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Notation : M a closed (= compact bound-

aryless) orientable 3-dimensional manifold

Conjecture. (Poincaré, 1904)

If M is simply connected then it is diffeomor-

phic to the three-sphere S3.



Extension to non-simply-connnected case

Thurston’s “Geometrization Conjecture”

Motivation : Recall that any closed surface

carries a Riemannian metric of constant cur-

vature 1, 0, or −1.

Question : Does every closed 3-manifold

carry a constant curvature metric?

Answer : No.



Geometrization Conjecture (rough version)

Conjecture. (Thurston, 1970’s) M can be

canonically cut into pieces, each of which car-

ries one of eight magic geometries.

Picture :

The eight magic geometries :

1. Constant curvature 0

2. Constant curvature 1

3. Constant curvature −1

etc.



Fact : Geometrization =⇒ Poincaré

More details in John Morgan’s lectures.



Analytic approach to Geometrization Con-

jecture

Start with an arbitrary Riemannian metric g0
on M .

Evolve g0 so that as time goes on, one starts

to “see” M ’s geometric decomposition.



Geometric Flow

A prescribed 1-parameter family of metrics g(t),

with g(0) = g0. We want it to improve the

original metric.

Ricci flow :

∂gij

∂t
= − 2 Rij.

Introduced by Hamilton in 1982.

Its properties will be explained by Ben Chow.

Here Rij denotes the Ricci tensor of g(t).



Somewhat like the heat equation

∂f

∂t
= ∇2f,

except nonlinear.

∂gij

∂t
= − 2 Rij.

Heat equation evolves a function.

Ricci flow evolves a Riemannian metric.

Recall : heat flow evolves an initial function f0
towards a constant function.

Hope : the Ricci flow will evolve the metric g0
so that we see the geometrization decomposi-
tion.

This works for surfaces!



Examples of Ricci flow solutions

1. 3-torus : g(t) = gT3 for all t (flat metric)

2. 3-sphere : g(t) = r2(t) gS3,

r2(t) = −4t for all t < 0.



3. hyperbolic 3-manifold : g(t) = r2(t) ghyp,

r2(t) = r20 + 4t for all t ≥ 0.

4. shrinking cylinder : g(t) = r2(t)gS2 + gR,

r2(t) = −2t for all t < 0.



How to prove the Poincaré Conjecture

1. Start with simply-connected M . Put any

Riemannian metric on it.

Run Ricci flow. What can happen?



(Overly) optimistic hope :

Maybe the solution shrinks to a point, and get

rounder as it shrinks. If so, M has a metric of

constant positive sectional curvature.

But M is simply connected, so then it must

be topologically a 3-sphere!

Theorem. (Hamilton, 1982) This works if the

initial metric has positive Ricci curvature.

But what if it doesn’t?



With a general initial metric

New problem : the flow could go singular be-

fore it can shrink to a point. For example,

Neckpinch :

What to do now?



Idea (Hamilton) : Do surgery on a neckpinch.

Then continue the flow. If more neckpinches

occur, do the same.



Basic problem : How do we know that the

singularities are actually caused by neckpinches?

Solved by Perelman (2002).



Outline of an argument to prove the Poincaré

conjecture

1. Start with M a simply-connected closed

3-manifold.

2. Put an arbitrary Riemannian metric g0 on

M .

3. Claim (Perelman II) :

There is a well-defined Ricci-flow-with-surgery.

4. Run flow up to first singularity time (if there

is one).

a. First case : Entire solution disappears.



Claim (Perelman II) :

If an entire solution disappears then the man-

ifold is diffeomorphic to

(i) S3/Γ (with Γ a finite subgroup of SO(4)

acting freely on S3), or

(ii) S1 × S2, or

(iii) (S1 × S2)/Z2.

b. Next case : If the entire solution doesn’t

disappear, say Ω is what’s left at the singular

time.



Form a new manifold M ′ by surgering out

the horns in Ω.

