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Abstract. If M is a smooth compact Riemannian manifold, let P (M) denote
the Wasserstein space of probability measures on M . If S is an embedded
submanifold of M , and μ is an absolutely continuous measure on S, then we
compute the tangent cone of P (M) at μ.

1. Introduction

In optimal transport theory, a displacement interpolation is a one-parameter
family of measures that represents the most efficient way of displacing mass between
two given probability measures. Finding a displacement interpolation between two
probability measures is the same as finding a minimizing geodesic in the space of
probability measures, equipped with the Wasserstein metric W2 [9, Proposition
2.10]. For background on optimal transport and Wasserstein space, we refer to
Villani’s book [14].

If M is a compact connected Riemannian manifold with nonnegative sectional
curvature, then P (M) is a compact length space with nonnegative curvature in the
sense of Alexandrov [9, Theorem A.8], [13, Proposition 2.10]. Hence one can define
the tangent cone TμP (M) of P (M) at a measure μ ∈ P (M). If μ is absolutely
continuous with respect to the volume form dvolM , then TμP (M) is a Hilbert
space [9, Proposition A.33]. More generally, one can define tangent cones of P (M)
without any curvature assumption onM , using Ohta’s 2-uniform structure on P (M)
[11]. Gigli showed that TμP (M) is a Hilbert space if and only if μ is a “regular”
measure, meaning that it gives zero measure to any hypersurface which, locally, is
the graph of the difference of two convex functions [7, Corollary 6.6]. It is natural
to ask what the tangent cones are at other measures.

A wide class of tractable measures comes from submanifolds. Suppose that S is
a smooth embedded submanifold of a compact connected Riemannian manifold M .
Suppose that μ is an absolutely continuous probability measure on S. We can also
view μ as an element of P (M). For simplicity, we assume that supp(μ) = S.

Theorem 1.1. We have

(1.1) TμP (M) = H ⊕
∫
s∈S

P2(NsM) dμ(s),

where

• H is the Hilbert space of gradient vector fields Im(∇) ⊂ L2(TS, dμ),
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• NsM is the normal space to S ⊂ M at s ∈ S and
• P2(NsM) is the metric cone of probability measures on NsM with finite
second moment, equipped with the 2-Wasserstein metric.

The homotheties in the metric cone structure on P2(NsM) arise from radial
rescalings of NsM . The direct sum and integral in (1.1) refer to computing square
distances.

The proof of Theorem 1.1 amounts to understanding optimal transport starting
from a measure supported on a submanifold. This seems to be a natural question
in its own right which has not been considered much. Gangbo and McCann proved
results about optimal transport between measures supported on hypersurfaces in
Euclidean space [6]. McCann-Sosio and Kitagawa-Warren gave more refined results
about optimal transport between two measures supported on a sphere [8,10]. Castil-
lon considered optimal transport between a measure supported on a submanifold
of Euclidean space and a measure supported on a linear subspace [5].

In the setting of Theorem 1.1, a Wasserstein geodesic {μt}t∈[0,ε] starting from
μ consists of a family of geodesics shooting off from S in various directions. The
geometric meaning of Theorem 1.1 is that the tangential component of these direc-
tions is the gradient of a function on S. To motivate this statement, in Section 2
we give a Benamou-Brenier-type variational approach to the problem of optimally
tranporting a measure supported on one hypersurface to a measure supported on
a disjoint hypersurface, through a family of measures supported on hypersurfaces.
One finds that the only constraint is the aforementioned tangentiality constraint.
The rigorous proof of Theorem 1.1 is in Section 3.

The structure of this paper is as follows. In Section 2 we give a formal derivation
of the equation for optimal transport between two measures supported on disjoint
hypersurfaces of a Riemannian manifold. The derivation is based on a variational
method. In Section 3 we prove Theorem 1.1.

