞(zk, x∞) → ∞, R(zk, 0) → ∞, and the pointed sequence of
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Ricci flows (M∞, g∞(·), (zk, 0)) converges modulo scaling to round cylindrical flow.
Therefore the geometry of (M∞, g∞(0)) near zk is like a very small round neck. It
turns out (∗) that no Riemannian manifold of nonnegative curvature can contain
such a sequence of necks, and hence we have a contradiction. �

(∗): X complete Riemannian manifold, KX ≥ 0. Via Busemann functions: ∃
exhaustion {Ct}t≥0 by compact convex sets such that (∗∗) Ct−s = {x ∈ Ct|d(x, ∂Ct) ≥
s}.

In our case, ∂Ct has only one component: Else we could connect points in
different boundary components by geodesics in Ct and get a line as t→∞, because
the geodesic segments have to intersect C0 and hence can’t disappear. Hence would
have round cylindrical flow, and then R would be bounded.

Hence ∀zk ∃tk: ∂Ctk is a cross-sectional sphere in the neck near zk (follows from
(∗∗) and #π0(∂Ct) = 1) ⇒ ∂Ctk has smaller and smaller diameter; contradiction
to Sharafutdinov retraction (cf. Cheeger). � (∗)

Neck structure in 3d κ-solutions

Definition: Say that a point (x, t) is the center of an ε-neck if after parabolic
rescaling by R(x, t), the flow is ε-close to round cylindrical flow on S2×R or RP 2×R.

For all ε > 0 there is a D = D(k, ε) <∞ such that
• If (M3, g(·)) is a noncompact κ-solution defined at time t ∈ R, then there is

a point x ∈M such that all points lying outside the ballB(x, t,DR(x, t)−1/2)
are centers of ε-necks at time t. Furthermore, unless (M, g(·)) is round
cylindrical flow on S2 × R, then x can be chosen so that the metric ball
B(x, t,DR(x, t)−1/2) is a 3-ball or a twisted line bundle over RP 2.
• If (M3, g(·)) is a compact κ-solution defined at time t, then there is a pair

of points x1, x2 ∈ M such that points in M lying outside the union of
the two balls B(x1, t,DR(x1, t)−1/2)∪B(x2, t,DR(x2, t)−1/2) are centers
of ε-necks at time t. diam(M, g(t)) ≤ Cd(x1, x2). Note that M is diffeo-
morphic to a spherical space form by Hamilton’s theorem on 3-manifolds
with positive Ricci curvature.

For the proof, first need strengthened version of (11.4): statement is true for
any sequence of points diverging to infinity. Then: Let (M3, g(·)) b a κ-solution,
xi ∈ M , xi → ∞. Rescale (M, g(·), (xi, t)) by R(xi, t); get (M,hi(·), (xi, 0)) with
R(xi) = 1. Compactness ⇒ subconverges to a κ-solution (M∞, h∞(·), (x∞, 0)).
Claim: With any basepoint p ∈M , R(xi, t) · d2

t (xi, p)→∞ ... time is over ...
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Monday, July 4 (Bruce Kleiner)

Corollary: Pick ε > 0. Then there exists D1 < ∞ such that for all A < ∞
there is a D2 < ∞ such that if (M, g(·), (x, t)) is a κ-solution, then one of the
following holds:

• (x, t) is the center of an ε-neck.
• R(x, t) · diam2(M, g(t)) < D2.
• Every point in Ann(M, g(t), (x, t);D1R(x, t)−1/2, AR(x, t)−1/2) is an ε-

neck.

Definition: A Ricci flow (M, g(·)) on a compact n-manifold M has a normal-
ized initial condition if

• It is defined on a time interval of the form [0, T ), where 0 < T ≤ ∞ is the
blowup time.
• |Rm | ≤ 1 on the time zero slice.
• The volume of every unit ball at time zero is at least half the volume of a

Euclidean unit ball, vol(B(x, 0, 1)) ≥ cn
2 .

If g(0) is any smooth Riemannian metric on a compact manifold M , if we scale g(0)
enough it will be a normalized initial condition.

By the noncollapsing result of section I.7, we know that there is a function
κ = κ(n, T ) such that any n-dimensional Ricci flow with normalized initial condi-
tion is κ-noncollapsed at scales < 1.

Henceforth we will be considering only Ricci flows on orientable 3-
manifolds.

Main assertion (cf. I.12.1): Pick ε > 0 and T < ∞. Then there are
constants R0 = R0(ε, T ), and κ = κ(ε, T ), such that if (M, g(·)) is a 3-dimensional
Ricci flow with normalized initial condition, and R(x, t) ≥ R0, then the pointed flow
(M, g(·), x, t), after being parabolically rescaled by R(x, t), is ε-close to a pointed
κ-solution.

Remark: Due to a theorem of Hamilton-Ivey, for 3D Ricci flows with normal-
ized initial conditions, a point in space-time has large scalar curvature if and only
if the curvature tensor has large norm.

The global picture of the large curvature part

Fix T < ∞, ε > 0. Then there are constants D > 0, C < ∞, etc, such
that for any (3-d!!) Ricci flow (M, g(·)) with normalized initial condition, and any
0 ≤ t < T , there are subsets MA,MB ⊂M such that

• M = MA ∪MB .
• For all x ∈ MA, the parabolic ball P (x, t,D) has controlled geometry:
|Rm | < D and injrad(M, g(t), x) ≥ C−1 > 0.
• MB is a union of connected components C1, ..., Ck such that for each i,

one of the following holds:
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a. (Neck) Every point in Ci is the center of an ε-neck, and the pair
(Ci, ∂Ci) is diffeomorphic to (S2 × [0, 1], S2 × {0, 1}). Recall that a
point (x, t) in a Ricci flow is the center of an ε-neck if, modulo scaling,
the pointed Ricci flow (M, g(·), (x, t)) is ε-close to round cylindrical
flow.

b. (Capped neck) There is a point (p, t) ∈ Ci such that every point
in Ci \ B(p, C(R(p, t))−1/2) is the center of an ε-neck, and the pair
(Ci, ∂Ci) is diffeomorphic to either (D3, S2) or (RP 3 \B3 = normal
bundle of the cut locus in RP 3 = twisted line bundle over RP 2, S2).

c. (Tube) Every point in Ci is the center of an ε-neck, and Ci is diffeo-
morphic to S2 × S1.

d. (Worm) There are two points (p1, t), (p2, t) ∈ Ci, such that ev-
ery point in Ci \ (B(p1, t, CR(p1, t)−1/2) ∪ B(p2, t, CR(p2, t)−1/2) is
the center of an ε-neck, and Ci is diffeomorphic to S3, RP 3, or
RP 3#RP 3.

Note: In all these cases, the neck structure around a point only appears
after parabolic rescaling by scalar curvature (i.e. Rmax/Rmin might be
unbounded along a neck).

