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Some basics of differential geometry

M a smooth n-dimensional manifold with a

Riemannian metric g

m a point in M

TmM the tangent space at m.

Sectional curvature : To each 2-plane P ⊂
TmM , one assigns a number K(P ), its sectional

curvature.



Ricci curvature : an averaging of sectional cur-
vature.

Fix a unit-length vector v ∈ TmM .

Definition :

Ric(v,v) = (n−1)·(the average sectional curvature

of the 2-planes P containing v).

Fact : Ric(v,v) extends to a symmetric bi-
linear form on TmM , called the Ricci tensor.

Given K ∈ R, we say that M has Ricci curva-
ture bounded below by K if for all m ∈ M
and all v ∈ TmM ,

Ric(v,v) ≥ K g(v,v).



Question : Does it make sense to say that a
metric space (X, d) has ”Ricci curvature bounded
below by K”?

1. For simplicity, take K = 0.
2. For more simplicity, assume X is compact.

To get started, assume that X is a length
space, meaning that for all x0, x1 ∈ X,

d(x0, x1) = inf
γ
L(γ), where

γ : [0,1]→ X continuous , γ(0) = x0, γ(1) = x1

and

L(γ) = sup
J

sup
0=t0≤t1≤...≤tJ=1

J∑
j=1

d(γ(tj−1), γ(tj)).

Note : Any Riemannian manifold (M, g) has a
length space structure on the set of points M .



Empirical observation (Fukaya, Cheeger-Colding)
When dealing with Ricci curvature, it’s better
to consider “measured length spaces” (X, d, ν).

Here ν is a Borel probability measure on X.

If (M, g) is a compact Riemannian manifold,
canonical choice is ν = dvol

vol(M).

Rephrased Question : Is there a good no-
tion of a measured length space (X, d, ν)
having “nonnegative Ricci curvature”?

Rules of the game :

1. If (X, d, ν) =
(
M, g, dvol

vol(M)

)
, should get back

classical notion.

2. If {(Xi, di, νi)}∞i=1 have “nonnegative Ricci
curvature” and limi→∞(Xi, di, νi) = (X, d, ν)
then (X, d, ν) should have “nonnegative Ricci
curvature”.

3. Want nontrivial consequences.



Gromov-Hausdorff (GH) topology :

“Two metric spaces are GH-close if Mr. Ma-
goo can’t tell them apart.”

Definition : limi→∞(Xi, di) = (X, d) if there
are maps fi : Xi → X and a sequence εi → 0
such that

1. (Almost isometry) For all xi, x
′
i ∈ Xi,

|dX(fi(xi), fi(x
′
i))− dXi(xi, x

′
i)| ≤ εi.

2. (Almost surjective) For all x ∈ X and all i,
there is some xi ∈ Xi such that

dX(fi(xi), x) ≤ εi.

Note : Xi and X don’t have to look much alike.

Fact : If each Xi is a length space, so is X.



Measured Gromov-Hausdorff (MGH) topol-

ogy :

Definition. limi→∞(Xi, di, νi) = (X, d, ν) if

1. limi→∞(Xi, di) = (X, d) in the GH topology,

by means of Borel approximants fi : Xi → X,

and

2. limi→∞(fi)∗νi = ν in the weak-∗ topology.



Historical background :

For sectional curvature, there’s a notion of a

length space having “nonnegative Alexandrov

curvature”.

Properties :

1. If (X, d) = (M, g), get back classical no-

tion of nonnegative sectional curvature.

2. If {(Xi, di)}∞i=1 have nonnegative Alexan-

drov curvature and limi→∞(Xi, di) = (X, d) in

the GH topology then (X, d) has nonnegative

Alexandrov curvature.

3. Nontrivial consequences.

Obvious question : Is there something like this

for Ricci curvature?



Another motivation : Gromov precompact-
ness theorem

Given N ∈ Z+ and D > 0, have precompact-
ness of {(

M, g,
dvol

vol(M)

)}

in the MGH topology, where M ranges over
Riemannian manifolds with
1. dim(M) ≤ N ,
2. diam(M) ≤ D and
3. Ric(M) ≥ 0.