2. Variational approach

Let M be a smooth closed Riemannian manifold. Let S be a smooth closed
manifold and let S0, S1 be disjoint codimension-one submanifolds of M diffeomor-
phic to S. Let ρ0 dvolS0

and ρ1 dvolS1
be smooth probability measures on S0 and

S1, respectively. We consider the problem of optimally transporting ρ0 dvolS0
to

ρ1 dvolS1
through a family of measures supported on codimension-one submani-

folds {St}t∈[0,1]. We will specify the intermediate submanifolds to be level sets of
a function T , which in turn will become one of the variables in the optimization
problem.

We assume that there is a codimension-zero submanifold-with-boundary U of M ,
with ∂U = S0∪S1. We also assume that there is a smooth submersion T : U → [0, 1]
so that T−1(0) = S0 and T−1(1) = S1. For t ∈ [0, 1], put St = T−1(t). These are
the intermediate hypersurfaces.

We now want to describe a family of measures {μt}t∈[0,1] that live on the hyper-
surfaces {St}t∈[0,1]. It is convenient to think of these measures as fitting together
to form a measure on U . Let μ be a smooth measure on U . In terms of the fibering
T : U → [0, 1], decompose μ as μ = μtdt with μt a measure on St. We assume that
μ0 = ρ0 dvolS0

and μ1 = ρ1 dvolS1
.

Let V be a vector field on U . We want the flow {φs} of V to send level sets of T
to level sets. Imagining that there is an external clock, it’s convenient to think of
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St as the evolving hypersurface at time t. Correlating the flow of V with the clock
gives the constraint

(2.1) V T = 1.

Then φs maps St to St+s.
We also want the flow to be compatible with the measures {μt}t∈[0,1] in the sense

that φ∗
sμt+s = μt. Now φ∗

sdT = dφ∗
sT = d(T+s) = dT , so it is equivalent to require

that φ∗
s preserves the measure μ = μtdt. This gives the constraint

(2.2) LV μ = 0.

In particular, each μt is a probability measure.
To define a functional along the lines of Benamou and Brenier [2], put

(2.3) E =
1

2

∫
U

|V |2 dμ =
1

2

∫ 1

0

∫
St

|V |2 dμt dt.

We want to minimize E under the constraints LV μ = 0, V T = 1, μ0 = ρ0 dvolS0

and μ1 = ρ1 dvolS1
. Let φ and η be new functions on U , which will be Lagrange

multipliers for the constraints. Then we want to extremize

(2.4) E =

∫
U

[
1

2
|V |2 dμ+ φLV dμ+ η(V T − 1)dμ

]

with respect to V , μ, φ and η.
We will use the equations∫

U

φLV dμ =

∫
U

[LV (φdμ)− (LV φ)dμ](2.5)

=−
∫
U

(V φ)dμ+

∫
S1

φ(1)dμ1 −
∫
S0

φ(0)dμ0

and ∫
U

ηV Tdμ =

∫
U

[LV (Tηdμ)− TLV (ηdμ)](2.6)

=−
∫
U

TLV (ηdμ) +

∫
S1

η(1)dμ1.

The Euler-Lagrange equation for V is

(2.7) V −∇φ+ η∇T = 0.

The Euler-Lagrange equation for μ is

(2.8)
1

2
|V |2 − V φ = 0.

Varying T gives

(2.9) 0 = LV (ηdμ) = (V η)dμ,

so the Euler-Lagrange equation for T is

(2.10) V η = 0.

Substituting (2.7) into (2.8) gives |∇φ|2 = η2|∇T |2, so η = ± |∇φ|
|∇T | . Then (2.7)

becomes

(2.11) V = ∇φ∓ |∇φ|
|∇T |∇T.
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Equation (2.1) gives

(2.12) 1 = 〈∇φ,∇T 〉 ∓ |∇φ| · |∇T |.