Justification of global picture

Pick ε > 0, T <∞, and assume that t < T . Then:
• There is an η = η(T ), R0 = R0(T ), such that if R(x, t) ≥ R0 then∣∣∣∣∂R∂t

∣∣∣∣ ≤ ηR2 and |∇R| ≤ ηR 3
2

(closeness to κ-solution, for which these estimates hold. η = η(ε) improves
with ε→ 0, but we don’t care about that and just fix some ε).
• ⇒ For all R1 <∞ there is a Q <∞ such that if R(x, t) ≤ R1 then R ≤ Q

on the parabolic ball P (x, t,Q−1), and injrad(M, g(t), (x, t)) ≥ Q−1.
Reason: curvature bound – either curvature is smaller than R0(T ), or

the gradient estimate applies; injrad bound – from no local collapsing.

Consequence: Either we have a parabolic ball of controlled geometry, or scalar
curvature at the given point is really large and (12.1) applies. On the latter part
of the manifold, get an S2-fibration with boundary, which is closed by caps of con-
trolled geometry.

Ingredients in the proof of I.12.1

If (M, g(·)) is a 3-dimensional Ricci flow with normalized initial condition, then:
• (Noncollapsing) By section I.7, we know that there is a function κ = κ(T )

such that (M, g(·)) κ-noncollapsed at scales < 1 at any (x, t) with t ≤ T .
• R ≥ −6 everywhere, since the minimum of the scalar curvature can only

increase with time.
• (Hamilton-Ivey curvature pinching) There is a continuous function ϕ :
R → R such that lims→∞ ϕ(s)/s = 0, and for any point (x, t) in a 3-d
Ricci flow: Rm(x, t) ≥ ϕ(R(x, t)).
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• ⇒ To control |Rm | at a point (x, t), it suffices to control R(x, t).
• If (M, g(·), (x, t)) happens to be ε-close to a κ-solution, then we may apply

the conclusions of section I.11 near (x, t).
Remark: Note that the assertion I.12.1 for smaller values of ε implies the

assertion for larger values; therefore it suffices to prove the statement when ε is
sufficiently small.

Proof of I.12.1

Suppose I.12.1. were false for some T < ∞, where κ is the constant coming
from section I.7. Then there would be an ε > 0 and a sequence of pointed 3-d Ricci
flows (Mi, gi(·), (xi, ti)) with normalized initial conditions, such that ti ≤ T , and
R(xi, ti) → ∞, but after rescaling by R(xi, ti), none of the resulting pointed flows
(Mi, hi(·), (xi, ti)) is ε-close to a κ-solution.

Goal: Extract a sublimit which is a κ-solution, ⇒ immediate contradiction.

Step 1: Point selection. We may assume that there is a sequence Di →∞
such that if (y, t) ∈ P (xi, ti, DiR(xi, ti)−1/2), and R(y, t) ≥ 2R(xi, ti), then the
conclusion of I.12.1 does hold at (y, t) (i.e. after rescaling, we are ε-close to a κ-
solution). Let G be the set of points in spacetime where the conclusion of I.12.1
holds.

Let (Mi, hi(·), (xi, 0)) be the result of rescaling the Ricci flow by R(xi, ti).

Step 2: For all ρ < ∞ there is a Q < ∞ such that if (y, t) ∈ B(xi, 0, ρ)
then R(y, t) ≤ Q. (i.e.: final time slices of the rescaled flows have bounded curva-
ture at bounded distances)

Definition: Let ρ0 ≥ 0 be the largest number such that R is controlled on the
balls B(xi, 0, r) ⊂ (Mi, hi, 0) for r ∈ [0, ρ0). Then ρ0 > 0.
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Tuesday, July 5 (Bruce Kleiner)

Proof of I.12.1 – Outline

Step 1: Point selection.

Step 2: The final time slices (Mi, hi(0), (xi, 0)) have uniformly bounded cur-
vature at bounded distance, i.e. for all ρ < ∞ there is a Q < ∞ such that R ≤ Q
on B(xi, 0, ρ) for all i.

Step 3: One may extract a limit (M∞, h∞(0), (x∞, 0)) of the final time slices,
and this has bounded curvature.

Step 4: One may extract a limitig Ricci flow (M∞, h∞(·), (x∞, 0)) which is
ancient, and therefore a κ-solution. � (outline)

• Step 1: Point selection. We may assume that there is a sequence Di →∞
such that if (y, t) ∈ P (xi, ti, DiR(xi, ti)−1/2), and R(y, t) ≥ 2R(xi, ti), then the
conclusion of I.12.1 does hold at (y, t) (i.e. after rescaling, we are ε-close to a κ-
solution). Let Gi be the set of points in spacetime where the conclusion of I.12.1
holds.

Therefore for some constant η < ∞, for all (x, t) ∈ Gi one has the derivative
estimates ∣∣∣∣∂R∂t

∣∣∣∣ ≤ ηR2 and |∇R| ≤ ηR 3
2 .

Using ODE comparisons, this implies that if (y, t) ∈ P (xi, ti, DiR(xi, ti)−1/2), then
there is a parabolic ball P (y, t, r) where r & min(R(y, t)−1/2, R(xi, ti)−1/2) such
thatR . max(R(y, t), R(xi, ti)) on P (y, t, r), provided P (y, t, r) ⊂ P (xi, ti, DiR(xi, ti)−1/2).
� (Step 1)

Let (Mi, hi(·), (xi, 0)) be the result of rescaling the Ricci flow by R(xi, ti).

• Step 2: For all ρ < ∞ there is a constant Q = Q(ρ) < ∞ such that R < Q
on B(xi, 0, ρ) ⊂ (Mi, hi(0), (xi, 0)). For all ρ <∞, define Q = Q(ρ) to be

sup
i

sup{R(y, 0)|y ∈ B(xi, ρ, 0)} ∈ R ∪∞.

Let ρ0 := sup{ρ|Q(ρ) < ∞}. The goal in step 2 is to show that ρ0 = ∞. So
assume ρ0 < ∞. By passing to a subsequence, if necessary, we may assume that
limi→∞ sup{R(y, 0)|(y, 0) ∈ B(xi, 0, ρ0)} =∞.

Note that for every (y, t) ∈ P (xi, 0, ρ0) there is a parabolic ball P (y, t, r) of ra-
dius r & min(R(y, t)1/2, 1) such that R . max(R(y, t), 1) on P (y, t, r). Therefore,
R . Q(ρ) on the parabolic region B(xi, 0, ρ)× [t(ρ), 0] where t(ρ) . −Q(ρ)−1. By
Hamilton-Ivey pinching, we also have |Rm | . Q(ρ) on the same parabolic region.
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Due to the noncollapsing estimate, we may extract a limiting incomplete Ricci
flow (M∞, h∞(·), (x∞, 0)) with the following properties:

• It is defined on an open ball of radius ρ0 at time 0, and for each (y, 0) ∈
(M∞, h∞(0)) it is defined on a parabolic ball of radius& min(R(y, 0)−1/2, 1),
on which R . max(R(y, 0), 1).
• R(x∞, 0) = 1.
• By Hamilton-Ivey curvature pinching, (M∞, h∞) has Rm ≥ 0 everywhere.
• sup{R(y, 0)|(y, 0) ∈ B(x∞, 0, ρ0)} =∞.
• For each (y, 0) ∈ B(x∞, 0, ρ0) with R(y, 0) ≥ 2, if we rescale by R(y, 0) we

get a Ricci flow which is 2ε-close to a κ-solution, at least over a backward
time interval of thickness & 1.

