
Nuclear Physics B (Proc. Suppl.) 18B (I 990) 29-47 29 
North-Holland 

P A R T I C L E  M O D E L S  A N D  N O N C O M M U T A T I V E  G E O M E T R Y  

Alain CONNES 
IHES, 35 route de Chartres, Bures-sur-Yvette, F-91440 FRANCE 

John LOTr  
Department of Mathematics, University of Michigan, Ann Arbor, M148109, USA 

We write three particle models in terms of noncommutative gauge theory: the Glashow-Weinberg- 
Salam model, the- Peccei-Quinn model and the standard model. 

I. Introduct ion.  

While quantum field ~eoretie models of pure Yang-Mills 

type are appealing both physically and geometrically (as the 

Yang-Mills action has a clear geometric significance) they 

are unphysical since they only give rise to massless vector 

bosons. In order to circumvent this problem one adds new 

fields, the Higgs fields, with a symmetry-breaking 

mechanism which provides masses for both the vector 

bosons and the ferrnions. Our aim in this paper is ~ show 

that at the expense of modifying the usual notion~ ~f a 

geometric spacetime, one can recover several models of 

particle physics, all involving Higgs fields, as pure Yang- 

Mills models. 

It gradually emerges from problems in pure mathematics 

[Col] that the class of  Riemannian metric spaces is too 

narrow to encompass some interesting spaces, and that to 

do so one must reformulate notio~s of geometry in 

operator algebraic terms. The basic objects of such a 

geometry are a (possibly noncommutative) algebra CI, a 

Hilbert space on which the algebra acts and an operator on 

the Hilbert space. The algebra can be considered to be 

generalizing the idea of a manifold, while the operator 

provides the metric structure. (One finds usual Riemarmian 

geometry as a special case when a manifold M is replaced 

by its commutative algebra el of functions, the Hilbert 

space is that of spinors on M and the Riemannian metric is 

replaced by the Dirac operator.) It is then possible to write 

an action functional on operator-theoretically defined gauge 

potentials. In the special case of an ordinary Riemannian 

manifold, the action functional reproduces the standard 

pure Yang-Mills action. 

One can consider doing gauge theory on many types of 

spaces. (For example, instead of thinking of lattice gauge 

theory as a sim~atio~ of the continuum theory, one can 

imagi~Je doing a ~al gauge theory ~,n the lattice.) While the 

original mathematical motivation was to encompass new 

situations in which the algebra Od is no longer taken to be 

commutative, it has wider scope even when the algebra is 

commutative i.e. when the algebra arises from an ordinary 

point set. This is because the generalized metric can be 

taken to be different from a usual metric, by using an 

operator different from the usual Dirac operator. As was 

shown in [Co2], a gauge field on an appropriate 

generalized Riemannian space consists of an ordinary 

gauge field and a Higgs field. The pure Yang-~fills action 

on the generalized space will decompose as the sum of the 

Yang-Mills action for the ordinary gauge field, the kinetic 

action for the Higgs field and a symmetry-breaking I-r.iggs 

potential. 

The underlying fields in noncommutative gauge theory 

are the spinor fields. The bosonic fields arise from 

representing the differential forms, which depend only on 
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the algebra, on the Hilbert space. Thus to build our particle 

models we enter the phenomenological data of the fermion 

representations and the desired symmetry breaking. The 

fermion representations will determine which algebra we 

should use, and the vector bundles associated to the 

algebra. The desired symmetry breaking will determine 

how the generalized me~c  will differ from an ordinary 

metric. As the basic fields are fermionic, the fermionic 

action can be written in a straightforward way. 

Our purpose is to recover models of particle physics by 

suitable choices of our generalized Riemannian metric 

space. This paper contains the results of calculations for 

specific models, along with their geometric interpretation. 

The outline is as follows. In section II we discuss 

noncommutative geometry and noncommutative gauge 

theory. In section HI we give the Glashow-Weinberg- 

Salam (GWS) model for leptons. Our treatment is basically 

the same as for model II of [Co2], but we show that a 

defect of that model is corrected by the presence of several 

generations of leptons with different masses. The 

corresponding geometric space can be thought of as a 

spacetime of Kaluza-Klein type, where the fiber is formed 

of a two-point set. In section IV we add quarks to give the 

Peccei-Quinn model. The algebras of sections III and IV 

are both commutative. In section V we show that a 

quatemionic algebra yields the standard model. Section VI 

has a discussion of th~ results. 

We wish to emphasize that in this paper we only work at 

the classical level. Despite the appearance of Dirac 

operators, which sometimes have a quantum connotation, 

• ey are only used to define classical geometries. 

J.L. would like to thank M. Berger and the IHES for 

their hospitality, and the Sloan Foundation for partial 

support. 

II. Noncommutative Gauge Theory. 

We will give a self-contained summary of what we need 

from noncommutative geometry. At the end of the section 

we give two point-by-point examples. The first is that of 

ordinary commutative geometry. The reader may want to 

follow this example concurrently with the definitions. The 

second is that of a two-point space. For more motivation 

and details, we refer to [Col,Co2] rand references therein. 

(1) A noncommutative space is given by a * algebra 

with unit. 

Because Ct can be noncommutative, we will have to be 

careful in distinguishing between left and right actions. 
Given Ct, the algebra Mn(Ct) of n x n matrices over ~t 

forms another noncommutative space. 

(2) If ~t is a complex commutative algebra, define the 

character space C, or spectrum, of ~ to be the space of 

algebra homomorphisms from ~ to ~. 

A right (left) module over ~ is a complex vector space 

on which ~ acts on the right (or left). The tensor product 
~ '  ®Ct C of a left module C' and a right module ~ is 

generated by 

{~' ® ~: ~' ¢ ~', ~ ¢ ~ }, with the relation 

~'a ® ~ - ~' ® a t = 0. If ~ and ~' are right ~-modules 
then we will write End~(~,  ~ )  for 

{u: ~ -~ ~ ' ,  u linear, u(~a) = u(~)a for all ~ ¢ ~ , a 

} and we will write End~(~)  for End~(~,  ~). 

(3) A vector bundle ~ associated to ~ is a finite 

projective r;ght module over ~ .  This means that ~ is the 

image e~  n of pan under some orthogonal projection 

e ~ 1 ~ ( ~ ) .  

The dual space ~* = EndpA(~, ~ )  is a left module over 

with the ~ action given by (aTI)(~) = a 1](~) for all 

a ¢ ~ ,  ~ ¢ C, 11 ¢ ~*. There is a pairing 
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(,): ~ *  x g -'> ~ given by 01,~) = ~l(~). 

