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Outline

I. Background

II. Approach

III. Results about initial geometry

IV. Results about future geometry

V. Monotonic quantities



The setup

Suppose that we have a cosmological spacetime M, i.e. it is globally hyperbolic with a
compact Cauchy hypersurface.

I’m interested in expanding vacuum spacetimes.

By Hawking’s singularity theorem, there is a past singularity. Two basic questions:

1. What is the behavior as one approaches the past singularity?

2. What is the future behavior?



Motivation

The physical relevance of looking at vacuum spacetimes: under some assumptions,
there are heuristic arguments that for the behavior near an initial singularity, matter
doesn’t matter.

There are some strong results about past and future behavior if one assumes
continuous symmetries (Isenberg, Moncrief,...).

These would include spatial homogeneity, T 2-symmetry or U(1)-symmetry.

There are fewer results without any symmetry assumptions.

For concreteness, in this talk I will assume a 3+1 dimensional spacetime, with compact
spatial slices. Some of the results work in any dimension, and for noncompact spatial
slices.



Relevant example 1

A Milne spacetime is the interior of a forward lightcone in R3,1, quotiented by a discrete
subgroup of O+(3, 1).

It is foliated by Riemannian 3-manifolds of constant negative curvature.

The metric is g = −dt2 + t2hhyp .



Relevant example 2

The Kasner spacetimes live on (0,∞)× T 3

with metric
g = −dt2 + t2p1 dx2 + t2p2 dy2 + t2p3 dz2.

Here
p1 + p2 + p3 = p2

1 + p2
2 + p2

3 = 1.



BKL conjectures

BKL conjectures about generic initial singularities (1970):

1. The evolution at different spatial points asymptotically decouples.

2. For a given spatial point, the asymptotic evolution is governed by the ODE of a
spatially homogeneous vacuum spacetime of Bianchi type VIII or IX.

Are the conjectures right? Numerics indicate that there is something correct about
them.

Some recent related preprints:

“Stable Big Bang formation for Einstein’s equations: The complete sub-critical regime”
by Fournodavlos, Rodnianski and Speck

“On the geometry of silent and anisotropic big bang singularities” by Ringstrom



Mixmaster spacetimes

Generic spatially homogeneous vacuum spacetimes of Bianchi type VIII or IX have a
chaotic behavior, with long stretches of Kasner-like geometry, punctuated by jumps
between them.



Kasner-like regions

In particular, the BKL conjectures predict the existence of many regions of Kasner-like
geometry near a generic initial singularity.

I will address a slightly different question:

What are geometric properties that characterize the existence or nonexistence of
Kasner-like regions as one approaches the initial singularity?

We find that this is governed by the behavior of the spatial volume density.



Approach

The ingredients:

I A way to rescale a vacuum spacetime, that allows one to consider a blowup limit.
I A monotonicity result.
I A way to take a convergent subsequence of a sequence of vacuum spacetimes.

In combination, one can use these features to prove results about geometric
asymptotics of a spacetime by contradiction.

One identifies a class of putative target spacetimes and assumes that some sequence
of blowup rescalings of the given vacuum spacetime stays away from the target class.

One takes a convergent subsequence of the rescalings and uses the monotonicity
result to show that the limit does in fact lie in the target class, thereby obtaining a
contradiction.



Crushing singularity

We assume that there is a crushing singularity, meaning that in the past there is a
sequence of disjoint compact spatial Cauchy hypersurfaces whose mean curvatures
approach −∞ uniformly.

If there is a crushing singularity then there is a constant mean curvature (CMC) foliation
in the past by compact hypersurfaces, whose mean curvatures H approach −∞.

Define the Hubble time by t = − 3
H . Then t → 0 corresponds to approaching the

singularity.



The spacetime is diffeomorphic to (0, t0)× X , where X is a compact three-dimensional
manifold.

Using the foliation, one can write the metric as

g = −L2dt2 + h(t),

where L = L(t) is a function on X and h(t) is a Riemannian metric on X . Let K (t)
denote the second fundamental form.



Rescaling

g = −L2dt2 + h(t)

Given s > 0, put
gs = − L2(su) du2 + s−2h(su).

It is isometric to s−2g, and so is also a vacuum solution, with Hubble time u. Hence we
put

Ls(u) =L(su),

hs(u) =s−2h(su),

Ks(u) =s−1K (su).