If the “∓” is “−”, then the right-hand side of (2.12) is nonpositive, which is a
contradiction. Thus

(2.13) 1 = 〈∇φ,∇T 〉+ |∇φ| · |∇T |

and

(2.14) V = ∇φ+
|∇φ|
|∇T |∇T.

Equation (2.10) becomes

(2.15) V
|∇φ|
|∇T | = 0,

which is equivalent to

(2.16)
1

2
V |V |2 = 0.

Equation (2.16) says that V has constant length along its flowlines. The measure
μ must still satisfy the conservation law (2.2).

From (2.8), the evolution of φ between level sets is given by

(2.17) V φ =
1

2
|V |2 =

1

2

|∇φ|
|∇T | .

The normal line to a level set St is spanned by ∇T . It follows from (2.7) that
the tangential part of V is the gradient of a function on St:

(2.18) Vtan = ∇St

(
φ
∣∣∣
St

)
.

The normal part of V is

(2.19) Vnorm =
〈V,∇T 〉
|∇T |2 ∇T =

1

|∇T |2∇T,

as must be the case from (2.1).
The conclusion is that the tangential part of V on St is a gradient vector field

on St, while the normal part of V on St is unconstrained.

3. Tangent cones

3.1. Optimal transport from submanifolds. Let M be a smooth closed Rie-
mannian manifold. Let i : S → M be an embedding.

Let π : TM → M be the projection map. Given ε > 0, define Eε : TM → TM
by Eε(m, v) = (expm(εv), d(expm)εvεv). We define πS and ES

ε similarly, replacing
M by S.

Put TSM = i∗TM , a vector bundle on S with projection map πTSM : TSM → S.
There is an orthogonal splitting TSM = TS ⊕ NSM into the tangential part and
the normal part. Let πNSM : NSM → S be the projection to the base of NSM .
Given v ∈ TS, let vT ∈ TS denote its tangential part and let v⊥ ∈ NS denote its
normal part. Let pT : TSM → TS be the orthogonal projection.
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A function F : S → R∪ {∞} is semiconvex if there is some λ ∈ R so that for all
minimizing constant-speed geodesics γ : [0, 1] → S, we have

(3.1) F (γ(t)) ≤ tF (γ(1)) + (1− t)F (γ(0))− 1

2
λt(1− t)dS(γ(0), γ(1))

2

for all t ∈ [0, 1].
Suppose that F is a semiconvex function on S. Then (s, w) ∈ TS lies in the

subdifferential set ∇−F if for all w′ ∈ TsS,

(3.2) F (s) + 〈w,w′〉 ≤ F (exps w
′) + o(|w′|).

Define the cost function c : S ×M → R by c(s, x) = 1
2d(s, x)

2. Given η : M →
R ∪ {−∞}, its c-transform is the function ηc : S → R ∪ {∞} given by

(3.3) ηc(s) = sup
x∈M

(
η(x)− 1

2
d2(s, x)

)
.

Given ψ : S → R∪ {∞}, its c-transform is the function ψc : M → R∪ {−∞} given
by

(3.4) ψc(x) = inf
s∈S

(
ψ(s) +

1

2
d2(s, x)

)
.

A function ψ : S → R∪ {∞} is c-convex if ψ = ηc for some η : M → R∪ {−∞}. A
function η : M → R ∪ {−∞} is c-concave if η = ψc for some ψ : S → R ∪ {∞}.

From [14, Proposition 5.8], a function F : S → R∪{−∞} is c-convex if and only
if F = (F c)c, i.e., for all s ∈ S,

(3.5) F (s) = sup
x∈M

inf
s′∈S

(
F (s′) +

1

2
d2(s′, x)− 1

2
d2(s, x)

)
.

The next lemma appears in [7, Lemma 2.9] when S = M .

Lemma 3.1. If F : S → R ∪ {∞} is a semiconvex function, then there is some
ε > 0 so that εF is c-convex.