(4) The space of universal k-forms f~k(~t) is the 

bimodule generated by elements a Odal ... da k , 

with a 0, a 1 . . . . .  a k • ~t, and the relations 

d(ab) - (da)b - a(db) = 0 and d( 1 ) = O. The space f~* (~t) = 

£1k(~t) of all differential forms is a graded differential 

algebra, with the differential given by 

dta 0 dat ... da k) = ~ d~] ... da k. Tbem is an mvot.t ion 

on f/*(ea) given by 

(a 0 dal ... dak)* = dak* ... dal* a0*. 

(S) Ahermitianmetricon ~ isamap 

< , > :  ~ x ~ .-->~ such that 

If we write ~ intho fo tm~ =e~nand  pis ann xnma~'ix 

of 1-forms, p e Mn(~) @~t Ql(~t)" such that 

ep •p, p = - p, tben we obtain a ~ commcti~ 

by putting V~ ~ e d ~ + p ~ , v d t e r e  ~ e  ~ t a a n d e ~ = ~ .  

Conversely, any Hermitian connection can be wtittea i~ 

this form for some p. We will define the ~a~ratam of  V to 

be 0 = V 2 • Ende(~ ®Ct fi*(et)). Acting oa ~ ~ ,  

0 is an element ofEndet(~, ~ ®~t g~2(~t))" 

There is a dual connection V* ~*  : ~ *  ~ °l(~t) ®et 

de~mcd by 

d(~l,~) = (V*ll,~) + (11,V~) for all 1] e ~* ,  ~ • ~ .  

For any element u of qL, we obtain a new 

connection, the gauge transform of  V ,  by V a ffi uVu -I.  

The curvature of VUis given by 0" = u0u "1. 

1. <~1al,~2a2 > -- al* <~1,~2 > a 2 for all ~l,~t2 e ~ ,  

a r a  2 ~ 

3. <~,~> is a positive element of Ct for all ~ • ~ and 

<~,~> = 0 ifr ~ = o. 

(6) The group of unitary gauge transformations of 

is ~ = {u • Endet(C) : u*u = uu* = 1 }. 

(7)  A hermitian connection on ~ is a linear map 

V : ~ ---> ~ ®Ct f~l(~) such that 

1. V(~a)ff i (V~)a+~@da foraU ~ •  C , a ~  

2. d<~Jl> = <V~,TI> + <~,V1]> for all ~,'q • g.  

We can extend V to a differentiation of ~ -valued forms, 
V : g ®ct f~*(Ct) --> ~: ®¢~ fl*(Ct), by requiring 

3. V ( ~ c 0 ) = ( V 0 o + ~ @ d c o  forall ~ •  ~ , o •  

f~*(ea). 

(8) In order to ~ furtber, v~ wfllwam a K-cycle 

on et , that is, a * representation of ~t by bounded 

operators on a Hilbert space ~g and a (possibly 

unbounded) setf-adjoint operator D on ~g such that 

1. [D~] is a bounded oimmtor for all a ¢  et 

2. ( l+D2)  "1 is a compact operator on ~ .  

We will also assume a Z 2 grading operator r on 

suchthat I ' D + D F = O a n d a r = F a f o r a l l a  e ~ .  

We will write B ( ~ )  for the space of bounded oper -a~  

on % and B(~;, %') for the space of bounded operams 

between two Hilben spaces ~ and %'. 

(9) If Ca is a complex commutative algebra then any K- 

cycle gives a metric d on the character space C by 

d(p,q) = sup {Ip(f) - q(f)l : f E  Ct, II[D,f]ll < 1}. 

(If ~ is a general C*-algebra then the same definition gives 

a metric on the state space of Ct.) 

(10) Defmeamap x : f ~ ( e t ) - - ¢ B ( ~ )  by 
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x(a ° da 1 ... da k) = %  ilD,a 11 ... i[D,ak]. 

This is an a lgebra  homomorphism (but not a 

homomorphism of  differential algebras). There are 

extensions of x,  which we will also denote by ~t, to a 

(fight) module bomomorphism 

~t: ~ Get fl*(et) --4 B(~;,  ~ ® Q ~ )  and to a linear map 

x: Endct({~, ~ Get g~*(~)) ---> B({~ GQ~). 

(I I) Given a hermitian connection V, we obtain a self- 
adjoint operator D v on the Hilbert space ~ ®Q ~g by 

D v ( ~ G ~ ) f ~ G D r l - i ~ ( V ~ ) r  I forall  ~e (~,Tle ~ .  

What is nontrivial is that if co is chosen to be scale-invariant 

in an appropriate way then Tr¢~ is a linear functional and 

extends to a positive trace on ~ 1+(~) ,  the Dixmier trace. 
(If ~ is filfiteMimensional then we will define Tr m to be 

the usual trace.) 

We will only need the Dixmier trace of pseu&xtifferential 

operators. Suppose that Z is n-dimensional and that P is a 

pseudodifferential operator of order -n acting on sections of 
a vector bundle over Z. Then P ¢ ~ 1 + ( ~ ) .  Let a p  

denote the principal symbol of P, a matrix-valued function 

on T*Z. Then regardless of the mean co used to define the 

Dixmier trace, one has 

There is an action of  'Xl. on ~ Get ~ for which D v is 

gauge covariant in the sense that D u = u D v u -1. 
V 

(12)  We will define the spinor action as 

I V = < V ,  D v V >  for v e  ~ ® Q ~ .  

In order to define the Yang-Mills action of a connection, 

we will need the notion of the Dixmier trace of a compact 

operator [Di]. Although we will only need this in a special 

case, where the Dixmier trace is effectively computable, we 

will give the general definition. For an infinite-dimensional 

Hilbert space %, define an ideal by 

N 

2~ 1+(~)  = {T e B(W0: T is compact, ~ gi(T) = 
i = 0  

O(log(N+l))}, 

where {~ti} are the eigenvalues of ITI. If co is a mean on the 

space l°°(Z +) of bounded sequences on 7 +, and T is a 

positive element of 2~ 1 +(%), define 

fs trace(op) d~t, Trio(P) = (n (210n) -I *z 

where S*Z is the cosphere bundle of Z (the subset of the 

cotangent bundle consisting of unit covectors) with the 

standard measure dg [(2o3]. In this case one sees that the 

Dixmier trace is the integral of a local expression over Z. 

(13)  Let us consider the Dixmier trace on 

1+(C @et%). Suppose that D is such that 

D "2k e ~ 1+(%) for some integer k. (We will want to 

choose the smallest such k.) Then we will define the Yang- 
Mills action to be I V - Trm((~(0)) 2 Dv'2k). One can also 

define a topological action, for which we refer to [Co2]. 

(14)  One can take the product of noncommutative spaces 

as follows. Let (ca 1, ~ 1 '  D1, F1) and (Ca 2, 0~ 2, D 2, F 2) 

be two noncommutative spaces with K-cycles. Form a 

new noncommutative space with K-cycle by putting 

gt = e l l  G ~ t 2 , ~  = ~ 1  @ ~ 2 ,  D = D 1 ® I +  F 1 G D  2 

a n d F = F 1 ®  F 2. 