Taking s → 0 corresponds to performing a blowup near the initial singularity.

Note: we will take blowup limits of vacuum spacetimes, and not just spatial slices.



Monotonicity

A remarkable monotonicity result of Fischer-Moncrief and Anderson:

d
dt

(
t−3 vol(X , h(t))

)
= − t−2

∫
X

L|K 0|2 dvolh,

where K 0 is the traceless second fundamental form.

In particular, t−3 vol(X , h(t)) is nonincreasing in t . It is constant in t only for Milne
spacetimes.

This gives rise to the intuition that for large time, the “noncollapsing” part of the
spacetime should approach a Milne solution.

Because t−3 vol(X , h(t)) is bounded for large t , it is useful for understanding the future
behavior.

To understand the past behavior, we want a quantity that is nondecreasing in t .



Monotonicity

Claim:
d
dt

(
t−1 vol(X , h(t))

)
= −

1
3

∫
X

LR dvolh,

where R is the spatial scalar curvature.

Compare with
d
dt

(
t−3 vol(X , h(t))

)
= − t−2

∫
X

L|K 0|2 dvolh .

In particular, if R ≤ 0 then t−1 vol(X , h(t)) is nondecreasing in t , i.e. can only decrease
as t → 0.

If R ≤ 0 and the three-manifold X is aspherical (i.e. has a contractible universal cover)
then t−1 vol(X , h(t)) is constant in t only for Kasner spacetimes.

In fact, there is a pointwise monotonicity statement:

If R ≤ 0 then for any x ∈ X , the spatial volume density t−1 dvolh(t)(x) is
nondecreasing in t .



Convergent subsequences

Put e0 = 1
L
∂
∂t . Let {ei}3

i=1 be an orthonormal basis at a point for e⊥0 . Put

|Rm |T =

√√√√√ 3∑
α,β,γ,δ=0

R2
αβγδ .

Definition
A CMC vacuum solution is type-I if |Rm |T ≤ Ct−2 as t → 0.

This is a scale-invariant condition. I don’t know any crushing singularities that are not
type-I.

Theorem
(Anderson,...) Let {gi}∞i=1 be a sequence of type-I CMC vacuum solutions (with the
same C), defined on spacetimes (0, t0)× Xi , where Xi is equipped with a basepoint xi .

Then a subsequence converges in the (pointed) weak W 2,p and norm C1,α-topologies
to a type-I CMC vacuum solution.

The limit is defined on (0, t0)× X∞ for some 3-manifold (or étale groupoid) X∞ with a
basepoint x∞.



Milne asymptotics I

We first characterize when the past behavior is Milne-like.

Given a type-I CMC vacuum solution g defined on (0, t0)× X , choose a point x ∈ X .

Look at the spatial density dvolh(t)(x). That is, we are looking at the spatial density
along a curve toward the initial singularity that meets the hypersurfaces orthogonally.

The fastest that dvolh(t)(x) can decrease as t → 0 is O(t3).



Milne asymptotics II

LetM be the set of flat Milne spacetimes (0,∞)× H3/Γ.

Theorem
(L. 2021) If dvolh(t)(x) = O(t3) as t → 0 then the blowup rescalings gs approachM as
s → 0.

That is, the original spacetime becomes increasing Milne-like, as measured around the
point x , as one approaches the initial singularity.



Kasner asymptotics I

We now pass to Kasner asymptotics.

Choose x ∈ X . Look at the spatial density dvolh(t)(x).

If R ≤ 0 then the slowest that dvolh(t)(x) can decrease as t → 0 is O(t).

Definition
The CMC vacuum solution has asymptotically nonpositive spatial scalar curvature if
lim supt→0 supx∈X t2R(t , x) ≤ 0.

(I don’t know any crushing singularities that don’t have this property.)



Kasner asymptotics II

Definition
(Kasner-like solutions) K is the set of type-I CMC vacuum solutions with R = 0, L = 1

3
and |K |2 = H2.

Theorem
(L. 2021) Suppose that we have a type-I CMC vacuum solution. Suppose that it has
asymptotically nonpositive spatial scalar curvature.

If t−1 dvolh(t)(x) is (positively) bounded below as t → 0 then the blowup rescalings gs
approach K as s → 0.

Note: For a given x ∈ X , the rescalings gs approach K but they may not approach a
particular element of K.