Proof. Clearly

(3.6) εF (s) ≥ sup
x∈M

inf
s′∈S

(
εF (s′) +

1

2
d2(s′, x)− 1

2
d2(s, x)

)
,

as is seen by taking s′ = s on the right-hand side of (3.6). Hence we must show
that for suitable ε > 0, for all s ∈ S we have

(3.7) εF (s) ≤ sup
x∈M

inf
s′∈S

(
εF (s′) +

1

2
d2(s′, x)− 1

2
d2(s, x)

)
.

For this, it suffices to show that for each s ∈ S, there is some x ∈ M so that

(3.8) εF (s) ≤ inf
s′∈S

(
εF (s′) +

1

2
d2(s′, x)− 1

2
d2(s, x)

)
.

That is, it suffices to show that for each s ∈ S, there is some x ∈ M so that for all
s′ ∈ S, we have

(3.9) εF (s) ≤ εF (s′) +
1

2
d2(s′, x)− 1

2
d2(s, x),

i.e.,

(3.10) εF (s) +
1

2
d2(s, x) ≤ εF (s′) +

1

2
d2(s′, x).
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We know that F is K-Lipschitz for some K < ∞ [14, Theorem 10.8 and Propo-
sition 10.12]. Hence if v ∈ ∇−

s F , then |v| ≤ K. Given s, choose v ∈ ∇−
s F and put

x = exps(εv) ∈ M . Then d(s, x) ≤ εK.
Put G(s′) = εF (s′) + 1

2d
2(s′, x). We want to show that G(s) ≤ G(s′) for all

s′ ∈ S. Suppose not. Let s′ be a minimum point for G; then G(s′) < G(s).
We claim first that s′ ∈ B4εK(s). To see this, if d(s, s′) ≥ 4εK, then since

(3.11) d(s′, x) ≥ d(s, s′)− d(s, x) ≥ d(s, s′)− εK,

we have
1

2
d2(s′, x)− 1

2
d2(s, x) ≥ 1

2
(d(s, s′)− εK)

2 − 1

2
(εK)2(3.12)

=
1

2
(d(s, s′)− 2εK) · d(s, s′)

≥ εKd(s, s′) ≥ ε(F (s)− F (s′)),

which contradicts that G(s′) < G(s). This proves the claim.
If 10εK is less than the injectivity radius of M , then there is a unique minimizing

geodesic from s to x, and its tangent vector at s is εv. It follows that 0 ∈ ∇−
s G.

Finally, since d(s, x) ≤ εK, we can choose an ε (depending on K, S and M) to
ensure that G is strictly convex on B4εK(s), with the latter being a totally convex
set. Considering the function G along a minimizing geodesic from s to s′, we
obtain a contradiction to the assumed strict convexity of G, along with the facts
that 0 ∈ ∇−

s G and 0 ∈ ∇−
s′G.

Thus G is minimized at s, which implies (3.10). �

Let ν be a compactly-supported probability measure on TSM ⊂ TM . Let L <
∞ be such that the support of ν is contained in {v ∈ TSM : |v| ≤ L}. Put
με = π∗(Eε)∗ν.

Proposition 3.13. a. Let f be a semiconvex function on S. Suppose that ν is
supported on {v ∈ TSM : vT ∈ ∇−f}. Then there is some ε > 0 so that the
one-parameter family of measures {μt}t∈[0,ε] is a Wasserstein geodesic.
b. Given ν, suppose that for some ε > 0, the one-parameter family of measures
{μt}t∈[0,ε] is a Wasserstein geodesic. Then there is a semiconvex function f on S

so that ν is supported on {v ∈ TSM : vT ∈ ∇−f}.