N 

Tro(T) = co({ ~ ~ti(T ) / log(N+l)}). 
i=0 

The character space for ~ is C = C 1 x C 2. The space of 

differential forms f~*(~) maps to f~*(ea I) @ f~*(~2)" 

Given vector bundles ~I (associated to ~t 1 ) and ~2 
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(associated to ~2  ) with Hermitian metrics, there is a vector 

bundle ~ = ~1 @ ~2  associated to ¢1 with Hermitian 

metric. 

The differential on f~*(Ct) is given by (dg)(zl,._,Zk+2) = 

k+2 
(-1) i+l g(z 1 ..... Zi.l,Zi+l,...,Zk+2). 

i=1 

Igztum~®a 

A. Commutative Geometry 

( s )  Anymmmhhermit iaainner~dect  ( , )oaEgives  
a hennitian meuic on ~ by sending me pair gl,~2e ~ to 

the function <gl,F.,2> E et defined by 

(1) Let Z be an even-dimensional smooth compact spin 

manifold and take Ct = C~(Z) @ ¢. 

( 2 )  C = Z, with z E Z correspond ing  to the 

homomorphism f ÷ f(z). 

(3) Take E to be a smooth finite-dimensional vector 

bundle over Z and put ~ ffi C°°(E), the space of  smooth 

cross-sections of E. C* is the space of smooth cross- 

sections of E*, the vector bundle whose transition 

functions are the inverse transpose of those of E. 

(4) flk(e.t) can be identified with the space of smooth 

functions g: Z k+l -> ¢g such that 

g(z 1 ..... Zi_l,Zi,Zi,Zi+ 2 ..... Zk+l) = 0 for all 1 _< i < k. The 

left action of ~t is given by 

(fg)(z 1 ..... Zk+l) = f(zl) g(z 1 ..... Zk+l) and the right action 

of ~t is given by 

(gf)(z 1 ..... Zk+ 1) = g(z 1 ..... zk+ 1) f(zk+l)- 

Note that the right and left actions are not the same, even 

though ~t is commutative. The involution on flk(~t) is 

given by g*(z 1 ..... Zk+ 1) = (-1) k g(zk+ 1 ..... Zl). 

The product of a k-form g and a k'-form g' is given by 

(gg')(z 1 ..... Zk+k,+ 1) = 

g(z I ..... Zk+ 1) g'(zk+ 1 ..... Zk+k,+l). 

<gvgz~(z) = (F.l(z),~(z)). 

(6) '~Listbegroupofsmooth unit~gaege 
transformations of E. 

(7) I f ~  =Ct then a conaection is specified by a skew 

element p = ~ dbj of l'lt(Ct). The curvatme is 

0 = d p +  p2 e f12(Ct). Note that the p2 a rm does nc¢ 

vanish, nnlike in the usual ~ of ~ frwnm. 

(8) Let S denote the vector b~mdle of spinors ¢m Z a ~  

put ~ = L2(S), the I-lilbert space of  square-imegrable 

sections of S. Let D be the Dirac opetamr and let Fbe the  

Hennitian chirality operator on ~g. 

(9) This t~'educes the geodesic distance on Z. 

(10) If we note by d~ the operator ~ ~Pagaon~g then 

g(a ° dat ... da k) = a 0 d a l  ...  d a  k. 

(11) If ~ = ~ then DV =,1~- i ~ aj dbj,  an opetat~ on 
J 

L2(S), which is reco~ized to be the Dirac o ~  coupled 

to a U(1) gauge field. 

(12) This gives the usual action for a spinor field in a 

U(1) background. 

(13) If Z is four-dimensional and E is a 0: N vector 

bundle over Z then one finds 
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Iv = ( s ~ ) t  fz [~ + x~l dvol, 

the sum of the usual Yang-Mflls action and a Gaussian term 

which decouples. The topological action is proportionate to 
the usual topological charge p l y ) .  

(14)  If Z 1 and Z 2 are ordinary spaces then Ct is the 

algebra corre.~onding to Z = Z I x Z 2. ~ is tlm Hilben 

space of  square-integrable spinors on Z, D is the Dirac 

operator on Z and r is tim Hcrmitian chirality operator for 

Z. If(~ 1 and (~2afisv from ordinary vectorbundlcsE I (on 

z l) and r~ (on z 2) then ~ arises from the ordinary vector 

bundle xl*E1 ® ~2"E2 on Z. 

< ( ~ ] , ~ 0 , ( ~ 2 , ~ 2 , ) >  = (:{] t ~2, ~]'t  ~2') • (~ 

for all (~i,~i'),(~2,~2') • ~" 

(6)  ~ is U(k) x U(k'). 

(7)  If  (~ = Ct then a connection is specified by a skew 

element p • fll(ct), which we can write as 

2 
p = (r,r*) • 0: . 

(8)  Take ~ = 0:N • 0:N, with the action of ~t given 

by (X,X')(11,11 ~) = ~ l , X ~ ' )  

for all (X,X') • ~ and (ll,ll') • ~ .  

B. Two-Point Svace 

( I )  Tal~ Ct = 0: e ¢ ,  with 

('KI,XI') + (Z2~2') = ('KI + X2, X' 1 + X2') and 

0-p ) -O  (~2A2 9 = G]X2 • ~-'i~-2 3. 
I 

and 

{2) C is a two-point space, C=-{p,p'}, with 

p: (Z,X3 -~ X and p': (Z, X3 • X'. 

k k' 
(3) Take ~ = 0: $ 0: , with the ~ action given by 
( ~ , ~ 3 ~ ' )  = (~X,~'X') for all (~,~') • (~ and 

('A~3 e ~.  If we assume that k _< k' then we can write 

= e~k' where e is a diagonal k' x k' matrix with entries 

consisting of k (l,l)'s and k'-k (0,1)'s. 

(4) f~*(Ct) has the same interpretation as in the previous 

example. In particular, fZ0(Ct) = (~ = 0:2 and f/l(~) can 
2 

be identified as 0: , the values of g at (p,p') and (p',p). 

The involution on ~I(C[) is given by (r,s)* = - (s*,r*) for 
2 

all (r,s) e 0: . The differential d: f~0(~) ÷ f~l(ct) is given 

by d(v,v') = (v'-v,v-v'). 

(9)  Let L denote the square root of the inverse of the 
largest eigenvalue of MtM. Then the metric on C is given 

by d(p,p') = L. 