Note : M ′ may be disconnected. Flow to next

singularity time.



Remove high-curvature regions by surgering

out the horns and by throwing away iso-

lated components.

Continue.



5. Claim (Perelman III, Colding-Minicozzi)

After a finite time, there’s nothing left. The
entire solution went extinct.

Note : this uses the assumption that the orig-
inal manifold was simply connected.

Will be explained by Toby Colding.



6. How to reconstruct the original manifold?

Pieces that went extinct, or were thrown away,
were each diffeomorphic to

S3/Γ, S1 × S2 or (S1 × S2)/Z2.

Going from after a surgery to before a surgery
amounts to performing connected sums.

(Possibly with some new S1×S2’s and RP3’s).



7. Conclusion

The original manifold M is diffeomorphic to

a connected sum :

(S3/Γ1)# . . .#(S3/Γk)#(S1×S2)# . . .#(S1×S2)

(Here (S1 × S2)/Z2 = RP3#RP3.) By van

Kampen’s theorem,

π1(M) = Γ1 ? . . . ? Γk ? Z ? . . . ? Z.

But M is simply connected! So each Γi is triv-

ial and there are no S1 × S2 factors. Then

M = S3# . . .#S3 = S3.

This would prove the Poincaré Conjecture!



What if the starting manifold is not simply-

connected?

The solution g(t) could go on for all time t.

(Example : manifolds with constant negative

sectional curvature.)

Shrink by a factor of t :

ĝ(t) =
g(t)

t
.



Claim (Perelman II) : For large t, Mt de-

composes into two pieces

Mt = Mthick ∪Mthin

(each possibly empty), where

a. The metric ĝ on Mthick is close to constant

sectional curvature −1
4. The interior of Mthick

admits a complete finite-volume metric of

constant negative sectional curvature.

b. Mthin is a graph manifold. These are

known to have a “geometric” decomposition.

c. The gluing of Mthick and Mthin is done along

incompressible 2-dimensional tori.



Decomposition of M :

This would prove the Geometrization Con-

jecture!

Important earlier case : when there are no

singularities and supM |Riem(gt)| = O(t−1)

(Hamilton, 1999).



Back to claims :

Claim (Perelman II) :

There is a well-defined Ricci-flow-with-surgery.

Two statements here :

1. We know how to do surgery if we encounter

a singularity.

2. The surgery times do not accumulate.

How do we do surgery if we encounter a

singularity?

Fact : Singularities are caused by curvature

blowup.



If the solution exists on the time interval [0, T ),

but no further, then

lim
t→T−

sup
M
|Riem(gt)| = ∞.

(Here |Riem| denotes the largest sectional cur-

vature at a point, in absolute value.)

To do surgery, we need to know that singular-

ities are caused by tiny necks collapsing.

How do we know that this is the case?



Rescaling argument

Choose a sequence of times ti and points xi in

M so that

1. limi→∞ ti = T .

2. limi→∞ |Riem(xi, ti)| = ∞.



Blowup

Zoom in to the spacetime point (xi, ti).

Define ri > 0 by r−2
i = |Riem(xi, ti)|.

(The intrinsic scale at the point (xi, ti).)

Note limi→∞ ri = 0.

Spatially expand M by a factor r−1
i so that

|Riem(xi, ti)| becomes 1.



Fact : If M is spatially expanded by a factor

of r−1 then time has to be expanded by r−2,

in order to still have a Ricci flow solution.

Also shift time so that the old ti-time becomes

the new 0-time.



Get a sequence of Ricci flow solutions gi(t) on

M , each centered at a spacetime point (xi,0).

gi(x, t) =
1

r2i
g

(
x,

t− ti

r2i

)
.

The new Ricci flow solution (M, gi) is defined

on the time interval
[
− ti

r2i
,0
]
.

Its curvature at (xi,0) has |Riem(xi,0)| = 1.



Idea : Take a “convergent subsequence” of

the Ricci flow solutions (Mi, gi).