Choose a minimizing geodesic path γ : [0, 1)→ (M∞, h∞(0)) such thatR(γ(s), 0)→
∞ as s→ 1. Then there is an s0 ∈ (0, 1) such that for all s ∈ [s0, 1), R(γ(s), 0) ≥ 2.
There is an s1 ∈ [s0, 1) such that for all s ∈ [s1, 1), the point (γ(s), 0) is the center
of a 2ε-neck (why not annulus or cap? have a geodesic segment through γ(s) which
becomes very long after rescaling by R(γ(s), 0)).

Now add a completion point to (M∞, dh∞(0)) so that the limit y∞ := lims→1(γ(s), 0)
exists. Then a small closed ball B(y∞, r) ⊂ Y∞ := (M∞ ∪ {y∞}, dh∞(0)) is an
Alexandrov space of nonnegative curvature, i.e. the conclusion of Toponogov’s
triangle comparison theorem holds (enough to show: ∀α unit speed geodesic, ∀p:
(d2
p ◦ α)′′ ≤ 2; in our space, α cannot pass through y∞, since, after rescaling, we

have long thin necks around each point of γ, so there would be shortcuts for α).

Then the tangent cone of Y∞ at y∞ exists: if λk → ∞, then the sequence of
rescalings (Y∞, λkdh∞(0), y∞) converges in the pointed Gromov-Hausdorff topology
to a nonnegatively curved metric cone (Z, z).

By using triangle comparison, one can argue that the radius of the 2ε-neck at
(γ(s), 0) is & 1− s, and therefore R(γ(s), 0) . (1− s)−2. Therefore the metric cone
Z is 3-dimensional, and is a cone over a metric 2-sphere.

If we take a sequence sk → 1, and rescale the Ricci flows (M∞, h∞(·), (γ(sk), 0))
(these are actually defined only near (γ(sk), 0), and the size of the respective par-
abolic neighborhood shrinks to zero) by R(γ(s), 0), we get a sequence of locally
defined Ricci flows which subconverge to a locally defined Ricci flow which has
Rm ≥ 0, and at time 0 is locally isometric to a Riemannian cone.

Repeating the argument from the proof of I.11.4, we get a contradiction. �
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Wednesday, July 6 (John Lott)

Today:

• distance-distortion estimates (I.8.3),
• review proof of I.12.1,
• finish off I.12.1 using point 1.

∂g
∂t = −2 Ric, x, y ∈M , dt(x, y) = time-t-distance

Curvature not so positive  contraction not so fast: naive/clever estimate.

Naively: γ : [0, a]→M smooth curve, L(γ) =
∫ a

0

√
〈dγds ,

dγ
ds 〉 ds,

dL(γ)
dt

=
∫ a

0

1

2
√
〈dγds ,

dγ
ds 〉
·
(
−2 Ric

(
dγ

ds
,
dγ

ds

))
ds = −

∫ a

0

Ric

 dγ
ds∣∣∣dγds ∣∣∣ ,

dγ
ds∣∣∣dγds ∣∣∣
 ∣∣∣∣dγds

∣∣∣∣ ds
Suppose Ric ≤ (n− 1)Kg. Then d

dtL(γ) ≥ −(n− 1)K · L(γ), hence

L(γ)(t1)
L(γ)(t0)

≥ e−(n−1)K(t1−t0).

Say γ is a time-t1-geodesic from x to y: dt1(x, y) ≥ e−(n−1)K(t2−t1)dt0(x, y). I.e.:
If Ric ≤ (n− 1)Kg always and everywhere, then

d

dt
dt(x, y) ≥ −(n− 1)K · dt(x, y).

Cleverly: Assume dt(x0, x1) > 2r0 and Ric ≤ (n − 1)Kg on Bt(x0, r0) ∪
Bt(x1, r0). γ minimizing geodesic between x0 and x1 at time t. As above:

d

dt
dt(x0, x1) = −

∫ d

0

Ric(X,X) ds, X =
dγ

ds
.

How to estimate Ric(X,X)? From Riemannian geometry (2nd variation):

0 ≤
∫ d

0

(|∇XV |2 + 〈R(X,V )X,V 〉) ds

for any vector field V along γ that vanishes at the endpoints. Test it cleverly: Say
ei is a parallel unit vector field along γ, and put Vi(s) := f(s)ei(s), where

f(s) :=


s
r0

if 0 ≤ r ≤ r0,
d−s
r0

if d− r0 ≤ s ≤ d,
1 else.

Then: ∫ d

0

|∇XVi|2 ds =
∫ d

0

∣∣∣∣dfds
∣∣∣∣2 ds =

2
r0
,∫ d

0

〈R(X,Vi)X,Vi〉 ds =
∫ d

0

f(s)2〈R(X, ei)X, ei〉 ds.
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Sum over i = 1, ..., n− 1:

0 ≤
n−1∑
i=1

∫ d

0

(|∇XVi|2 + 〈R(X,Vi)X,VI〉) ds =
2(n− 1)

r0
−
∫ d

0

f2(s) Ric(X,X) ds

=
2(n− 1)

r0
−
∫ d

0

Ric(X,X) ds+
∫ r0

0

(
1− s2

r2
0

)
Ric(X,X) ds+

+
∫ d

d−r0

(
1− (d− s)2

r2
0

)
Ric(X,X) ds

≤ 2(n− 1)
r0

−
∫ d

0

Ric(X,X) ds+
2
3
r0(n− 1)K.

Upshot:
d

dt
dt(x0, x1) ≥ −2(n− 1)

r0
− 2

3
r0(n− 1)K

(much sharper).

Corollary (Hamilton): If Ric ≤ Kg for some K > 0, then
d

dt
dt(x0, y0) ≥ −C(n)

√
K.

Proof: Put r0 = K−1/2. If dt(x0, y0) > 2r0, then previous computation gives
d
dtdt(x0, y0) ≥ −C(n)

√
K. If dt(x0, y0) ≤ 2r0, first estimate gives d

dtdt(x0, y0) ≥
−CKdt ≥ −C

√
K. �

I.12.1: Say we have a Ricci flow with normalized initial conditions. ∃ R0 such
that up to a given time tmax, any point (x, t) with R(x, t) ≥ R0 is, after rescaling,
ε-close to a chunk of a κ-solution.

Baby case: Let’s assume in addition that R(x, t′) ≤ R(x, t) (∀t′ ≤ t). Suppose
(12.1) was false. (Mi, gi(·), (xi, ti)) with ti ≤ tmax, R(xi, ti)→∞. Rescale by cur-
vatures, take a sublimit (curvature bounds automatic in this case, κ-noncollapsing
⇒ volume bound). Get an ancient solution, κ-noncollapsed. Bruce⇒ bounded cur-
vature on time slices. Nonnegative Rm: from Hamilton-Ivey 3D estimate. �

General case

Step 1: Point picking (“induction on the curvature scale”)

Can assume Di →∞ such that if (y, t) ∈ P (xi, ti, DiR(xi, ti)−1/2) has R(y, t) ≥
2R(xi, ti), then (y, t) is ε-close to a κ-solution � (Step 1).