Proof. a. For t > 0, define ηt : M → R by ηt = (tf)c. From Lemma 3.1, if t is small
enough, then tf is c-convex. It follows from [14, Proposition 5.8] that (ηt)

c = tf .
From [14, Theorem 5.10], if a set Γt ⊂ S×M is such that ηt(x) = tf(s)+ 1

2d
2(s, x)

for all (s, x) ∈ S × M , then any probability measure Πt with support in Γt is an
optimal transport plan. We take

(3.14) Γt = {(s, x) ∈ S ×M : ηt(x) = tf(s) +
1

2
d2(s, x)}.

Now ηt(x) = tf(s) + 1
2d

2(s, x) if for all s′ ∈ S, we have

(3.15) tf(s) +
1

2
d2(s, x) ≤ tf(s′) +

1

2
d2(s′, x).

To prove part a. of the proposition, it suffices to show that for all sufficiently
small t, equation (3.15) is satisfied for s, s′ ∈ S and x = exps(tv), where v ∈ TsM
lies in the support of ν and satisfies vT ∈ ∇−f .
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Given s and v, we know that d(s, x) ≤ tL. Put G(s′) = tf(s′) + 1
2d

2(s′, x). Let
s′ be a minimum point of G and suppose, to get a contradiction, that G(s′) < G(s).

LetK < ∞ be the Lipschitz constant of f . We claim first that s′ ∈ Bt(2K+2L)(s).
To see this, if d(s, s′) ≥ t(2K + 2L), then

(3.16) d(s′, x) ≥ d(s, s′)− d(s, x) ≥ d(s, s′)− tL

and

1

2
d2(s′, x)− 1

2
d2(s, x) ≥ 1

2
(d(s, s′)− tL)

2 − (tL)2(3.17)

=
1

2
(d(s, s′)− 2tL) · d(s, s′)

≥ tKd(s, s′) ≥ t(f(s)− f(s′)),

which is a contradiction and proves the claim.
There is some ε > 0 (depending on L, S and M) so that if t ∈ [0, ε], then we

are ensured that there is a unique minimizing geodesic from s to x, and its tangent
vector at s is tv. It follows that 0 ∈ ∇−

s G. Finally, since d(s, x) ≤ εL, we can
choose ε (depending on K, L, S and M) to ensure that G is strictly convex on
Bt(2K+2L)(s), the latter being totally convex. Considering the function G along a
minimizing geodesic from s to s′, we obtain a contradiction to the assumed strict
convexity of G, along with the facts that 0 ∈ ∇−

s G and 0 ∈ ∇−
s′G. This proves part

a. of the proposition.
Now suppose that {μt}t∈[0,ε] is a Wasserstein geodesic. From [14, Theorem 5.10],

there is a c-convex function εf on S so that if we define its conjugate (εf)c using
(3.4), then {(s, exps(εv)}(s,v)∈supp(ν) is contained in

(3.18) Γε =

{
(s, x) ∈ S ×M : (εf)c(x) = εf(s) +

1

2
d2(s, x)

}
.

That is, for all s′ ∈ S,

(3.19) εf(s) +
1

2
d2(s, exps(εv)) ≤ εf(s′) +

1

2
d2(s′, exps(εv)).

Without loss of generality, we can shrink ε as desired. Define a curve in S by
s′(u) = exps(−uw′) where w′ ∈ TsS, u varies over a small interval (−δ, δ) and
exps denotes here the exponential map for the submanifold S. Let {γu : [0, ε] →
M}u∈(−δ,δ) be a smooth one-parameter family with γ0(t) = exps(tv), γu(0) = s′(u)
and γu(ε) = exps(εv). Let L(u) be the length of γu. Then

