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Topology and geometric flows in three dimensions

A geometric flow is a way of evolving a geometry on a manifold.
The hope is that as time goes on, the geometry converges to
something recognizable.

I’ll talk about two different geometric flows on a three
dimensional geometry, namely the Ricci flow and the Einstein
flow.

First, how do we understand three dimensional spaces?

In terms of homogeneous spaces.
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Locally homogeneous metric spaces

A metric space X is locally homogeneous if all x , y ∈ X , there
are neighbourhoods U and V of x and y and an isometric
isomorphism (U, x)→ (V , y).

The metric space X is globally homogeneous if for all x , y ∈ X ,
there is an isometric isomorphism φ : X → X that φ(x) = y .
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Locally homogeneous Riemannian manifolds

Any Riemannian manifold M gets a metric space structure.

Theorem
(Singer 1960) If M is a complete, simply connected Riemannian
manifold which is locally homogeneous, then M is globally
homogeneous.
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From “The Geometries of 3-Manifolds” by Peter Scott

We will say that a smooth manifold M admits a geometric
structure if M admits a complete, locally homogeneous
Riemannian metric.

It is a theorem of Singer that such a metric on a simply
connected manifold X must be homogeneous, i.e. the isometry
group of X must act transitively.

Thus we can regard the universal cover X of M, together with
its isometry group, as a geometry in the sense of Klein, and we
can sensibly say that M admits a geometric structure modelled
on X . Thurston has classified the 3-dimensional geometries
and there are eight of them.
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Three-dimensional Thurston geometries

S3, R3, H3

S2 × R, H2 × R

Nil, Sol, ˜SL(2,R)

These are all globally homogeneous.

Warning : Unlike in two dimensions, not every compact
three-dimensional manifold admits a geometric structure, i.e.
admits a locally homogeneous Riemannian metric.
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Geometrization conjecture

If M is a compact orientable 3-manifold then there is a way to
split M into canonical pieces, using certain embedded
2-spheres and 2-tori. (The collection of 2-spheres and 2-tori
could be empty.)

Conjecture (Thurston, 1982)

The ensuing pieces have geometric structures, i.e. admit locally
homogeneous metrics
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Cut along the 2-spheres and cap off the resulting pieces with
3-balls.

Cut along the 2-tori. The interiors of the ensuing pieces should
admit complete locally homogeneous metrics.
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Ricci flow approach to geometrization

Hamilton’s Ricci flow equation

dg
dt

= − 2 Ricg .

This is like a nonlinear heat equation for a Riemannian metric g.

The ordinary heat equation

df
dt

= 4f

acts on functions f on a fixed (compact connected) Riemannian
manifold M. It takes an initial function f0 and evolves it into
something homogeneous (i.e. constant).

Maybe the Ricci flow will evolve an initial Riemannian metric
into something homogeneous.
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Singularities in 3D Ricci flow

Some components may disappear, e.g. a round shrinking
3-sphere.
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Role of singularities

Singularities are good because we know that in general, we
have to cut along some 2-spheres to see the geometric pieces.

They are also problematic because they may cause lots of
topologically trivial surgeries. (Spitting out 3-spheres.)

Remark : the surgeries are done on 2-spheres, not 2-tori.
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Intuitive way to prove the geometrization conjecture
using Ricci flow

Step 1 : Show that one can perform surgery.

a. Show that singularities are only caused by components
disappearing or by 2-spheres pinching down.

b. Show that the surgery times do not accumulate.

Step 2 : Show that only a finite number of surgeries occur.

Step 3 : Show that after the singularities are over, as time
evolves, the locally homogeneous pieces in the Thurston
decomposition asymptotically appear.

(Relevant geometries : R3, H3, H2 × R, ˜SL(2,R), Sol, Nil.)
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Perelman’s work

Step 2 : Show that only a finite number of surgeries occur.

From Perelman’s first Ricci flow paper : Moreover, it can be
shown ... that the solution is smooth (if nonempty) from some
finite time on.

From Perelman’s second Ricci flow paper : This is a technical
paper, which is a continuation of [I]. Here we verify most of the
assertions, made in [I, §13]; the exceptions are ... the
smoothness of the solution from some time on, which turned
out to be unjustified, and, on the other hand, irrelevant for the
other conclusions.
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What Perelman actually showed

For any t , one can define a “thick-thin” decomposition of the
time-t manifold (assuming that it’s nonsingular). Then for large
but finite t , the following properties hold.