Step 2

Lemma: Say (y, t) ∈ P (xi, ti, DiR(xi, ti)−1/2). Put Q = R(y, t) + R(xi, ti).
Then R ≤ 4Q on P (y, t, C ·Q−1/2

) for some C = C(κ).

Proof: Say (x, t) ∈ P (y, t, C · Q−1/2
). If R(x, t) ≤ 2R(xi, ti), done. If

R(x, t) > 2R(xi, ti), take a spacetime path, first linearly from (x, t) to (x, t), then
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over to (y, t). Pick p the nearest point on the path with R(p) = 2R(xi, ti), if there
is one, or else put p = (y, t). From (x, t) to p, gradient bounds hold. � (Lemma)

• Rescale by R(xi, ti), get (Mi, hi(·), (xi, 0)). Want to extract a convergent
subsequence on time-zero-slice. Take ρ to be biggest radius so that we can take
a limit to some B(x∞, ρ). Limit smooth, because locally, we can go backwards in
time a little bit, by lemma.

• Want to show ρ =∞. If ρ <∞, add a limit point v to M∞ where curvature
blows up. Have blowup cone at v. Arguing like in (11.4) (0 < R <∞), get contra-
diction. � (Step 2)

Step 3

• Actually have global upper bound R(x, 0) ≤ Q on time-zero-slice. Otherwise
would have necklike points going to ∞.

• From κ-noncollapsing, get injrad(M∞) ≥ C > 0.

• Can we go backwards in time? � (Step 3)

Step 4

Our “time 0 slice” extends backwards in time for some interval ∆t > 0. Reason:
Locally, we could always go back to a certain amout of time, bounded by curvature,
but now have a global curvature bound.

How to go to −∞? Not that |∂R
−1

∂t | ≤ C is of no use to bound curvature. Say
(t′, 0] is the maximal time interval on which we can extend our time 0 slice back-
wards using CGH compactness. Suppose t′ > −∞. Curvature should be blowing
up, but how much?

• Use trace Harnack inequality: ∂R
∂t + R

t−t′ ≥ 0 (assumptions: Rm ≥ 0, bounded
curvature on time slices, flow exists for t′ ≤ t).

⇒ d

dt
((t− t′)R(x, t)) ≥ 0 ⇒ (t− t′)R(x, t)↗⇒ R(x, t) ≤ (−t′)Q

t− t′
(t ∈ (t′, 0]).

• Plug into the distance-distortion estimates:

d

dt
dt(x, y) ≥ −C

√
(−t′)Q
t− t′

,

integrable in t!

• Get: ∃C: |d0(x, y)− dt(x, y)| ≤ C (∀t ∈ (t′, 0]).

First case: M∞ is compact. Get diamt(M∞, h(t)) ≤ const (∀t ∈ (t′, 0]).
From maximum principle, Rmin(t) ≤ Rmin(0) for all such t. Repeat step 2, get
uniform curvature bound back to t′ (at bounded distances – which we have). Could
again go back further: contradiction. � (compact case)
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Thursday, July 7 (John Lott)

Second case: M∞ noncompact. First want curvature bound outside large
ball around the basepoint: IfD is big enough, then ∀y /∈ B0(x∞, D) ∃x : d0(x∞, y) =
d0(y, x), d0(x∞, x) ≥ 3

2d0(x∞, y) (reason: obviously true for the tangent cone at ∞
of M∞).

Also have these inequalities up to constant C for all t ∈ (t′, 0) (choose D larger).

To get curvature bounds on M∞−B(x∞, D), uniform in t, suppose not. Then
have points y where R(y, t) → ∞. If R(y, t) big enough, close to κ-solution (by
point-picking). Given x∞ and y, form point x such that inequalities hold up to C.

Claim: There’s a region U around y with diameter ∼ R(y, t)−1/2 that separates
x∞ and x (either M∞ has two ends, then it splits as R × surface, or it has one end).

Fix U , evolve the picture up to time 0. diam0(U) ≤ diamt(U).

Take the sequence of y’s with R(y, t)→∞. In time 0 slice, get sequence of U ’s
with diamter → 0, but each of them separates the manifold.

Contradicts the fact that time 0 slice has bounded geometry (upper bound on
sectional curvature, strictly positive injectivity radius).

Now extend curvature bound overB(x∞, D) by repeating step 2 again (bounded
curvature at bounded distances). � (I.12.1)

Know now: The more you know about κ-solutions, the better off you
are! Heading for another characterization of κ-solutions.

Gradient shrinking soliton on (−∞, 0): Rij +∇i∇jf + 1
2tgij = 0,

∂g

∂t
= −2 Ric = 2 Hess f +

1
t
g = L∇fg +

1
t
g.

Say that ∂f
∂t = |∇f |2 = L∇ff . Then g(t) = (−t)ϕ∗t g(−1), ϕt = flow of ∇f(t).

Examples: 0) Sn shrinking, f = 0
1) flat Rn, f = − |x|

2

4t

2) R× Sn−1, f = −x
2

4t (x ∈ R)

I.11.2: Mn a κ-solution on (−∞, 0]. Pick p ∈ M on final time slice. Define
l(q, τ), where τ = −t. Choose q(τ) on time −τ slice with l(q(τ), τ) ≤ n

2 .

Claim: Then there’s a sequence τi → ∞ such that (M, 1
τ gij(−τi), (q(τi), τi))

converge to a gradient shrinking soliton (“asymptotic soliton”).
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It will be κ-noncollapsed, but does not a priori have bounded curvature on time
slices (if n = 3, it does).

Compare with Bruce: Go out in space and split off a line. Here: Go back in
time and get a soliton.

Example: M3 Bryant soliton, an ancient solution, which is a steady soliton.
p = vertex. Is (q(τ), τ) = (p, τ)? Take γ(τ) ≡ p. By symmetry, R(γ(τ)) ≡ R(p, 0).
Hence L(γ) = 2

3R(p)τ3/2, l = 1
3R(p)τ : contracdiction. Must go out to avoid high

curvature! I.e., in this case, asymptotic cylinder = asymptotic soliton.

Don’t prove 11.2, because it uses stuff from §7 which we skipped.

In order to apply it, need to understand the possible solutions arising.

3D oriented gradient shrinking soliton that’s a κ-solution

I) If sectional curvature is not strictly positive, have a zero curvature, get
M̃ = S2 × R (standard flow) via Hamilton reduction of holonomy. Hence M must
be R × S2 or R ×Z2 S

2 → RP 2, a line bundle over RP 2, topologically a neighbor-
hood of RP 2 in RP 3, i.e. RP 3 − 3-ball. Cannot have S1 × S2, since this is not
κ-noncollapsed (go back in time to see it).