(10 )  If for a = (XA') e et we denote by da  the operator 

i (X- X') 
0 
M "0 then 

~(a ° da 1 ... da k) = a 0 d a  1 ... d a  k. In particular, for a skew 

1-form p - ~__~ ,,a°i dalj, if we write p in the form 
J 

(5) We can take 
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2 
(#~*-l,#p-1) E ¢ then n ( p )  is the operator 

0 

i(0)- 1)M 
i ( ~  IMp)  Theimagez(O)ofthecurvature 

of p is x(dp + p2)= ;m(~ % dalj) + ~(p2)ffi 
3 

n(da°j) x(dalj) + n(p) 2, which turns out to be the 
J 

o o) operator (1 - I~1 )~ ) . 
MM 

( I I)  With the connection given by p as above, D V is the 

operator 
~bM 

(12 ) The fem~ionic action is I~ = ¥* D v V for ¥ ~ ~ .  

(13) The Yang-Mills action is 

2 2 (M,M)2.  I V = 2(1-1#pl ) Tr When ~ =Ct,  the 

topological action vanishes. (More generally, the 

topological action wig be proportionate to k - k'.) 

(14) We can take the product of noncommutative 

geometries corresponding to two two-point spaces to get a 

noncommutative geometry for a four-point space, in a 

straightforward way. 

III. Glashow-Weinberg-Salam Model. 

Let Z be a closed Riemannian spin 4-manifold, (We 

will make the transition later to a Lorentzian spacefime). 
Let S denote the spinet bundle and let 3' ~ B(L2(S)) 

denote the Hermitian chirality ~ .  l e t  N¢~ be t ~  

numbor of generaticm and let M be an NO x NO nnemix, dm 

mass malfix. 

In order to build our nu3dels, the geuentl sa-segy w-~l be 

to think of the algebra et and tl~ vec~bundle $ ~ 

as specifying the gauge gronp, and the action of ~t ond~e 

Hilbert space ~t as specifying the fennic~ ~ 

of the gauge group. For ~ ,  anppose that we talm Ct 
to be C=TZ) and ~ to be ¢ ~ ® C " ( Z ) .  SaPlx~eme=e 
acdonoff~ ~t on ¢isgivenby INOf, thatis. 

(v @ g) f =  v ®  gf. Then tbe un/tary ~ g e  groep is 
Map(Z, U(N)). Suppose that % is L2(S) ® cM and that 
the action of f ~ ~ t o n ~  isgivenby f®IM, thatis, 

fffl ®w) = ~  ®w. Then the apa~ o f ~  is 

C ®¢t ~ = ¢ N ®  L2(S) ® eM.  In od~er w~rds, we 

obtain M distinct fermions that are in the 

representation of U(N). 

To write the GWS model, we will fit~t take the s~ucna~ 

group m be U(1) x U(2) and later restrict to U(D x SU(2). 
We have seen in example A of the previous section the) 

when one specializes noncommm~ve gauge theory m the 

usual commutative case, one recovers the standard 
formalism of gauge fields and Yang-]CFdls actions. In 

example B we saw that when one does gauge theory on a 
two-point space, with an off~i~gonal Dh-ac operator, one 
obtains a variable ~, which we can interpret as a I~ggs 

field. The Yang-Mills action in example B was exa~y a 
symmetry-breaking Higgs poten~L In onler to ~ the 

GWS model, we will simply take the product of the 

noncommutative spaces ofexsmples A and B. Let us wfile 
our two factor spaces as noncommutative spaces with K- 

cycles, (~t 1" ~ 1, DI" U1) and ((~2, ~2" D2" U2)" 

(Ct 1, ~ 1' DI '  I ' l )  will correspond to the usual 

Riemannian geometry on Z: 

Ctl = C~(Z), ~1  =L2(S)'D! =~fandr l  =3" 
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For (ca2' ~ 2 '  D2' F2)' we will take 

ca2=  0: @ 0:, ~ 2 = ( 0 :  (B 0:)@ 0:NG, D 2 =  

,° I. andF2 =(0 

If we write an element of ~ 2  in the form (Tl,~') with 

T1,TI' ¢ 0: NG then the action of (~.,~L') ¢ ea 2 on 

(11,11') ~ ~ 2  will be taken to be 

(X,~.') (11,11') = (~aI,~L'W). For the product geometry 

(ca, ~ ,  D, I'), we have 

ca -- coo(z) ~ coo(z), ~; = L2(S) ® 0:2 ® 0:NG, 

0:) 
M 

(M,)0 
D =,l~@ 12 @ ING + TO and 

M 0  

(1o) 
r=+® 0 ®IN G. 

The character space C 1 of (ca 1' ~ 1' D1, F1) is Z and 

the character space C 2 of (ca2' ~ 2 '  D2' 1"2) is a two-point 

space. Thus the character space C of the product geometry 

is the disjoint union of two copies of Z, say Z and Z'. Let 
us denote the geodesic distance on Z by d Z. Let L denote 

the square root of the inverse of the largest eigenvalue of 
M*M. One can show that the distance d on C satisfies 

d(p,q) = dz(p,q) for p,q ~ Z, 

d(p',q') = dz(p',q' ) for p',q' ¢ Z', 

(dz(p,p')2 + L2) 1/2 < d(p,p') _< dz(p,p' ) + L 

f o r p ¢  Z , p ' e  Z'. 

Thus the picture is of two copies of Z separated by a 

distance L. (As one loses information in passing to the 

character space, this picture should not be taken too 

literally.) 

For the vector bundles, let us take ~ 1 = ca 1 and 

~ 2  = 0: ~ 0: ~ 0:' with the action of (~.,~.') ¢ ~ 2 on 

(~1,~2,~3) ¢ g2  given by 

(~1,~2,~3)(~,,~,') = (~1~,,~2~,',~3~,'). Then the vector 

bundle 6 is C°°(Z) ~ Coo(Z) ~ Coo(Z). This can be 

/{1,1) 0 I 
written more succinctly as ~ = eca 2 , with e =~ 0 {0,1}] 

• The unitary gauge group of (~ is Map(Z,U(1) x U(2)). 

In terms of the character space, ~ can be thought of as a 

0:1 bundle over Z and a 0:2 bundle over Z'. The 

fermion space is given by ~ @et ~ = L2(S) @ 0:3 @ 0:NG. 

(e t We can write elements of ~ @et ~ in the form eL , 

V 

where eR,eL,V L ~ L2(S) ® 0: NG . In this way, e R is in 

the fundamental representation of U(1) and (eL,eL) is in the 

fundamental representation of U(2). 

Let us write a Hermitian connection V on ~ = eca 2 in the 
formV~ = ed~ + p~, 

where ~ ¢  c a 2 , e ~ = ~ , p ¢  M2(Ca)@el f ~ l ( c a ) , e p = p .  

The matrix p is a 2x2 matrix of one forms, the components 

of which can be written as 

Pkl = X aklj dbklj' aklj = ( %  ,f 'klj ), bklj = (gklj,g'klj), 
J 

1 -< k,l_< 2. 