1. The interior of the thick part carries a complete finite-volume
hyperbolic metric. (This uses Ricci flow.)

2. The thin part is a “graph manifold”. (This doesn’t use Ricci
flow. Stated by Perelman, proofs by Shioya-Yamaguchi,
Morgan-Tian, Bessières-Besson-Boileau-Maillot-Porti and
Kleiner-L.)

3. The interface between the thick and thin parts consists of
“incompressible” 2-tori (Hamilton).

Graph manifolds were known to have a geometric
decomposition. Along with knowledge of the topological effects
of surgeries, this proved the geometrization conjecture.
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Is the intuitive picture correct?

Step 2, on the finiteness of the number of surgeries, was still
open.

Step 3 : Show that after the singularities are over, as time
evolves, the locally homogeneous pieces in the Thurston
decomposition asymptotically appear.

Perelman showed that this is true for the “thick” part. He
showed that its geometry is asymptotically hyperbolic. What
happens on the “thin” part was still open.

Remark : Answering these questions has no topological
implication. We already know that the geometrization
conjecture holds. Rather, they are analytic questions about the
Ricci flow.
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Finiteness of the number of surgeries

Theorem
(Bamler 2013) Starting from any compact Riemannian
3-manifold, Perelman’s Ricci-flow-with-surgery only encounters
a finite number of surgeries.

Furthermore, for large time t, if what’s left is nonempty then the
sectional curvatures decay like O(t−1).

To be more precise, there is a parameter in Perelman’s
Ricci-flow-with-surgery that determines the scale at which
surgery is performed.

The statement is that if this parameter is small enough (which
can always be achieved) then there is a finite number of
surgeries.
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Bounded curvature
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(Bamler 2013) Starting from any compact Riemannian
3-manifold, Perelman’s Ricci-flow-with-surgery only encounters
a finite number of surgeries. Furthermore, for large time t, if
what’s left is nonempty then the sectional curvatures decay like
O(t−1).

Relevance of the second statement :

In Ricci flow, the Riemannian metric has engineering dimension
length2 and time has engineering dimension length2.

So the scale-invariant time-t metric is ĝ(t) = g(t)
t .

The statement is that for large time, the rescaled metrics {ĝ(t)}
have uniformly bounded sectional curvatures.

This is good because we know lots about metrics with bounded
sectional curvature (Cheeger-Fukaya-Gromov).
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Ingredients of the proof

Bamler’s proof uses all of Perelman’s work, and more. Some of
the new ingredients :

1. Localizing Perelman’s estimates and applying them to local
covers of the manifold.

2. Use of minimal surfaces to control the geometry of the thin
part.

3. Use of minimal embedded 2-complexes.
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From Bamler’s result, to understand the long-time behavior of
the Ricci flow, it is enough to restrict to smooth Ricci flows.

The only case that we completely understand is when M admits
some hyperbolic metric. Then from Perelman’s work, for any
initial metric on M, as t →∞ the rescaled Riemannian metric
ĝ(t) approaches the metric on M of constant sectional
curvature − 1

4 .

Question : if M doesn’t admit a hyperbolic metric, what are the
candidate geometries for the long-time behavior?
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Quasistatic solutions

The static solutions of the Ricci flow equation

dg
dt

= − 2 Ricg

are Ricci-flat.

The solutions that are scale-invariant, ie. static up to rescaling,
are Einstein metrics: Ric = const.g.

The solutions that are self-similar, i.e. static up to rescaling and
diffeomorphisms are Ricci solitons : Ric = const.g + LV g.

Fact : On a compact 3-manifold, any self-similar solution has
constant sectional curvature.

Apparent paradox : What happens to the Ricci flow if our
3-manifold doesn’t admit a constant curvature metric?
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Nil geometry

Put NilZ =


1 a b

0 1 c
0 0 1

 : a,b, c ∈ Z

. Define NilR similarly.

Put M = NilR /NilZ. It is the total space of a nontrivial circle
bundle over T 2.

Run the Ricci flow. The base torus expands like O
(

t
1
6

)
. The

circle fibers shrink like O
(

t − 1
6

)
.

With the rescaled metric ĝ(t) = g(t)
t , (M, ĝ(t)) shrinks to a point.
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˜SL(2,R) geometry

Suppose that M is the unit tangent bundle of a hyperbolic
surface Σ.