(3.20) εf(s) +
1

2
d2(s, exps(εv)) ≤ εf(s′(u)) +

1

2
L2(u).

By the first variation formula,

(3.21)
d

du

∣∣∣
u=0

1

2
L2(u) = ε〈vT , w′〉.

It follows that εvT ∈ ∇−
s (εf), so vT ∈ ∇−

s f . �

Remark 3.2. The phenomenon of possible nonuniqueness, in the normal component
of the optimal transport between two measures supported on convex hypersurfaces
in Euclidean space, was recognized in [6, Proposition 4.3].
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Example 3.3. Put M = S1 ×R. (It is noncompact, but this will be irrelevant for
the example.) Let F ∈ C∞(S1) be a positive function. Put S = {(x, F (x)) : x ∈
S1}. Define p : S → S1 × {0} by p(x, F (x)) = (x, 0). Let μ0 be a smooth measure
on S. Put μ1 = p∗μ0. The Wasserstein geodesic from μ0 to μ1 moves the measure
down along vertical lines. Defining f on S by f(x, F (x)) = − 1

2 (F (x))2, one finds

that vT = ∇f . Compare with [5, Corollary 2.6].

3.2. Tangent cones. If X is a complete length space with Alexandrov curvature
bounded below, then one can define the tangent cone TxX at x ∈ X as follows.
Let Σ′

x be the space of equivalence classes of minimal geodesic segments emanating
from x, with the equivalence relation identifying two segments if they form a zero
angle at x (which means that one segment is contained in the other). The metric on
Σ′

x is the angle. By definition, the space of directions Σx is the metric completion
of Σ′

x. The tangent cone TxX is the union of R+ × Σx and a “vertex” point, with
the metric described in [4, §10.9].

IfX is finite-dimensional, then one can also describe TxX as the pointed Gromov-
Hausdorff limit limλ→∞ (λX, x). This latter description doesn’t make sense if X is
infinite-dimensional, whereas the preceding definition does.

If M is a smooth compact connected Riemannian manifold, and it has nonnega-
tive sectional curvature, then P (M) has nonnegative Alexandrov curvature and one
can talk about a tangent cone TμP (M) [9, Appendix A]. IfM does not have nonneg-
ative sectional curvature, then P (M) will not have Alexandrov curvature bounded
below. Nevertheless, one can still define TμP (M) in the same way [11, Section 3].

As a point of terminology, what is called a tangent cone here, and in [9], is called
the “abstract tangent space” in [7]. The linear part of the tangent cone is called
the “tangent space” in [1] and the “space of gradients” or “tangent vector fields”
in [7].

A minimal geodesic segment emanating from μ ∈ P (M) is determined by a
probability measure Π on the space of constant-speed minimizing geodesics

(3.22) Γ = {γ : [0, 1] → M : L(γ) = dM (γ(0), γ(1))},
which has the property that under the time-zero evaluation e0 : Γ → M , we have
(e0)∗Γ = μ [9, Section 2]. The corresponding geodesic segment is given by μt =
(et)∗Π, where et : Γ → M is time-t evaluation.

Using this characterization of minimizing geodesic segments, one can describe
TμP (M) as follows. With π : TM → M being projection to the base, put

(3.23) P2(TM)μ = {ν ∈ P2(TM) : π∗ν = μ},
where P2 refers to measures with finite second moment. Given ν1, ν2 ∈ P2(TM)μ,
decompose them as

(3.24) νi =

∫
M

νim dμ(m),

with νim ∈ P2(TmM). Define Wμ(ν
1, ν2) by

(3.25) W 2
μ(ν

1, ν2) =

∫
M

W 2
2 (ν

1
m, ν2m) dμ(m).

Let Dirμ be the set of elements ν∈P2(TM)μ with the property that {π∗(Et)∗ν}t∈[0,ε]

describes a minimizing Wasserstein geodesic for some ε. Then TμP (M) is isometric
to the metric completion of Dirμ with respect to Wμ [7, Theorem 5.5].
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We note that since M is compact, any element of Dirμ has compact support.
This is because for ν-almost all v ∈ TM , the geodesic {expπ(v) tv}t∈[0,ε] must be

minimizing [9, Proposition 2.10], so |v| ≤ ε−1 diam(M).