The condition ep = p becomes f '21j = f '22j = 0. 
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Let us fix k and I for the moment. Each aid j and bid j acts 

on ~ as a 2x2 diagonal matrix. Then 

x ( P k l  ) =  

components 

akl j i [D,bkl j] is a 2x2 matrix with 
J 

7t(Pkl )11 = j~. fklj dgklj ® IN G 

X(Pkl )12 = ~ .  "ifldj (gklj'g'ldj) Y® Mt 
J 

~(Pld )21 = ~ .  if'klj (gklj'g'klj) Y® M 
J 

g(Pkl )22 = j~. f 'klj dg'klj ® IN G" 

(We are using the notation that for a function g, 

d g =  i [~,g] = ~_~ ~ Op.g.) 
It 

We have that the 4x4 matrix x(p), an operator on 

®~t ~ '  has vanishing third row. By its skew- 

Hermiticity, it also has vanishing third column. Thus we 
can write ~(p) as a 3x3 matrix. One finds that it can be 

written in the form 

, ( p )  _- 

1 -  [ M t $ 

A ® IN® i~01-1j y ® i¢72T® M 

~(~l-1)y® M A'®IN o -W* ® IN® 

it~2T® M W®IN o Z®IN c 

W = j ~  f '21j dg'21j' Z = ~ f '22j dg'22j, 
J 

~1" 1 ffi E f ' l l j  (gl l j 'g ' l l j )  and 
J 

~2 = E f'21j (g21j'g'21j)" In terms of their behaviour 
J 

under gauge transformadons, A is an ordinary U(1) 

(A"r) 
gauge field, W is a U(2) gauge field and 

(°') • = ~2 is a Higgs doublet with covadant derivative 

(In terms of the inmidve picture of tim geometry given by 

the character Sl:ace, the U(1) gauge field is locally given by 
a differential form on Z and the U(2) gauge field is locally 

given by differential forms on Z'. The Higgs fields involve 

the differences of functions on Z and Z', and so can be 

thought of as differential forms where the differential is 

replaced by a difference operator.) 

The curvature 0 =  V2:  ~ -* ~ @~ ~ 2 ( ~ )  of the 

connection is 0 = e de de + e dp+  p2. Its image ~(0), a 
self-adjoint operator on C @~ ~g, can be written as a 3 x 

3 matrix T of operators. Tae only subtlety in computing 
T comes from the fact that T is'locally an operator with 

values in the even part of the Clifford algebra. It does not 

consist only of Clifford algebra elements of degree two, as 
one might expect for a curvature. For example, T 11 has a 

term A 2 @ % .  Because A is an operator of the form 

Here A = ~ f l l j  d g l  lj' A '= ~ f11j dg'11j' 
j i 
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A = ~ Ag )St, instead of vanishing, A 2 is actually a scalar 
~t 

field ~ A d of degree zero. In general, the product of two 
g 

of our operator 1-forms can be decomposed in the Clifford 

algebra into the sum of a 2-form and a 0-form. Keeping 

this in mind, when decomposed into its various degrees we 

can write T as 

Tll = F A ® ING + X ® ING- (1OI 2 - 1) ® M t M 

T22 T23/-- F 
T32 T33/ [ -w [ A ' z "  @ W  ) IN° 

+ 

x '  (x"}* *-I ® i i  
X" X"' @ INo" 

Here X,X',X" and X"' are new scalar fields. 

In order to obtain a U(1) x SU(2) gauge theory, we 

must relate the U(1) gauge field to the U(1) part of the 

U(2) gauge field. In terms of the hypercharge generator Y, 

we want A = - 2Y and A' + Z = - 2Y. Thus we will require 

A = A ' + Z .  

$3 = (892)'1 f z  [NG IFU(2)I2 + 

N G Tr (XU(2) - NG'I (Tr M'M) (00*  - I) )2 + 

((IOI 2-  1) 2 + 1) Tr(M*M - NG'I (Tr M'M) ING)2] 

dvol. 

Because the auxiliary fields X and XU(2) appear  

quadratically and algebraically, one can immediately 

minimize over them. If there is more than one generation, 

and not all of the electron-like fermions in the various 

generations have the same mass, then we obtain a 

symmetry-breaking Higgs potential. (If there is one 

generation then M*M - NG'I (Tr MtM) ING vanishes and 

we do not have a Higgs potential). We will discuss the 

question of relations among the coupling constants in 

section VI. 

The fermi®hie action is 

Iv=(eReLV~ 

* -i ~(p} ,Et® ING T®M 0 

T®M J~® IN® 0 

0 0 J~®INo 

[oR) 
e L • 

 VL/ 

The Yang-Mills action I v = Trto((x(0)) 2 DV'4)) is the 

sum of three terms: 

s 1 = (8ne)-lfz [N G IFAI2 + 

In order to write an action for a Lorentzian spacetime, we 

will do the obvious changes for the bosons, and require 
that the fermion field W ¢ ~ Get % satisfy I ~  = W- In this 

way we obtain the GWS model [GI,Wel,Sa]. 

) _ )2 N G (X - NG "l (Tr M M) (IOI 2 1) + 

(IOI 2 - 1 )2 Tr(M*M - Nod (Tr MtM) ING)2 ] dvol 

IV. The Peccei-Quinn Model. 

We now want to add the quarks to the GWS model. 

This will lead to the Peccei-Quinn model. The idea is that 

S 2 2(8x2) -1TrM* f = M DO* DO dvol 
z 
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the triplets e and dL differ in their U(1) x SU(2) 

 v,7 uL 

properties by a total hypercharge. The u R quark is left 

over. This suggests having an algebra ~ with vector 

bundle ~, with gauge group U(1) x U(1) x U(2). The first 
U(1) will act on u R, the second U(1) will act on o R and d R, 

and the U(2) will act on (CL,VL) and (dL,UL). We also have 

to add the color degrees of freedom to the quarks. If we 

can do this then the gluons arc automatically generated in 

our model. In order to provide the color we will add a new 

algebra ~ which acts on the Hilbert space, and a vector 

bundle ~ associated to ~. If the gauge group of ~F were 

taken to just be U(3), then all of the physical fermions 

would have to have color. Thus we will take ~ and ~ so 

that the gauge group of ~" is U(1) x U(3). The U(1) will 

act on the leptons and the U(3) will act on the quarks. The 

total gauge group is now U(1) x U(1) x U(2) x U(1) x 

U(3). When the various U(1) factors are related, the final 

gauge group wRl be U(1) x SU(2) x SU(3). There will be 

no Higgs fields associated to the gauge group of D', and so 

the SU(3) gauge group will he unbroken. 

Let us first describe the geometry of our model over a 

point in Z. ~t will be the algebra of a three-point space: 

=(E $ ¢  • (~. L e t B  =(E ~ ¢ be an auxiliary 

algebra, which one can think of as taking the place of ¢ as 

a ground ring. Take ~ to be (¢ $ ~2 $ ¢2) ® (zNG. 

(One can think that the fLrSt factor in ~ corresponds to u R, 

the second factor corresponds to e R and d R, and the third 

factor corresponds to the four left-handed fermions.) 