Run the Ricci flow. The base surface expands like O
(

t
1
2

)
. The

fiber sizes are O
(
t0).

With the rescaled metric, (M, ĝ(t)) approaches the hyperbolic
surface Σ. As the fibers shrink, the local geometry of the total
space becomes more product-like.
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Is there a common pattern?

There is a common pattern, but to see it one must pass to the
universal cover. That is, we are looking at the Ricci flow on a
Thurston geometry of type R3,H3,H2 × R,Sol,Nil or S̃L2(R).

Proposition
(L. 2007) For any initial globally homogeneous metric on such a
Thurston geometry, there is a limiting (blowdown) Ricci flow
solution, which is an expanding soliton. There is one such
soliton for each homogeneity type. It is a universal attractor.

Ric +
1
2
LV g = − 1

2t
g.

A subtlety : the limit is in the pointed sense. The soliton metric
g is homogeneous but the vector field V need not be
homogeneous. Also, the homogeneity type may change in the
limit.
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The limiting solitons

Thurston type Expanding soliton

H3 4 t gH3

H2 × R or ˜SL(2,R) 2 t gH2 + gR

Sol e−2z dx2 + e2z dy2 + 4 t dz2

Nil
1

3t
1
3

(
dx +

1
2

ydz − 1
2

zdy
)2

+ t
1
3

(
dy2 + dz2

)
R3 gR3



A general convergence theorem

Theorem
(L. 2010) Suppose that (M,g(t)) is a Ricci flow on a compact
three-dimensional manifold, that exists for t ∈ [0,∞). Suppose
that the sectional curvatures are O

(
t−1) in magnitude, and the

diameter is O(
√

t). Then the pullback of the Ricci flow to M̃
approaches one of the homogeneous expanding solitons.
Remarks :

I By Bamler’s result, the sectional curvatures are always
O
(
t−1).

I The hypotheses imply that M admits a locally
homogeneous metric.

Conjecture
For a long-time 3D Ricci flow, the diameter is O(

√
t) if and only

if M admits a locally homogeneous metric.
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Idea of the proof

A dynamical systems approach :

1. There is a flow on the space of Ricci flows (with the given
geometric assumptions), coming from rescaling the time
parameter and the metric.

2. Compactify the space of Ricci flows. Under the rescaling, a
given Ricci flow solution may collapse to something lower
dimensional. Add these as new flows. (Ricci flows on étale
groupoids.)

3. Show that the possible limit points of an orbit are certain
expanding Ricci solitions. New monotonic quantities for Ricci
flows coupled to harmonic map flow and Yang-Mills flow
(extensions of the Feldman-Ilmanen-NiW+-functional).

4. Local stability results for certain expanding Ricci solitons
(due to Dan Knopf).



Idea of the proof

A dynamical systems approach :

1. There is a flow on the space of Ricci flows (with the given
geometric assumptions), coming from rescaling the time
parameter and the metric.

2. Compactify the space of Ricci flows. Under the rescaling, a
given Ricci flow solution may collapse to something lower
dimensional. Add these as new flows. (Ricci flows on étale
groupoids.)

3. Show that the possible limit points of an orbit are certain
expanding Ricci solitions. New monotonic quantities for Ricci
flows coupled to harmonic map flow and Yang-Mills flow
(extensions of the Feldman-Ilmanen-NiW+-functional).

4. Local stability results for certain expanding Ricci solitons
(due to Dan Knopf).



Idea of the proof

A dynamical systems approach :

1. There is a flow on the space of Ricci flows (with the given
geometric assumptions), coming from rescaling the time
parameter and the metric.

2. Compactify the space of Ricci flows. Under the rescaling, a
given Ricci flow solution may collapse to something lower
dimensional. Add these as new flows. (Ricci flows on étale
groupoids.)

3. Show that the possible limit points of an orbit are certain
expanding Ricci solitions. New monotonic quantities for Ricci
flows coupled to harmonic map flow and Yang-Mills flow
(extensions of the Feldman-Ilmanen-NiW+-functional).

4. Local stability results for certain expanding Ricci solitons
(due to Dan Knopf).



Idea of the proof

A dynamical systems approach :

1. There is a flow on the space of Ricci flows (with the given
geometric assumptions), coming from rescaling the time
parameter and the metric.