Even if they do approach a particular element of K, that element could depend on x .



Mixmaster asymptotics

A Mixmaster solution (Bianchi VIII and Bianchi IX) is type-I with asymptotically
nonpositive spatial scalar curvature.

However, it cannot have t−1 dvolh(t)(x) bounded below as t → 0.

Otherwise it would approach Kasner-like geometry as t → 0, but this contradicts the
existence of the “jumps” between different Kasner spacetimes.

One finds that a Mixmaster solution almost has dvolh(t)(x) ∼ t . It decreases a bit
faster, but not much.

Theorem
(L. 2021) Suppose that we have a type-I CMC vacuum solution. Suppose that it has
asymptotically nonpositive spatial scalar curvature.

Suppose that for each β > 0, dvolh(t)(x) fails to be O
(
t1+β

)
as t → 0.

Put τ = log(1/t), so τ →∞ corresponds to approaching the singularity. Then as
τ →∞, the proportion of τ -time that the solution spends near K goes to one.



Particle horizons

The BKL conjectures say that near generic initial singularities, particle horizons form
and there is asymptotic decoupling between disjoint spatial regions as t → 0.

This is not true for all crushing singularities; it is true for Kasner spacetimes but not
Milne spacetimes.

It turns out that except for Milne spacetimes, approximate particle horizons always form
in type-I solutions.



Particle horizons II

Let J−(t , x) denote the causal past of a spacetime point (t , x).

Theorem
Given a type-I CMC vacuum solution on (0, t0)× X , either it is a Milne solution or the
following holds:

Given x1 ∈ X, N ∈ Z+ and Λ > 1, if t is small enough then there are points
x2, . . . , xN ∈ X so that for each i 6= j , the causal pasts J−(t , xi ) and J−(t , xj ) are
disjoint on the time interval [Λ−1t , t].

Note: A particle horizon corresponds to Λ =∞. For a Milne solution, even when
N = 2, there is a fixed upper bound on what one can take for Λ.

There is also a version of the theorem in which the points x2, . . . , xN are localized in an
arbitrary neighborhood of x1 in X .



Some questions

1. Is every crushing singularity type-I? Are the type-I solutions generic?

2. Does every crushing singularity have asymptotically nonpositive spatial scalar
curvature?

3. Can one characterize the Kasner-like solutions (type-I CMC vacuum solutions with
R = 0, L = 1

3 and |K |2 = H2), assuming complete time slices.

4. What is the most unstable direction coming from a Kasner solution? A Bianchi
type-II direction?

5. Can one detect the Bianchi type-II solutions that occur in the Mixmaster jumps?

6. Can one understand the self-similar vacuum solutions, i.e. those with a time-like
homothetic Killing field, say with complete CMC time slices of bounded curvature?

7. Are there new monotonic quantities?



Future behavior

Consider an expanding CMC vacuum solution, again with t = − 3
H , now defined for

t ∈ (t0,∞).

We can use similar methods to analyze its future asymptotics, using blowdown limits.



Model solutions

Here are the simply-connected expanding spatially homogeneous self-similar solutions
(that admit a spatially compact quotient):

1. The Milne spacetime is the interior of a forward lightcone in R3,1. It is foliated by
hyperboloids.

The metric is g = −dt2 + t2hhyp . It is scale-invariant.

2. The Bianchi-III flat spacetime is R times the interior of a forward lightcone in R2,1.



Model solutions

3. The Taub-flat spacetime is R2 times the interior of a forward lightcone in R1,1.

4. The Kasner spacetimes live on (0,∞)× R3, with metric

g = −dt2 + t2p1 dx2 + t2p2 dy2 + t2p3 dz2.

Here
p1 + p2 + p3 = p2

1 + p2
2 + p2

3 = 1.



Convergence result

Definition
A CMC vacuum solution is type-III if |Rm |T = O

(
t−2) as t →∞.

Theorem
(L. 2018) Suppose that we have a type-III CMC vacuum solution on a compact
aspherical three dimensional manifold X.

Suppose that the diameter of (X , h(t)) is O(t).

Then there are arbitrarily large future time intervals where the pullback of the solution
to the universal cover X̃ is modelled by one of the homogeneous self-similar solutions.

That is, on any compact subset of (0,∞)× X̃ , a sequence of blowdown rescalings
converges to one of the model geometries, in the weak W 2,p and norm
C1,α-topologies.