The (left) action of (f,f ' ,f ") e ~ on ~ is given by 

(fI1 ~ f 'I2 ~ f %2) ® IN G ' and the (right) action of (g,g') 

The operator D will be 

D = , where M 2 = is a 2N o x N G 
2 M3 

mauix and = / 0  Me/ is a 2S o - 2N G 

Note that requiring that D commutes with the action of 
gives M 2 and M 3 their special forms. The 22-grading 

operator win be r = • t 2 • (d2)) ® INo. 

Now let us give the full modeL Let ~t be 

c'(z)ec'cL)ec'(z),~ be &(z)ec'(z) and 

~{; be L2(S) ® (¢ • ¢2 • ¢2) ® eNG. The (left) action 

of (f,f',f ") • ~ on ~ is given by 

(fl I • f 12 • f "I 2) ® ING, and the (fight) action of 

(g,g') • ~ on ~ is given by 

(o t 0 0 
V =j~r® (I 1 ~ L ~  I2) ® ING + Y ®  

M2 M3 

/°j where M 2 = M is a 2N G x NG matrix and 

M e 0 / 
M 3 = ~ 0  Md / i s a  2N G x  2N G matrix. The 7- 2- 

grading operator is r - -y® (I l • I 2 • (-I2)) ® IN G • 
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Take ~ = C**(Z) (9 C**(Z) (9 C**(Z) (9 C**(Z) = e gt 2 , 

[11,1,1} 0 I 
with e= [  0 {0,0,1}1 'and 

= C**(Z) (9 C**(Z) (9 C**(Z) (9 C**(Z) = ~3 f ,  with 

1{1,11 0 0 / 
f = [  0 {0,1} 0 ] .  The gauge group of ~ is 

0 0 {0,11] 

Map(Z,U(1) x U(1) x U(2)) and the gauge group of ~ is 

Map(Z,U(1) ~ U(3)). 

An element of the physical Hilbert space 

= ~ ®et~®~ ~ can be written as 

(uR,eR,dR,eL,dL,VL,UL) ~ L2(S) ® (IZ 3 (9 (IZ 1 (9 IZ 3) (9 

(¢1 (9 (!:3) (9 (~1 (9 ~3)) ® ~NG. 

covariant derivatives D O l = d O l +  ( A ' w A - W * )  Z - A  O 1 '  

[A" -A '  -W* 1 
DO2=dO2+~ W Z - A ' 1 0 2 .  

The image ~(0) of the ~-curvature, a self-adjoint 

operator on ~ Get ~ ,  can be written as a 4 x 4 matrix T 

of operators, with 

TII = F A ® ING + X ® ING - (10112 - I) ® M2 ) M 2 

T22 = FA, ® IN G + X' ® ING- (10212- I) ® M31 M 3 

T43 T44] F[A"W*) ® I N ° * w  X"'  X':,:! ®iNo 

- (01  0 1  I' - I) ® M 2 M 2* - ( 0  2 (:I)2) = I) ® M 3 M3 ) 

A connection on ~" will provide a U(1) gauge field and a 

U(3) gauge field, and no Higgs fields. If a connection on 

is given by the matrix p then one computes that ~(p), 

an operator on g @et ~ ' is a 4 x 4 matrix of operators 

A®IN. 0 i(~,-1 )T@M 2 ' i~4T@M 2 , 

0 A'®IN. i(;3-1)y@M 3 ' i~sT®M3' 

A"®I o -W*®I o " 

i0,ff@M2 i0sT@M3 W®IN~ Z® ING 

"1"21 = (01- 0 2 '  01) ® MS' M2 

T31 _ 
T41]-  i(DOl) T® M2 

T32 _ 
T42]- i(DO 2) T® M 3 • 

Here X, X', X", X"', X .... and ~ 1 

scalar fields. 

are new auxiliary 

(We are thinking of an element of ~ ®et ~ as 

u R (9 (eR,d R) (9 (eL,d L) (9 (VL,UL).) A and A' are U(I) 

w, I gauge fields and W is a U(2) gauge field. There 

= = , with are two Higgs doublets, O 1 ~4 and • 2 ¢5 

We now have a U(1) x U(1) x U(2) x U(1) x U(3) 

gauge theory. In order to reduce this to U(1) x SU(2) x 

SU(3),  let us put that the first U(1) part A of the 

connection on ~ vanishes, the second U(1) part A' of 

the connection on ~ is - 2Y, the trace of the U(2) part 

of the connection on ~ is - 2Y,  the U(1) part of the 

connection on ~ vanishes and the trace of the U(3) part 
of the connection on ~Y is 4Y. 

Upon computing the action as in section III, we obtain 
quartic potentials for O 1 and 0 2. There is also a mixed 
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/T33T34~ 
term coming f r o m  ~T43T44f which is proportionate to 

[O1'O212. Putting everything together, we obtain the 

Peccei-Quinn model [PQ]. This model has an axion 

[We2,Wi] which seems to be ruled out experimentally 

[EG]. 

Let us note that because the first U(1) gauge field arising 

from C and the U(1) part of the gauge field arising from IY 

both vanish, we could have taken the algebras to be ~ = (£ 
C°°(Z) ~ C~(Z) and ~ ffi (~ • C~(Z). The only effect 

that this would have would be to enforce the vanishing 

from the beginning. 

V. The Standard Model. 

In the standard model the Yukawa term which gives 

mass to the up quark involves not the Higgs doublet O, but 

the field O'  = J O, where J ffi c][~' has the same 

isospin as ~ ,  but opposite hypercharge. One can use ~ '  to 

form a gauge-invariant action because the ftmdanmntal 

representation of SU(2) is unitarily equivalent to its 

complex conjugate. That is, 

(*) J ]  = g J 

for all g e SU(2). Our choice of the algebra ~t for the 

standard model is based on the observation that (*) defines 
a subalgebra of M2((g), vamely the qnALemion algebra H. 

Let us first consider an e~ample with the algebra ~ = g" 

and a vector bundle ~ = H,  with O, acting on ~; by fight 
multiplication. Then Endet(~) eqnAl~ lg, acting on ~ by 

left multiplication. The unitaw gauge group is the group of 

unitary quatemions, n~nely SU(2). 

This suggests taking the algebra C{ for the standard 
model to be C~(Z) ® ((I: ~ ~'). We will add the g!_,~as 

later. We will fast work with complex vector spaces and 

describe directly the full model. We wiU later show how to 

describe the geometry of the full model as the product of 

ordinary spacetime geometry and a finite geometry, both of 

these factor geometries being expressed most simply using 

quatemions. 

Let us first give our conventions for charge conjugation 

in Euclidean space. For any representation of the Clifford 

algebra on (£4, charge conjugation is given by the operator 
R: (g4 ~ (~4 defined by R(v) = C ' lv ,  where the matrix C 

satisfies CyttC "1 = - (ytt)T, C T = -C and CC = -1. Also 

C~tC" 1 = ~. The operator R preserves chirality. 