II) If sectional curvatue IS strictly positive:

A) M is compact. By pinching-improves estimate, M is isometric to a shrink-
ing quotient of S3.

B) M not compact. Claim: 6 ∃

Lemma II.1.2: 6 ∃ 3D noncompact κ-noncollapsed gradient shrinking soliton
with positive bounded curvature.

Proof: Ric + Hess f + 1
2tg = 0. Taking the divergence:

−1
2
∇iR+ [∇j ,∇i(∇jf) +∇i(∆f) = 0.

Also: R+ ∆f + 3
2t = 0, hence ∇iR+∇i(∆f) = 0. Combine:

∇iR = 2Rij∇jf.

Idea of proof:

• f increases quadratically at infinity,
• see how R varies along gradient flow of f ,
• get contradiction ith Gauß-Bonnet in the end.

γ unit speed geodesic in time −1 slice, minimizing, X = dγ
ds .

0 ≤
∫ s

0

(|∇XV |2 + 〈V,R(X,V )X〉) ds,
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if V vanishes at the endpoints.

Claim: There’s a bound
∫ s

0
Ric(X,X) ds ≤ const, independent of s (proof like

distance-distortion estimate). � (Claim)

Say {Yi}3i=1 are parallel ON vector fields along γ.(∫ s

0

|Ric(X,Yi)|2 ds

)2

≤ s
∫ s

0

Ric(X,Yi)2 ds ≤ s
∫ s

0

3∑
i=1

Ric(X,Yi)2 ds.

Say {ei} is an ON eigenframe for Ric, Ric(ei) = λiei. Write x =
∑3
i=1Xiei.

3∑
i=1

Ric(X,Yi)2 = 〈X,
2

RicX〉 =
∑
i

λ2
ix

2
i ≤

∑
λi
∑

λix
2
i = R · Ric(X,X).

Plugging in back:(∫ s

0

|Ric(X,Yi)| ds

)2

≤ s
(

sup
M

R

)∫ s

0

Ric(X,X) ds ≤ const · s.

What’s the use of that?
• XiXj(Rij +∇i∇jf + 1

2tgij) = 0, hence

Ric(X,X) +
d2

ds2
f(γ(s))− 1

2
= 0

⇒ d

ds
f(γ(s))

∣∣∣∣
s

− d

ds
f(γ(s))

∣∣∣∣
0

= −
∫ s

0

Ric(X,X) ds+
1
2
s,

so (compare to shrinking cylinder!)

d

ds
f(γ(s))

∣∣∣∣
s=s

≥ 1
2
s− const.

• XiY j(Rij +∇i∇jf + 1
2tgij) = 0, hence

Ric(X,Y ) +
d

ds
(Y · f)(γ(s)) = 0

⇒ (Y · f)(γ(s))− (Y · f)(γ(0)) = −
∫ s

0

Ric(Y,X) ds ≤ const ·
(√

s+ 1
)
.

In particular, far away from the basepoint, f has no critical points, and secondly,
∇f lines up with the gradient of the distance function at time −1 to x0 as we go
out to spatial infinity.
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Friday, July 8 (John Lott)

Now look at level surfaces of f and apply Gauß-Bonnet.

Gradient flow of f : dp
dt = ∇f(p).

Behavior of R along this flow:

d

dt
R(p) = 〈∇R,∇f〉 = 2 Ric(∇f,∇f)

(from soliton equation); this is positive away from the critical points of f .

Say R = limD→∞ supx:d−1(x0,x)=D R(x) ∈ (0,∞]. What is R?

Take a sequence {xi}∞i=1 going to infinity so that limi→∞R(xi) = R. Now take
a pointed limit of our Ricci flow (M, (·), (xi,−1)). Bruce⇒ converges to a shrinking
cylinder R × S2. At time −1, this S2 has radius r, and R = scalar curvature at
time −1 of R × S2 = 2

r2 . Time it takes for shrinking cylinder to disappear is r2

2 .
But we know that metric g(t) has to disappear at time 0, i.e. we get

R = 1.

Now say {xi} is a sequence going to infinity in time −1 slice, and if R(xi,−1)
converges, then the limit is also 1 (surely not > 1, but if it was < 1, then would
get analogous contradiction via rescaling). Hence limp→∞R(p) = 1, and ∃K ⊂ M
compact such that if p ∈M −K, then R(p) < 1.

Now look at level surfaces of f : N connected component of a level surface
of f , and at p ∈ N , let X = e3 be a normal vector and e1, e2 tangent vectors.
Gauß-Codazzi:

RN = 2KN (e1, e2) = 2(KM (e1, e2) + detS),

S = shape operator of N .

R = 2(KM (e1, e2) +KM (e1, e3) +KM (e2, e3)),

Ric(X,X) = KM (e1, e3) +KM (e2, e3).

Together: RN = R− 2 Ric(X,X) + 2 det(S). What is the last term?

S =
(Hess f)|TN
|∇f |N

, Hess f =
1
2
− Ric .

Diagonalize Ric on TN :

Ric =

r1 0 c1
0 r2 c2
c1 c2 r3

 ,

⇒ det(Hess f) ≤ 1
4 (1− r1r2)2 = 1

4 (1−R+ Ric(X,X))2. Upshot:

RN ≤ R− 2 Ric(X,X) +
1

2|∇f |2
(1−R+ Ric(X,X))2.
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If |∇f | is large (far out), then 1−R+ Ric(X,X) < 2|∇f |2. Also, far out: 1−R+
Ric(X,X) ≥ 0. Hence:

(1−R+ Ric(X,X))2 < 2|∇f |2(1−R+ Ric(X,X))

≤ 2|∇f |2(1−R+ Ric(X,X)) + 2|∇f |2 Ric(X,X),

so far out
(1−R+ Ric(X,X))2

2|∇f |2
< 1−R+ 2 Ric(X,X).

Conclusion: RN < 1 for level surfaces far away from x0.

Say Y is tangential to N . ∇Y∇Y f = 1
2 −Ric(Y, Y ) ≥ 1

2 −
R
2 > 0 far away from

x0, hence N is strictly convex. As the level increases, the area of N is strictly in-
creasing. In the limit, area(N) approaches area(S2 with radius

√
2) (same limiting

argument as before), and topologically, N is an S2, if we go far enough out.

From Gauß-Bonnet: 8π =
∫
N
RN dA, but RN < 1 and

∫
N
dA < 8π for N far

enough out. � (Lemma)

(Intuition: Show that the guy looks like a cylinder, but a cylinder cannot have
positive curvature.)

Classification of orientable 3D κ-solutions

I) Sectional curvature not strictly positive: M̃ splits off a line, i.e. it is standard
shrinking cylinder. Hence M is R × S2, R ×Z2 S

2, NOT S1 × S2, S1 ×Z2 S
2 (not

κ-noncollapsed; go back in time!).