2. Compactify the space of Ricci flows. Under the rescaling, a
given Ricci flow solution may collapse to something lower
dimensional. Add these as new flows. (Ricci flows on étale
groupoids.)

3. Show that the possible limit points of an orbit are certain
expanding Ricci solitions. New monotonic quantities for Ricci
flows coupled to harmonic map flow and Yang-Mills flow
(extensions of the Feldman-Ilmanen-NiW+-functional).

4. Local stability results for certain expanding Ricci solitons
(due to Dan Knopf).



Long-time behavior

Homogeneous spaces and the geometrization conjecture

Geometrization conjecture and Ricci flow

Finiteness of the number of surgeries

Long-time behavior of Ricci flow

Einstein flow



The setup

I’m interested in expanding vacuum spacetimes. What is the
future behavior?

The spacetime is diffeomorphic to (0,∞)× X , where X is a
compact three-dimensional manifold.



The setup

I’m interested in expanding vacuum spacetimes. What is the
future behavior?

The spacetime is diffeomorphic to (0,∞)× X , where X is a
compact three-dimensional manifold.



Einstein equations

The spacetime has a Lorentzian metric g. The Einstein
equation of general relativity is

Rαβ −
1
2

Rgαβ + Λgαβ =
8πG
c4 Tαβ.

Here Rαβ is the Ricci tensor and R =
∑

α,β gαβRαβ is the scalar
curvature function.

I will make the following simplifications:

1. The cosmological constant vanishes, i.e. Λ = 0.

2. It’s a vacuum spacetime, i.e. Tαβ = 0.

Then the Einstein equation becomes

Rαβ −
1
2

Rgαβ = 0.
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Ricci-flat condition

Rαβ −
1
2

Rgαβ = 0.

Multiplying by the inverse metric gαβ and summing gives∑
α,β

gαβRαβ −
1
2

∑
α,β

Rgαβgαβ = 0,

or
(1− 1

2
· 4)R = 0.

Then the vacuum Einstein equation becomes

Rαβ = 0,

i.e. the Lorentzian metric g is Ricci-flat.
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The setup

I’m interested in expanding vacuum spacetimes. What is the
future behavior?

There has been lots of work on this, mostly under some
symmetry assumptions for the spatial slices (e.g. locally
homogeneous or T 2-symmetry). Are there more general
results?
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What is time?

Suppose that we have a foliation of the spacetime by compact
hypersurfaces.

We can compare nearby hypersurfaces using timelike
geodesics (that meet a given hypersurface orthogonally) and
talk about the expansion factor of their volume forms.

Let’s assume that along any given hypersurface, the expansion
factor is constant. This defines a constant mean curvature
(CMC) foliation.



What is time?

Suppose that we have a foliation of the spacetime by compact
hypersurfaces.

We can compare nearby hypersurfaces using timelike
geodesics (that meet a given hypersurface orthogonally) and
talk about the expansion factor of their volume forms.

Let’s assume that along any given hypersurface, the expansion
factor is constant. This defines a constant mean curvature
(CMC) foliation.



What is time?

Suppose that we have a foliation of the spacetime by compact
hypersurfaces.

We can compare nearby hypersurfaces using timelike
geodesics (that meet a given hypersurface orthogonally) and
talk about the expansion factor of their volume forms.

Let’s assume that along any given hypersurface, the expansion
factor is constant. This defines a constant mean curvature
(CMC) foliation.



Einstein flow

Using the foliation, the metric takes the form

g = −L2dt2 + h(t),

where L = L(t) is a function on X and h(t) is a Riemannian
metric on X .

The Ricci-flat condition on g becomes

∂hij

∂t
= −2LKij (3)

and
∂Kij

∂t
= LHKij − 2L

∑
k ,l

hklKikKlj − L;ij + LRij , (4)

along with certain time-independent “constraint” equations.
Here the mean curvature H =

∑
i,j hijKij is spatially constant.
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Monotonicity

With our conventions, expanding solutions have H < 0. There’s
a corresponding time parameter, the Hubble time t = − 3

H .

Theorem
(Fischer-Moncrief)

If (h(t),K (t),L(t)) is an expanding CMC Einstein flow on a
compact three-dimensional manifold X then t−3 vol(X ,h(t)) is
monotonically nonincreasing.

It is constant if and only if the Einstein flow describes a
compact quotient of the Milne universe, i.e.

g = −dt2 + t2hhyp.