(If there is a lower volume bound vol(h(t)) ≥ const. t3 then the model space is the
Milne spacetime. This case is due to Mike Anderson.)



Collapsing

A new feature is that in future evolution, the spatial slices frequently collapse relative to
their curvature.

In our case, this is saying that limt→∞ t−3 vol(X , h(t)) = 0.

From work of Cheeger, Fukaya and Gromov, when a Riemannian manifold collapses
with bounded curvature, it acquires Killing vector fields in the limit.

The implication is that a collapsing limit of blowdown rescalings gs , as s →∞, has
continuous symmetries.

It can then be analyzed using monotonic quantities that are special to that symmetry
type.



Type-II solutions

There are expanding CMC vacuum solutions that do not satisfy the scale-invariant
curvature condition |Rm |T = O

(
t−2) as t →∞. (Homogeneous examples are due to

Hans Ringström.)

We can still do a blowdown analysis. (Rescale at points of large curvature so that the
rescaled curvature tensor there has norm one.)

Theorem
(L. 2018) Suppose that we have a CMC vacuum solution on a compact three
dimensional manifold X.

Suppose that the curvature is not O(t−2) in magnitude as t →∞.

Doing a blowdown analysis at points (xi , ti ) of spatially maximal curvature, with
ti →∞, one can extract a limit solution.

If the original solution has |K | = O
(
t−1) then the limit solution turns out to be flat.



An apparent paradox

In the blowdown analysis, we rescale so that |Rm(xi , ti )|T = 1. How can the limit be
flat?

The limit of the metrics exists in the weak W 2,p-topology, for 1 ≤ p <∞, and in the
norm C1,α-topology for 0 < α < 1.

This implies that the curvature tensors converge in the weak Lp-topology. The limit
could well be zero.

In effect, there are increasing curvature fluctuations that average out the curvature to
zero. The rescaled metrics do converge to a flat metric in the C1,α-topology.



3+1 decomposition

g = −L2dt2 + h(t).

Constraint equations:
R − |K |2 + H2 = 0.

∇i K i
j −∇j H = 0.

Evolution equations:
∂hij

∂t
= −2LKij .

∂Kij

∂t
= LHKij − 2Lhkl Kik Klj − L;ij + LRij .

Suppose now that we have a CMC spacetime. From the last two equations, one obtains

∂H
∂t

= −4hL + LH2 + LR.



Maximum principle

∂H
∂t

= −4hL + LH2 + LR.

If H = − 3
t , this becomes

4hL =
9
t2

(
L−

1
3

)
+ LR.

If R ≤ 0 then the weak maximum principle gives L ≥ 1
3 .

If there is a spacetime point (t , x) where L(t , x) = 1
3 then the strong maximum

principle says that L ≡ 1
3 on the time slice and R ≡ 0 on the time slice.

From the constraint equations, |K |2 = H2 on the time slice.



Global monotonicity

∂hij

∂t
= −2LKij .

As a pointwise statement,

∂t dvolh(t) = −LH dvolh(t) .

Suppose that the spatial slices X are compact.

d
dt

(
t−1 vol(X , h(t))

)
=− t−2 vol(X , h(t)) + t−1

∫
X

(−LH) dvolh(t)

=

∫
X

(−t−2 + 3t−2L) dvolh(t)

= 3t−2
∫

X

(
L−

1
3

)
dvolh(t)

=
1
3

∫
X

(4hL− LR) dvolh(t)

= −
1
3

∫
X

LR dvolh(t) .

If R ≤ 0 then t−1 vol(X , h(t)) is nondecreasing in t .



Local monotonicity

As a pointwise statement,

∂t dvolh(t) = −LH dvolh(t) .

Then

∂t

(
t−1 dvolh(t)

)
= −t−2 dvolh(t)−t−1LH dvolh(t) =

3
t2

(
L−

1
3

)
dvolh(t) .

If R ≤ 0 then from the weak maximum principle, L ≥ 1
3 . Hence t−1 dvolh(t) is

nondecreasing in t .

If t−1
1 dvolh(t1)(x) = t−1

2 dvolh(t2)(x) for some t1 < t2 then L(t , x) = 1
3 for t ∈ [t1, t2].

From before, using the strong maximum principle, R = 0, L = 1
3 and |K |2 = H2 on the

time interval. That is, the solution is Kasner-like on the time interval.