Call limit Ricci flow solution (M∞, g∞) (if it

exists).

The original time interval [0, T ) was expanded

in length by the factors r−2
i , so (M∞, g∞) exists

on an infinite time interval (−∞,0].

“Ancient solution”

Very special type of Ricci flow solution!

If we can find a near-cylinder S2 × [L,−L] in

(M∞, g∞(0)) then there were tiny necks in the

original solution near the (xi, ti)’s and we’re in

business.

With a bit more argument, get that any high-

curvature region in the original solution is mod-

eled by a rescaled chunk of an ancient solution.



Two problems :

1. Why can we take a convergent subsequence

of the Ricci flow solutions (Mi, gi)’s?

2. Even if we can, why is there a near-cylinder

in (M∞, g∞(0))?



Why can we take a convergent subsequence

of the Ricci flow solutions (Mi, gi)?

We know that |Riem(xi,0)| = 1 for the so-

lution (Mi, gi). Want to take a pointed limit,

i.e. so that limi→∞ xi = x∞ in some sense.

Need two things to take a convergent subse-

quence of Ricci flow solutions (Cheeger, Hamil-

ton)



1. Need to know that the curvature stays uni-

formly bounded.

Given r > 0 and t, need a constant Kr,t so

that

|Riem(x, t)| ≤ Kr,t

for all x in the time-t ball of radius r around

xi, for all i.



2. Need to know that the sequence of Ricci

flow solutions doesn’t “collapse”,

i.e. that it stays uniformly 3-dimensional.

It’s enough to have a uniform lower bound on

the volume of the 1-ball around xi at time zero.

I.e.

vol(B1(xi)) ≥ v0 > 0

for all i.



We’ll get the curvature bounds by choosing the

blowup points (xi, ti) cleverly.

How to get lower volume bound?

Even if we can do this, why is there a near-

cylinder in (M∞, g∞)?

Bad news possibility : R× cigar soliton

A particular ancient solution, which has noth-

ing like a cylinder in it.

If this appears in a blowup limit then we’re

in trouble.

This was the pre-Perelman status, as devel-

oped by Hamilton and others.



Perelman’s first big innovation in Ricci flow :

No Local Collapsing Theorem

Say we have a Ricci flow solution on a finite

time interval [0, T ).

The theorem says that at a spacetime point

(x, t), the solution looks noncollapsed at the

intrinsic scale of the spacetime point.

(Recall : intrinsic scale is |Riem(x, t)|−1/2.)



At a spacetime point (x, t), the solution looks

noncollapsed at the intrinsic scale of the

spacetime point.

More precisely, given the Ricci flow solution on

the interval [0, T ) and a scale ρ > 0, we can find

a number κ > 0 so that the following holds:



Suppose that a metric ball B in some time slice

has radius r (less than ρ). If

|Riem| ≤ r−2

on B then

vol(B) ≥ κ r3.

Essentially scale-invariant, so it passes to a

blowup limit!



In short,

Local curvature bound =⇒ local lower bound

on volumes of balls

Of course, this is a statement about Ricci flow

solutions.

With the no local collapsing theorem, we

can take blowup limits. Furthermore, we won’t

get R× cigar soliton as a limit.

Still need to show that the blowup limit

actually has a near-cylinder in it (if it’s non-

compact).

I.e. have to understand “κ-noncollapsed an-

cient solutions”.



How to prove No Local Collapsing Theo-

rem :

Find some “functional” I(g) of metrics g with

the following two properties :

1. If g is “locally collapsed” somewhere then

I(g) is very small.

2. If g(t) is a Ricci flow solution then I(g(t))

is nondecreasing in t.

If we can find I then we’re done!



Not at all clear that there is such a functional.

Perelman found two :

1. Entropy (I.1)

2. Reduced volume (I.7).

Next time, we’ll start on the entropy func-

tional.

But we’ll actually prove the No Local Collaps-

ing Theorem using the reduced volume.