Take ~ = C°°(Z) ® (~ (~ If) and 
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_ L2(S) ® (0;2 (9 0; (9 0;2 (9 0;2) ® 0;NG. (The first 

0;2 factor corresponds to (OR,dR), the 0; factor corresponds 

to u R, the second 0;2 factor corresponds to (eL,d L) and the 

third 0; 2 factor corresponds to (VL,UL).) We will identify 

]I-I with 0;2, where the action of an element (ot,~) of ]H = 

Oo  onof 

(f,(0t,13)) e e,t on ~ is given by 

/ 
(fI 2 (9 fll (9 |or 12 12 

~-~I2 ~ I 2  

given by 

) ® The operator D is IN G • 

D(v) = (~r ® (I 2 (911 (912 (912 ) ® ING) v + 

7® 

0 0 M 1 0 

0 0 0 0 

M 1 0 0 0 

0 0 0 0 \ / 

V+ 

7® 

0 0 0 0 

0 0 0 - M :  

0 0 0 0 

0 M 2 0 0 

R(v),  

Me0 ~. 
where M 1 = 0 Md] lS a 2N G x 2N G matrix and 

(0) 
M 2 = Mu is a 2N G x N G matrix. D is a symmetric 

operator with respect to the underlying real structure on ~ .  
The Z2-grading is given by 

F = 7 ® (I 2 (911 (9 (-I 2) (9 (-I2)) ® ING. 

We will take the vector bundle ~ to be ~.  The unitary 

gauge group of ~ is Map(Z,U(1) x SU(2)). The Hilbert 
space ~ @et ~ is the same as ~ .  A connection on ~ is 

given by a skew element p of f~l(~). A computation gives 

that x(p) can be written as an operator on ~ in the form 

x(p) (v )  = 

A®IN. 0 i(~t-1)y®Mt t i(;~7®Mt t 

0 A@I~o 0 0 

i{Orl)y®M, 0 A'®ING .W.®ISG V 

iO27®Mt 0 W®lso -A'@ INo 

t o o o o 
+ 

0 -i02¥@M2 

0 i(~,- 1 }¥®M 2 

o 01  
i~a®M2V q(~rl!  ~/®Mz R(v}. 

o : ] 
0 

A' -W*) 
A is a U(1) gauge field, is an SU(2) gauge field 

W -A' 

and O = [~1/is a Higgs doublet with covariant derivative 

DO dO + A'-A -W* = . The image x(0) can be 
W -A'-A 1 

written as an operator on % in the form 

x(0)(v) = S v + T 7 R(v), where S is a 4x4 self-adjoint 

matrix of operators with 
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S l l = F A ® I N G  + x ®  IN G+ ( I ' I cb l2 )® Ml tM 1 

$22 = F A ® ING+ X ® ING- (1- I~12) ® M:M22 

, I0  
~S,3 S , 3 ] / S 3 3  $341----F( wA' ~WA~ 1 ® ING+ X t01 )® ING + 

2 10 I/2 (I- I~l ){0 i)  @ (MIMI'  - M2M2') + 

(Yy, Y y ) ®  [MIMI* + M2M2*] 

S = i(D¢) T ® MI 1 / 3 
S41] 

and T is a 4x4 antisymmetric matrix of operators with 

i T42 , -  ( ? ~ ) D ~ ® M 2 "  

Here X, X', Y and Y' are auxiliary scalar fields. 

In order to provide the color, we will add an auxiliary 

algebra ~ = C~(Z) (B C°(Z) and a left B-module 

~" = C~(Z) ~B C~(Z) ~ C~(Z) ~B C~°(Z) = ~3  f ,  with 

[[1,1) 0 0 
f = [  0 {0,1} 0 | .  The gauge group of ~" is 

0 0 {0,1}1 

Map(Z,U(1) x U(3)). Let us write the Hilbert space 

= L2(S) ® ((I; 2 @ ~ EB (E 2 ~ ~2) ® ~NG as 

% =%1 EB %2 • ~ 3  $ ~4" Wewilllet ~ actonthe 

right on % 1' ~ 3 and % 4, and on the left on ~ 2" The 

® ING, and the action on ~ 2  will be by g~[1 ® IN G- We 

will then take the physical fermion space to be 

( ~  I®B~ ") • (~*  ® n ~ 2 )  • (~3  ®B ~ )  • ( ~ 4  

This has the effect of addlng the color to the quarks. 

A connection on ~: will give rise to a U(1) gauge field 

and a U(3) gauge field. The total gauge group is now U(1) 

x SU(2) x U(1) x U(3). In order to reduce this to U(1) x 

SU(2) x SU(3), let us denote the U(1) part of  the 

connection on ~ by - Y. Let us require that the U(1) part of 

the connection on ~" be - Y, and that the trace of the U(3) 

part of the connection on IY be Y. Upon computing the 

action as in section HI, we obmm a Euclidean version of the 

standard model with Y as the hypercharge generator. We 

will discuss the possible relations among the coupling 

constants in section VI. 

When written in Minkowski space, there are some slight 

differences due to the different properties of charge 
conjugation. Using the same matrices C and ¥ as above, 

when we rotate m a (+,-,-,-) Minkowski space the charge 

conjugation operator becomes R(v) -- TOC-lv, which 

changes chirality. We will again take 

= C'(Z)  ® (¢ • H) and 

= L2(S) ~ (~2 ~ (E ~ (~2 ~ (E2) O (E NG, with the 

same action of et on %. The operator D will be given by 

D(v) = (~r ® (I 2 ~ I 1 ~ 12 ~ 12) ® ING ) v + 



44 A. Connes, J. Lott / Particle models and noncommutative geometry 

iT@ 

0 0 M t 0 

0 0 0 0 

M 1 0 0 0 

~ 0 0 0 0 

v+  

iT@ 

0 0 0 0 

0 0 0 M T 

0 0 0 0 

0 M2 0 0 

R(v). 

(Our pure Dirac operator satisfies El 2 = - 302 + 3j2.) The 

12-grading will be given by 

I" = T ®  (I 2 @ (-11) @ (-I2) (B (-I2)) ® ING. Of the 

various factors of %, the first (1;2 factor corresponds to 
(eR,dR), the ~ factor corresponds to uR e, the second (!:2 

factor corresponds to (eL,d L) and the third ~ 2 factor 

corresponds to (VL,UL). The rest of the discussion extends 

straightforwardly to Minkowski space. We will make the 
physical fermions chiral by requiring ~ = V. 