The analogous statement in Ricci flow is that t−
3
2 vol(X ,h(t)) is

monotonically nonincreasing.
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Self-similar solutions

A Lorentzian metric g is self-similar if there’s a one-parameter
group of diffeomorphisms {φs} so that φ∗sg = ecsg, for some
c ∈ R.

On the infinitesimal level, this means that there is a
future-directed vector field X with LX g = cg. I’ll take c = 2.

This is the analog of an (expanding) Ricci soliton.
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Explicit solutions

Here are the simply-connected homogeneous self-similar
solutions (that admit a spatially compact quotient):

1. The Milne spacetime is the interior of a forward lightcone in
R3,1. It is foliated by hyperboloids.

The metric is g = −dt2 + t2hhyp. It is scale-invariant.
A spatially compact quotient is called a Löbell spacetime.

2. The Bianchi-III flat spacetime is R times the interior of a
forward lightcone in R2,1.
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2. The Bianchi-III flat spacetime is R times the interior of a
forward lightcone in R2,1.



Explicit solutions

Here are the simply-connected homogeneous self-similar
solutions (that admit a spatially compact quotient):

1. The Milne spacetime is the interior of a forward lightcone in
R3,1. It is foliated by hyperboloids.

The metric is g = −dt2 + t2hhyp. It is scale-invariant.
A spatially compact quotient is called a Löbell spacetime.

2. The Bianchi-III flat spacetime is R times the interior of a
forward lightcone in R2,1.



Explicit solutions

Here are the simply-connected homogeneous self-similar
solutions (that admit a spatially compact quotient):

1. The Milne spacetime is the interior of a forward lightcone in
R3,1. It is foliated by hyperboloids.

The metric is g = −dt2 + t2hhyp. It is scale-invariant.
A spatially compact quotient is called a Löbell spacetime.
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More explicit solutions

3. The Taub-flat spacetime is R2 times the interior of a forward
lightcone in R1,1.

4. The Kasner spacetimes live on (0,∞)× R3, with metric

g = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2.

Here
p1 + p2 + p3 = p2

1 + p2
2 + p2

3 = 1.
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Convergence result

The scale-invariant curvature condition is that ‖Rmg ‖ = O(t−2)
as t →∞. (This is the analog of a type-III solution in Ricci flow.)

Theorem
(L. 2017) Suppose that (h(t),K (t),L(t)) is an expanding CMC
Einstein flow on a compact three dimensional manifold X.
Suppose that the curvature is O(t−2) in magnitude, and the
diameter of (X ,h(t)) is O(t).
Then there are arbitrarily large future time intervals where the
pullback of the flow to the universal cover X̃ is modelled by one
of the homogeneous self-similar solutions.

(If there is a lower volume bound vol(h(t)) ≥ const. t3 then the
model space is the Milne spacetime. This case is due to Mike
Anderson.)
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Type-II solutions

Unlike in Ricci flow, there are expanding CMC Einstein flows
that do not satisfy the scale-invariant curvature condition
‖Rmg ‖ = O(t−2). (Homogeneous examples are due to Hans
Ringström.)

Then we can do a blowdown analysis, like for
type-IIb Ricci flow solutions. (Rescale at points of large
curvature so that the rescaled curvature tensor there has norm
one.)

Theorem
(L. 2017) Suppose that (h(t),K (t),L(t)) is an expanding CMC
Einstein flow on a compact three dimensional manifold X.
Suppose that the curvature is not O(t−2) in magnitude. Doing a
blowdown analysis at points (xi , ti) of spatially maximal
curvature, with ti →∞, one can extract a limit flow.

It turns out to be flat.
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An apparent paradox

In the blowdown analysis, we rescale so that ‖Rmg(xi , ti)‖ = 1.
How can the limit be flat?

The limit of the metrics exists in the weak W 2,p-topology, for
1 ≤ p <∞, and in the C1,α-topology for 0 < α < 1.

This implies that the curvature tensors converge in the weak
Lp-topology. The limit could well be zero.

In effect, there are increasing curvature fluctuations that
average out the curvature to zero. The rescaled metrics do
converge to a flat metric in the C1,α-topology.
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Conclusion

The expanding CMC Einstein flow has some similarities to the
Ricci flow.

But there are interesting differences.

Some Ricci flow techniques can be adapted to the Einstein flow.

But new techniques need to be developed.
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