II) Sectional curvature > 0.
A) noncompact case: Cheeger ⇒ diffeomorphic to R3, Bruce ⇒ B3 cap +

collar consisting of necklike regions. Example: Bryant soliton.
B) compact: diffeomorphic to S3/Γ

a) asymptotic soliton also compact. Then we have S3/Γ, isometrically,
as an asymptotic soliton, so also M itself must be a round shrinking
S3/Γ (way back in the past (t� 0), M looks awfully round, flowing
forward makes it even rounder, and taking t → −∞, we see that
actually M itself is round).

b) asymptotic soliton is noncompact.
i) it is R× S2: M looks like a 3D Rosenau solution (each cap is

either B3 or RP 3−B3, but not both caps are RP 3−B3, since
otherwise #π1 =∞).

ii) R×Z2 S
2

Corollary: Any compact oriented κ-solution is
a) diffeomorphic to S3

b) diffeomorphic to RP 3

c) isometric to S3/Γ. � (Corollary)
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Compact M3, oriented; run Ricci flow. Suppose it goes singular at time T <∞.
limt→T supx |Rm |(x, t) =∞, Hamilton-Ivey ⇒ limt→T supxR(x, t) =∞.

(12.1): If R(x, t) ≥ R0, a parabolic neighborhood of (x, t) is modelled by a
κ-solution.

Suppose that limt→∞R(x, t) = ∞ for all x ∈ M . Right before the singularity
time t, R(x, t) � 0 for all x. Possibilities for the geometry near (x, T ): modelled
by a parabolic neighborhood in a κ-solution.

1.) M is contained in that neighborhood: M diffeomorphic to S3/Γ.
2.) otherwise, neighborhood looks like ε-cap or like ε-neck. What could M

look like? S2 × S1, or tube with two ends, closed by caps.
Conclusion: M is diffeomorphic to S1 × S2 or S3/Γ or RP 3#RP 3.

Otherwise have to do surgery. Eventually, everything should become singular
everywhere ⇒ know what it is!

Claim: If M oriented compact is a # of nonaspherical irreducible 3-manifolds,
then it is diffeomorphic to a # of S1 × S2’s and S3/Γ’s.

Corollary: Poincaré conjecture.

Still have to discuss surgery procedure.
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– no lectures by Bruce and John on July 11, July 12 –
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Wednesday, July 13 (John Lott)

Today: W (I.3) (because Tian needs it)

F(g, f) =
∫
M

(|∇f |2 +R)e−f dvol;

this is constant in time along a steady soliton. Converse also true.

Now τ > 0,

W(g, f, τ) =
∫
M

(
τ(|∇f |2 +R) + f − n

)
(4πτ)−

n
2 e−f dvol.

Note: W(ϕ∗g, ϕ∗f, τ) =W(g, f, τ), W(cg, f, cτ) =W(g, f, τ) (c > 0).

Consequence: Along a gradient shrinking soliton defined on (−∞, 0),
W(g(t), f(t),−t) is constant in t (g(t) = −tϕ∗t g(−1), f(t) = ϕ∗t (−1), τ(t) = −t).

Example: flat Rn, gradient shrinking soliton, f = |x|2
4τ . Compute:

W = −(4πτ)−
n
2

∫
Rn

div
(
e−
|x|2
4τ ~x

)
= 0.

�
W(g, f, τ), δgij = vij , δτ = σ,

δW =
∫
M

(
σ(|∇f |2 +R)− τvij(Rij +∇i∇jf) + h+

+
(
τ(2∆f − |∇f |2 +R) + f − n)

(v
2
− h− nσ

2τ

)))
(4πτ)−

n
2 e−f dvol.

To kill the bad term: δ
(
(4πτ)−

n
2 e−f dvol

)
=?

δ ln
(
(4πτ)−

n
2 e−f dvol

)
= δ

(
−n

2
ln(4πτ)− f + ln dvol

)
= −nσ

2τ
− h+

1
2
v

⇒ δ
(
(4πτ)−

n
2 e−f dvol

)
=
(
−nσ

2τ
− h+

v

2

)
(4πτ)−

n
2 e−f dvol.

Let’s now fix (4πτ)−
n
2 e−f dvol ≡ dm, smooth measure with total mass = 1. Then

δW =
∫
M

(
σ(|∇f |2 +R)− τ〈v,Ric +∇2f〉+ g

)
(4πτ)−

n
2 e−f dvol.

Take ∂g
∂t = −2(Ric +∇2f), ∂f∂t = −∆f −R+ n

2τ , dτ
dt = −1. Then

dW
dt

=
∫
M

(
(−1)(|∇f |2 +R) + 2τ

∣∣Ric +∇2f
∣∣2 −∆f −R+

n

2τ

)
(4πτ)−

n
2 e−f dvol

=
∫
M

2τ
∣∣∣Ric +∇2f − g

2τ

∣∣∣2 (4πτ)−
n
2 e−f dvol.

I.e.: If W is constant along the flow, then we are on a gradient shrinking soliton.
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Modify flow by Lie derivatives:
∂g

∂t
= −2 Ric,

∂f

∂t
= |∇f |2 −∆f −R+

n

2τ
,

dτ

dt
= −1

(i.e. (− ∂
∂t −∆ +R)((4πτ)−

n
2 e−f ) = 0, backwards heat equation), then

dW
dt

=
∫
M

2τ(4πτ)−
n
2 e−f |· · · |2 dvol.

No longer have dm ≡ (4πτ)−
n
2 e−f dvol, but the mass of RHS still equals 1.

Definition: µ(g, τ) := inff{W(g, f, τ) :
∫
M

(4πτ)−
n
2 e−f dvol = 1}

Fact: ∃ unique minimizing f ∈ C∞!

Proposition: shrinking breather ⇒ shrinking gradient soliton.

Pre-Prop: µ(g(t), t0−t) is monotonically nondecreasing in t along a Ricci flow.

Proof: Say t1 < t2 < t0. Find f(t2) which minimizesW(g(t2), ·, t0−t2), etc. �

Proof of prop: How to choose t0? If the shrinking factor is c < 1, and if we
choose t0 such that the linear function which is = 1 at t1 and = c at t2 vanishes at
t0, then µ(g(t2), τ2) = µ(cϕ∗g(t1), cτ1) = µ(ϕ∗g(t0), τ1) = µ(g(t1), τ1). �

Say g(·) is a Ricci flow solution defined for t ∈ [0, T ).

Definition: g is κ-noncollapsed at scale ρ if ∀r < ρ:

|Rm | ≤ 1
r2

on Bt0(x0, r) ⇒ vol(Bt0(x0, r)) ≥ κrn.

Theorem: For some closed (M, g(0)), say we have Ricci flow on 0 ≤ t < T <
∞. Then for all ρ > 0 there is κ = κ(ρ): solution is κ-noncollapsed at scale ρ.
(κ = κ(ρ, g(0), T )→ 0 as T →∞).

Proof: Suppose not. Then have a sequence {rk}∞k=1 in (0, ρ) and (xk, tk) so
that |Rm | ≤ r−2

k on Btk(xk, rk) =: Bk, but r−1
k vol(Bk)

1
n = εk → 0 (k →∞).

Note: Can assume limk→∞ tk = T .

1.) Want to show: limk→∞ µ(g(tk), r2
k) = −∞.