What are the limit spaces?
Generally not manifolds, but should have “non-
negative Ricci curvature”.
What are the smooth limit spaces? (Will
answer)



Optimal transport

For Riemannian manifolds, Otto-Villani and Cordoro-
Erausquin-McCann-Schmuckenschläger showed
that nonnegative Ricci curvature has some-
thing to do with “displacement convexity” of
certain functions on the Wasserstein space.

Idea of the sequel : To X is canonically asso-
ciated its Wasserstein space. Instead of look-
ing at the geometry of X directly, look at the
properties of its Wasserstein space.

Plan :

1. Look at certain “entropy” functions on the
Wasserstein space.

2. Consider optimal transport on general length
spaces.

3. Show that “convexity” of these entropy
functions on the Wasserstein space gives a good
notion of “nonnegative Ricci curvature”.



Notation

X a compact Hausdorff space.

P (X) = Borel probability measures on X, with

weak-∗ topology. Also a compact Haudorff

space.

U : [0,∞) → R a continuous convex function

with U(0) = 0.

Fix a background measure ν ∈ P (X).



“Negative entropy” of µ with respect to ν :

Uν(µ) =
∫
X
U(ρ(x)) dν(x) + U ′(∞) µs(X).

Here

µ = ρ ν + µs

is the Lebesgue decomposition of µ w.r.t. ν

and

U ′(∞) = lim
r→∞

U(r)

r
.

Uν(µ) measures nonuniformity of µ w.r.t. ν.

Minimized when µ = ν.

Proposition. a. Uν(µ) is lower-semicontinuous

with respect to (µ, ν) ∈ P (X)× P (X).

b. Uf∗ν(f∗µ) ≤ Uν(µ).



Effective dimension

N ∈ [1,∞] a new parameter (possibly infinite).

It turns out that there’s not a single notion of

“nonnegative Ricci curvature”, but rather a 1-

parameter family.

That is, for each N , there’s a notion of a space

having “nonnegative N-Ricci curvature”.

Here N is an effective dimension of the space,

and must be inputted.



Displacement convexity classes

Definition. (McCann) If N <∞ then DCN is
the set of such convex functions U so that the
function

λ→ λN U(λ−N)

is convex on (0,∞).

Definition. DC∞ is the set of such convex
functions U so that the function

λ→ eλ U(e−λ)

is convex on (−∞,∞).

Example

UN(r) =

Nr(1− r−1/N) if 1 < N <∞,
r log r if N =∞.

(If U = U∞ then corresponding functional is

Uν(µ) =


∫
X ρ log ρ dν if µ is a.c. w.r.t. ν,

∞ otherwise.)



Notions from optimal transport

(X, d) a compact metric space.

W2(µ0, µ1)2 = inf
{∫
X×X

d(x0, x1)2 dπ(x0, x1)
}
,

where

π ∈ P (X ×X), (p0)∗π = µ0, (p1)∗π = µ1.

Then (P (X),W2) is a metric space called the
Wasserstein space. The metric topology is
the weak-∗ topology.

Proposition. If X is a length space then so
is the Wasserstein space P (X).

Hence we can talk about its (minimizing) geodesics
{µt}t∈[0,1], called Wasserstein geodesics

Proposition. Wasserstein geodesics ↔ Opti-
mal dynamical transference plans
(i.e. dirt moves along geodesics in X.)



Convexity on Wasserstein space

ν background measure.

We want to talk about whether Uν is a convex

function on P (X).

That is, given µ0, µ1 ∈ P (X), whether Uν re-

stricts to a convex function along a Wasser-

stein geodesic {µt}t∈[0,1] from µ0 to µ1.



Nonnegative N-Ricci curvature

Definition. Given N ∈ [1,∞], we say that a

compact measured length space (X, d, ν) has

nonnegative N-Ricci curvature if :

For all µ0, µ1 ∈ P (X) with supp(µ0) ⊂ supp(ν)

and supp(µ1) ⊂ supp(ν), there is some Wasser-

stein geodesic {µt}t∈[0,1] from µ0 to µ1 so that

for all U ∈ DCN and all t ∈ [0,1],

Uν(µt) ≤ t Uν(µ1) + (1− t) Uν(µ0).