Proof of Theorem 1.1. From Proposition 3.13, Dirμ is the set of compactly-
supported measures ν ∈ P (TSM) ⊂ P (TM) so that π∗ν = μ and there is a
semiconvex function f on S such that ν has support on {v ∈ TSM : vT ∈ ∇−f}.
Because μ has full support on S by assumption, ∇−f is single-valued at μ-almost
all s ∈ S. Equivalently, there is a compactly-supported νN ∈ P (NSM), which
decomposes under πNSM : NSM → S as νN =

∫
S
νNs dμ(s) with νNs ∈ P2(NsM),

so that for all F ∈ C(TSM) = C(TS ⊕NSM), we have

(3.26)

∫
TSM

F dν =

∫
S

∫
NsM

F (∇−f(s), w) dνNs (w) dμ(s).

Given two such measures ν1, ν2, it follows that

(3.27) W 2
μ(ν

1, ν2) =

∫
S

〈∇−f1,∇−f2〉 dμ+

∫
S

W 2
2 (ν

1,N
s , ν2,Ns ) dμ(s).

Upon taking the metric completion of Dirμ, the tangential term in (3.27) gives
the closure of the space of gradient vector fields in the Hilbert space L2(TS, dμ)
of square-integrable sections of TS [9, Proposition A.33]. The normal term gives∫
s∈S

P2(NsM) dμ(s), where the metric comes from the last term in (3.27). This
proves the theorem. �

Remark 3.4. In Section 2 we considered transports in which the intermediate mea-
sures were supported on hypersurfaces. This corresponds to Wasserstein geodesics
starting from μ for which the initial velocity, as an element of TμP (M), comes from
a section of TSM . In terms of Theorem 1.1, this means that the data for the initial
velocity consisted of a gradient vector field ∇φ on S and a section N of NSM , with
the element of P2(NsM) being the delta measure at N (s).

3.3. Gauss map as an optimal transport map. In this subsection, which is an
addendum to the preceding subsections, we give an example of optimal transport
coming from the Gauss map of a convex hypersurface in R

n.
Let S be the boundary of a compact convex subset of Rn. We assume that near

any point, S is locally the graph of a C2-regular function. Let N : S → Sn−1 be
the outward unit normal. Let κ ∈ C0(S) be the Gaussian curvature function, the
product of the principal values. Then N∗(κ dvolS) = dvolSn−1 .

The optimal transport plans in R
n for the cost function 1

2 |m1 − m2|2 are the

same as those for the cost function −〈m1,m2〉. Given R > 0, s ∈ S and x ∈ Sn−1,
the cost function of the points s and Rx becomes −R〈s, x〉. Considering an optimal
transport problem between S and R ·Sn−1, the optimal transport plans for the cost
function−R〈s, x〉 are the same as those for the cost function−〈s, x〉. This motivates
considering the cost function c : S × Sn−1 → R given by c(s, x) = −〈s, x〉. Here
we imagine taking R → ∞ so that Sn−1 is a “sphere at infinity”, not an embedded
sphere in R

n, although when we write 〈s, x〉 we are treating x as a unit vector.
The analog of (3.14) is

(3.28) Γt = {(s, x) ∈ S × Sn−1 : ηt(x) = tf(s)− 〈s, x〉}.
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Now ηt(x) = tf(s)− 〈s, x〉 if for all s′ ∈ S, we have

(3.29) tf(s)− 〈s, x〉 ≤ tf(s′)− 〈s′, x〉.
Taking f = 0, one sees that for all s ∈ S we have (s,N(s)) ∈ Γ1, since the

convexity of S implies that 〈s′ − s,N(s)〉 ≤ 0 for all s′ ∈ S. Hence N is an optimal
transport map from the measure κ dvolS on S, to the measure dvolSn−1 on Sn−1.

Remark 3.5. In a different direction, Aleksandrov’s problem of realizing a given
curvature function was related to optimal transport on a sphere in [12], using a
certain cost function; see also [3].
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