Let’s find some f so that W(g(tk), f, r2
k) is very negative. Idea: Take f so that

e−f = e−cke−dtk (·,xk)2/4r2
k , more precisely,

e−f = e−ckϕ

(
dtk(·, xk)2

4r2
k

)
.

ck is determined by 1 =
∫
M

(4πrk)−
n
2 e−cke

−
dtk

(x,xk)2

4r2
k dvol(x). Compute this radi-

ally around xk, get 1 ≈ e−ckr−nk vol(Bk), i.e. eck ≈ εnk , so ck → −∞.
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Now: W(g(tk), f, r2
k, computed radially around xk. Leading term:∫
M

(4πr2
k)−

n
2 fke

−fk dvol ≈ ck → −∞.

2.) Monotonicity ⇒ µ(g(0), tk + r2
k) ≤ µ(g(tk), r2

k). Take k → ∞. LHS stays
bounded, since tk + r2

k ∈ [0, T + ρ2]. � (Theorem)

More equations about W

(I.5): Go back to picture where (4πτ)−
n
2 e−f dvol ≡ dm,

∂g

∂t
= −2(Ric +∇2f),

∂f

∂t
= −∆f −R+

1
2t
.

Then:

W =
d

dτ

(
τ

∫
M

(
f − n

2

)
dm

)
.

Now go to picture where
∂g

∂t
= −2 Ric,

∂f

∂t
= |∇f |2 −R+

n

2τ
.

Then:

W =
d

dτ

(
τ

∫
M

(
f − n

2

)
(4πτ)−

n
2 e−f dvol

)
.

�
(I.9): Differential Harnack inequality for backward heat flow. T fixed. u =

(4π(T − t))−n2 e−f satisfies �∗u = −ut −∆u+Ru = 0 (conjugate heat operator) if
we have Ricci flow on [0, T ). Put

v =
(
(T − t)(2∆f − |∇f |2 +R) + f − n

)
· u.

Then W =
∫
M
v dvol, and

�∗v = −2(T − t)
∣∣∣∣Ric +∇2f − 1

2(T − t)
g

∣∣∣∣2 · u,
and hence dW

dt ≥ 0 (another type of deriving monotonicity; local version). �
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Thursday, July 14 (John Lott)

Minor point related to Tian: dĝ
ds = −2 Ric(ĝ),

g(t) = etĝ(
1
2

(1− e−t),

then dg
dt = −Ric +g. Had: µ(ĝ(u), 1

2 − u) nondecreasing in u. Take u = 1
2 (1− e−t):

µ(e−tg(t), 1
2e
−t) = µ(g(t), 1

2 ) nondecreasing in t. �

Proposition: ∃κ0 > 0 such that any κ-solution is either a round shrinking
S3/Γ or a κ0-solution.

Proof: Look at asymptotic soliton. If it’s compact, it’s S3/Γ. If not, it’s
R × S2 or R ×Z2 S

2. Take (p, 0) in the solution. ∀τ > 0 ∃q(τ) in the time −τ
slice such that l(q(τ), τ) ≤ n

2 . Asymptotic soliton is rescaling of solution around
points (q(τi),−τi), so we have a backward neighborhood close to R× S2. In proof
of κ-noncollapse, only this neighborhood matters. �

Corollary: ∃η > 0 so that if (x, t) is a point in any κ-solution, then |∂R
−1

∂t | ≤ η,
|∇R−1/2(x, t)| ≤ η.

Proof: Obvious in S3/Γ case. Else use precompactness of κ0-solutions. �

Definitions: B(x, t, r) = ball of radius r around x at time t. P (x, t, r,∆t) =
B(x, t, r) × [t, t + ∆t] (∆t > 0) (or × [t + ∆t, t] if ∆t < 0). “B(x, t, ε−1r) is an
ε-neck” means: after multiplying metric by r−2, it’s ε-close to (−ε−1, ε−1)×S2 (S2

of scalar curvature 1). P (x, t, ε−1r, r2) is a “strong ε-neck”, if, after rescaling, it’s
ε-close to (−ε−1, ε−1)× S2 × [−1, 0].

Definition: Say we have a metric on S2 × (−1, 1) so that each point is in an
ε-neck. The metric is

1) an ε-tube, if R is bounded,
2) an ε-horn, if R→∞ on one end,
3) a double ε-horn, if R→∞ on both ends.

Definition: Say we have a metric on B3 or RP 3 − B3
so that outside of a

compact set, each point is in an ε-neck. It is
1) an ε-cap, if R is bounded,
2) a capped ε-horn, if R→∞ on one end.

Proposition: ∀ small ε > 0 ∃ C = C(ε) > 0: if M is a κ-solution and (x, t) is
a spacetime point, then ∃ r ∈ (C−1R(x, t)−1/2, CR(x, t)−1/2) and a neighborhood
B of x with B(x, t, r) ⊂ B ⊂ B(x, t, 2r) so that

1) B is a strong ε-neck,
2) B is an ε-cap,
3) B is diffeomorphic to S3 or RP 3,
4) B is a round shrinking S3/Γ.
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Proof: Can assume κ0-solution. Suppose not. Get a sequence (Mi, (xi, ti))
of κ0-solutions so that for r ∈ (C−1

i B(xi, ti)−1/2, CiR(xi, ti)−1/2), there’s no B
squeezed between B(xi, r, ti) and B(xi, 2r, ti) which satisfies one of 1)–4).

Rescale so that R(xi, ti) = 1. Take a sublimit (M∞, (x∞, 0)). For all r ∈ (0,∞),
there’s no B squeezed between B(x∞, 0, r) and B(x∞, 0, 2r) which satisfies one of
1)–4).

If M∞ is compact, take r = 2 diam(M∞). B = M∞ satisfies 3) or 4).

If M∞ is not compact, from I.11.8, ∃r so that there’s a B satisfying 1) or 2).
�

M3 compact oriented; run Ricci flow. Say we hit a first singularity at time
T < ∞. From (12.1) ∃r > 0 so that for (x, t) with R(x, t) ≥ r−2, a rescaled
neighborhood of (x, t) is

1) a strong ε-neck,
2) an ε-cap,
3) diffeomorphic to S3/Γ.

If 3), drop it.

Know: |∂R
−1

∂t | ≤ η, |∇R−1/2| ≤ η.

Definition: Ω := {x ∈M : limt→T− R(x, t) <∞}

Proposition: Ω is open in M .

Proof: Follows from gradient estimate. �

If Ω = ∅, at times close to T , M is covered by ε-necks and ε-caps. Each com-
ponent of M is S1 × S2 or RP 3#RP 3 (threw away any S3/Γ’s).

Say Ω 6= ∅. Put g := limt→T− g(t)|Ω, a smooth metric on Ω.

Definition: Given ρ < r, put Ωρ := {x ∈ Ω : R(x, t) ≤ 1
ρ2 }, a compact subset

of M .

Take an ε-neck in Ω, look at one boundary component. If it hits Ωρ, stop. Oth-
erwise, there’s an adjacent ε-neck or ε-cap. If it goes on forever, ε-neck is adjacent
to an ε-horn.