(Spin(4) - SU(2) x SU(2)) ÷ U(2,~-I) ÷ SL(2,~-I). The 

spinor bundle S has fiber ~'I 2, and we will take the Clifford 

algebra to act on the right. Left multiplication by i defines a 
complex structure on ~I 2, and the operator Lj of left 

multiplication by j then defines charge conjugation. Lj is 

complex-antilinear, and because the ehirality operator y is 

1 

ordinary spacetime geometry is then given by 

Ct 2 = C**(Z) (a real algebra), ~ 2  = L2(S) with the right 

Ct2 action, 

0 ~o+i~1 + j 3 2 + k 3 3  
D2 = - 30+ i31 +j  32+ k 33 0 

(a real-symmetric operator acting on the right) and F 2 = T. 

Over a point, we will take the algebra to be 

Ct 1 = ~ ~9 ]H, where we will think of • = ]R ~ R i as a 

subalgebra of ]H. The (real) Hilbert space will be 

1 = (]H2 • IH 1 • ~-I 2 • ]H 2) NG with the action of 

(f,q) e ~t 1 given by 

As with the previous models, it is possible to see our 

noncommutative spacetime geometry as the product of an 

ordinary spacetime geometry and the geometry over a point. 

We will do this for the electroweak geometry, for which it 

is convenient to use quaternions throughout and take tensor 

products over the quaternions. In the Euclidean case we 

use the fact that the spinor representation of Spin(4) is 

quatemionic, that is, the representation commutes with the 

generators of a quaternion algebra. This can be seen by 

noting that the double coveting of the embeddings 

f I  0 0 0 1 
f l  I 0 0 

(f,q) v =  ( 0 q l  2 O ® ING )v .  The relation 

0 0 q I 2 ]  

between this quaternionic description of the action of the 

algebra and the complex description is given by a change of 

basis, using the identity 

SO(4) ÷ SO(5) ÷ SO(5,1) is 
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a,+ia,+j&t+kfir 0 

0 a,+ia,+j~,+k~, 
1. 

The operator Dl is 

Z= 
-M,r+iMta M2~+iM21 

MIR+~&I - Mzr+ i Mia ’ 

Here MIR and MlI are the real and imaginary parts of Ml, 

and similarly for M2. 

WewilltakeI’ltobe 

Dl takes its particular form because it anticommutes with 

69 INGs which k the 

\ 
0 0 0 iI2/ 

translation of the fact that in the complex description D acts 

complex linearly on the down quarks and complex- 

antilinearly on the up quarks, and commutes with 

which is the translation of the 

fact that D does not mix the up and down quarks. 

The product geometry is now given by 

1~ the Minkowski case one can Motm a similar 

construction using the fact that with signatme (+,-,-,-), the 

spinor representation is again qmuemio&. Thiacanbe 

seen by noting that the double covering of the en&&l&a 

SO(3,l) + so(4.1) + SO(5,l) is 

(Spin(3.1) = sL(2.a)) + u(l.l,E) 9 s~(2,H ). ate 

spinor bundle S again has fiber H2. with the Cliff&d 

algebraactingontheright. Leftmultiphcationhyidefinea 
a complex suucmre on lE12, and the operamr Lj of left 

multiplication by j defines charge conjugation, a compIex- 

antilinearopemtor. The(antisymmeulc)chimli~opemtory 

is right multiplication by i, which commutes with charge 

conjugation. The ordinary spacetime geometry is then 

given by 

Q2 = c”(Z) (a real algebra), %2 = L*(S) with the right Cl2 

ZtCtiOIl, 

(a real operator acting on the right) and r2 = y. 

intheEucli&ancase,andwetakeDl= 

/iI 0 0 0 \ 

rl = 

is given by 



46 A. Connes, J. Lott / Particle models and noncommutative geometry 

ea =e~ I ® ~2,~ =~I ®~ ~;2, 

D=D 10 r2+I® D2andr=r I ® F 2. 

V I .  D i s c u s s i o n  

When one considers the renormalizability of our models, 

it will be important to know how restricted our actions are. 

First, it is possible that there are other operator-theoretically 

defined bosonic actions which reproduce the Yang-Mills 

action in the ordinary case. We will only consider here the 

simplest possibility, based on the Dixmier trace, as given in 

section II, (13). One can then consider two possibilities. 

The first uses the pure Dixmier trace to define the action, as 
in II (13). The second uses the fact that one can break I V 

into its various gauge-invariant pieces. That is, if { Pi} are 

projections from ~ (~ @ Ct ~ ) to itself which satisfy 

Pi(uTu "1) = Pi(T) for all u ¢ q.I, and T e B(C ®Ct~), then 

there is a gauge-invariant action given by 

I - Z c i Tra)( (Pi(Tt(0)))2 Dv'2k) for arbitrary constants 

{ci}. 

Let us illustrate this for the standard model of section V. 

Even if, to give the first possibility, we use the pure 

Dixmier trace, there is an arbitrary constant in front. For 

the standard model there are two distinct connections, 

coming from ~ and ~, and two unrelated Hilbert spaces 

corresponding to the leptons and quarks. There is no 

reason why the four ensuing Dixmier traces should be 

related, and so we have four arbitrary constants. This leads 

to one relation among the masses and coupling cons'(ants. 

In the limit in which the other ferrnion masses are negligible 

compared to the top quark mass, we find that the relation 

becomes that the Higgs mass is 2 I/2 times the top mass. 

On the other hand, with the second possibility we find the 

same amount of arbitrariness for the constants as in the 

usual standard model. 

obtained from a pure constant times the Dixmier trace is 

singled out among others as the restriction of an action with 

a much larger and simple invariance group of unitary 

operators. 

We should stress two unsatisfactory features of our 

version of the standard model. The first is the need to relate 

the various U(1) factors in order to get the right gauge 

group and hypercharge assignments. The second has to do 

with the different role played by the ~ algebra and the 

chromodynamics sector. There may be some hint to the 

meaning of this from looking at what happens over a point 

in ordinary spacetime. There the role of the ~ algebra can 

be seen as a change of the ground ring ~ to ~ e ~ ,  which is 

well understood as a feature of Kasparov's bivariant KK 

theory [Ka]. 

Let us note that as all of the fermion representations for 

our models arise from representations of algebras, the 

fermions must be in fundamental representations of the 

gauge groups. Thus it is impossible to get GUTs by our 

methods. We also need nonsimple gauge groups in order 

to have Higgs fields. 

In conclusion, one way to look at this paper is the 

following. In the same way that Minkowski space arises 

naturally from Maxwelrs theory, we look for the 

modification of spacetime arising from the electrowcak 

unification. We want to find a theory on a (possibly) 

noncommutative spacctime which is comparable in 

simplicity to that of electrodynamics on an ordinary 

spacetime. Our noncommutative spacetime geometry can be 

considered as phenomenological, in that it is obtained 

unambiguously from the phenomenological action of the 

standard model. 

If it turns out that the mass relation is satisfied, it might 

indicate that our action arises from a more unified operator- 

theoretic action. One could speculate that the special action 
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