Conclusion: Each ε-neck in Ω− Ωρ is contained in an
(a) ε-tube with boundary hitting Ωρ,
(b) ε-cap with boundary hitting Ωρ,
(c) ε-horn with boundary hitting Ωρ,
(d) capped ε-horn,
(e) double ε-horn.
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Start with Ωρ ⊂M compact. It hits a finite # of components of Ω (because of
volume bounds). The ends of the components that it his are all ε-horns. The other
components of Ω (that don’t hit Ωρ) are either capped ε-horns or double ε horns.

Surgery

Start with Ωρ. Look at components of Ω that hit Ωρ. Truncate each ε-horn and
add a ball (topologically – which is not yet precise enough!). Call result M ′. Then
M can be reconstructed from M ′ by taking # of components of M ′, or connected
sums with additional S1 × S2’s or RP 3’s (reason: look at M right before T ). I.e.,
if we could geometrize M ′, we could geometrize M .

• How to continue the flow?
• Can avoid accumulation of surgery times?

Want to specify how to do the surgery analytically.

Example: dr2 + r2αgS2 , α > 1

ε-horns have a self-improving property as you go into the cusp.

Lemma: ∀δ > 0 ∃h > 0 so that if x is in an ε-horn of (Ω, g) that hits Ωρ, and
if h(x) ≡ R(x)−1/2 < h, then P (x, t, δ−1h(x),−h2(x)) is a strong δ-neck.

Proof: Suppose not. Take xi going into horn which are counterexamples,
h(xi) → 0. Rescale at (xi, t) and take sublimit (get curvature bounds from step 2
of I.12.1). Get limit (M∞, x∞), nonnegative curvature.

x∞ is in an ε-neck of M∞. Have a geodesic in Ω going from Ωρ into the horn.
This becomes a line in M∞ (!), so M∞ = R× S2, for some metric on S2. Extend
backwards in time (easier than in (12.1), because of gradient bounds), hence M∞
is a shrinking cylinder: contradiction. �
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Friday, July 15 (John Lott)

Surgery procedure

Surgery: on ε-horns of components of Ω that hit Ωρ. Pick x so that R(x) = h−2.

(PICTURE)

on [0, λ]: original metric g
on [λ, 2λ]: e−2fg, f = f(z) to be specified later
on [2λ, 3λ], ϕe−2fg + (1− ϕ)h2gstandard(0) (ϕ ≡ 1 on [0, 2λ], ≡ 0 on [3λ,∞))
further out: gstandard(0)

Parameters f , λ to be adjusted in such a way that we don’t mess up the cur-
vature pinching. Take f = c0e

−p/(z−λ) for some c0, p.

Claim: If you choose λ, p, c0 carefully, Hamilton-Ivey only improves (done by
Hamilton in 4D).

Also, a ball of radius (δ′)−1h around the tip is δ′-close to ball in standard so-
lution, δ′ = δ′(δ), δ′ → 0 as δ → 0.

Continue Ricci flow, hit first singularity, do surgery, continue, ...

One issue: How do you know surgery times don’t accumulate?

Use volume! Normalized initial conditions ⇒

R(x, t) ≥ −3
2

1
t+ 1

4

⇒ d

dt
vol = −

∫
R dvol ≤ 3

2
vol
t+ 1

4

⇒ vol(t) ≤ vol(0)(1+4t)
3
2 ;

also true when we have surgeries (they’re vol-decreasing). Need to estimate the loss
of volume in a surgery from below.

• Doing a surgery removes vol ≥ const · h3

If we know that h = h(t) ≥ const · h3, we could conclude that there’s only a
finite number of surgeries (claim in I, probably unjustified). On the other hand, if
h = h(t) is any continuous function of t, you have a finite number of surgeries on
any time interval [t1, t2] (claim in II).

What conditions do we need in order to do surgeries?

• Need κ-noncollapsing up to any given time.

In smooth case (i.e. without singularities), showed κ-noncollapsing at (p, t) by
saying: ∃q so that l(q, T − 1) ≤ 3

2 , Lτ + ∆L ≤ 6 (∗).
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With surgeries: In order to apply maximum principle to (∗), need to know: for
some ε > 0, any curve γ going through a surgery cap has 1√

2τ
L(γ) ≥ 3

2 + ε.

L(γ) =
∫ τ

0

√
τ

(∣∣∣∣dγdτ
∣∣∣∣2 +R(γ(τ))

)
dτ.

Idea: If surgery radius is small enough, then R very big near a surgery cap, so
minimizing γ should avoid it. Choose h = h(t) to make this work!

Problem: If we fix surgery radii up to time t, if (p, t0) has t0 � t, curves from
(p, t0) back to time 0 can hit large regions with R < 0.

Perelman’s idea to resolve this circle: Divide [0,∞) into time intervals
[2iε, 2i+1ε). To prove κ-noncollapsedness in a given time interval, estimate l in
previous time interval.

More precisely: Get time-dependent surgery parameters

1) r(t), “canonical neighborhood scale”: If R(x, t) ≥ r(t)−2, then a parabolic
neighborhood of (x, t) is close to corresponding neighborhood of an ancient
solution.

2) ρ(t) = δ(t)r(t), used to define Ωρ.
3) h(t) ≤ δ(t)ρ(t), surgery radius.
4) κ(t), noncollapsing parameter.

Claim (Perelman II): ∃ continuous functions r(t), δ(t), κ(t) so that we get a
well-defined Ricci flow with surgery starting from any metric satisfying normalized
initial conditions. It exists for all time unless solution goes extinct.

Induction on time: 2iε, 2i+1ε, ... I.e., you have to redefine parameters, but
only taking care of previous time interval (one step back – two forward).

Sufficient conditions for finite time extinction:

1) R > 0, ⇒ dRmin
dt ≥ 2

3R
2
min ⇒ Rmin goes to ∞ before time 2

3Rmin(0)
(unaffected by surgeries, which don’t change Rmin).

2) M is a # of nonaspherical irreducible 3-manifolds (Perelman III, Colding-
Minicozzi).

In either case, M is diffeomorphic to a # of S3/Γ’s, S1 × S2’s, whence Poincaré.

Suppose Ricci flow does not go extinct.

Claim: For large t, there’s a decomposition Mthick ∪Mthin = M so that

1) int(Mthick) admits (!) a complete finite volume hyperbolic metric
2) Mthin is locally collapsed: ∀x ∈ Mthin ∃ρ = ρ(x) such that Rm ≥ −ρ−2

on B(x, ρ) and vol(B(x, ρ)) ≤ wρ3, w a small number
3) decomposition is along incompressible 2-tori.
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Note: Could have an infinite number of surgeries, but they only happen in the
thin part and are topologically trivial!

1), 3) use earlier work of Hamilton: Mthick is characterized by two-sided cur-
vature bounds.

Proposition (Perelman, Shioya-Yamaguchi): ∃ small w such that in case
2), Mthin is a graph manifold. (Well known for 2-sided curvature bounds!)

⇒ geometrization conjecture