Note : We only require convexity along some

geodesic from µ0 to µ1, not all geodesics.

But the same geodesic has to work for all

U ∈ DCN .

Weak displacement convexity. Works better.



What does this have to do with curvature?

Look at optimal transport on the 2-sphere.

ν = normalized Riemannian density.
Take µ0, µ1 two disjoint congruent blobs. Then
Uν(µ0) = Uν(µ1).

Optimal transport from µ0 to µ1 goes along
geodesics. Positive curvature gives focusing
of geodesics. Take snapshot at time t.

Intermediate-time blob µt is more spread out,
so it’s more uniform w.r.t. ν.
Negative entropy Uν measures nonuniformity.
So Uν(µt) ≤ Uν(µ0) = Uν(µ1), i.e.

Uν(µt) ≤ t Uν(µ1) + (1− t) Uν(µ0).



Main result

Theorem. Let {(Xi, di, νi)}∞i=1 be a sequence

of compact measured length spaces with

lim
i→∞

(Xi, di, νi) = (X, d, ν)

in the measured Gromov-Hausdorff topology.

For any N ∈ [1,∞], if each (Xi, di, νi) has non-

negative N-Ricci curvature then (X, d, ν) has

nonnegative N-Ricci curvature.

The proof is a bit involved.



What does all this have to do with Ricci

curvature?

Let (M, g) be a compact connected n-dimensional

Riemannian manifold.

We could take the canonical measure, but let’s

be more general.

Say Ψ ∈ C∞(M) has∫
M
e−Ψ dvolM = 1.

Put ν = e−Ψ dvolM.

Any smooth positive probability measure on M

can be written in this way.



Definition. For N ∈ [1,∞], define the N-Ricci

tensor RicN of (M, g, ν) by
Ric + Hess(Ψ) if N =∞,
Ric + Hess(Ψ) − 1

N−n dΨ⊗ dΨ if n < N < ∞,
Ric + Hess(Ψ) − ∞ (dΨ⊗ dΨ) if N = n,

−∞ if N < n,

where by convention ∞ · 0 = 0.

RicN is a symmetric covariant 2-tensor field on

M that depends on g and Ψ.

(If N = n then RicN is −∞ except where Ψ

is locally constant. There, RicN = Ric.)

Ric∞ = Bakry-Emery tensor.

Intuition : M has dimension n but pretends

to have dimension N . (Identity theft)

RicN would be the “effective” Ricci tensor if

M did have dimension N .



Abstract Ricci recovers classical Ricci

Recall that ν = e−Ψ dvolM.

Theorem. For N ∈ [1,∞], the measured length

space (M, g, ν) has nonnegative N-Ricci curva-

ture if and only if RicN ≥ 0.

(Related to earlier work of Cordoro-Erausquin-

McCann-Schmuckenschläger and Sturm-von

Renesse.)

Classical case : Ψ constant, so ν = dvol
vol(M).

Then (M, g, ν) has abstract nonnegative N-Ricci

curvature if and only if it has classical nonneg-

ative N-Ricci curvature, provided that N ≥ n.



Nontrivial consequences of the definition

Had Gromov precompactness theorem. What
are the limit spaces (X, d, ν)? Suppose that
the limit space is a smooth measured length
space, i.e.

(X, d, ν) = (B, gB, e
−ΨdvolB)

for some n-dimensional smooth Riemannian man-
ifold (B, gB) and some Ψ ∈ C∞(B).

Corollary. If (B, gB, e
−ΨdvolB) is a measured

Gromov-Hausdorff limit of Riemannian mani-
folds with nonnegative Ricci curvature and di-
mension at most N then RicN(B) ≥ 0.

Note : the dimension can drop on taking limits.

Converse essentially true
If (B, gB, e

−ΨdvolB) has RicN(B) ≥ 0 then it
is a measured Gromov-Hausdorff limit of Rie-
mannian manifolds with nonnegative Ricci cur-
vature and dimension at most N , provided that
N ≥ dim(B) + 2.



Proof of Corollary :

Suppose that
{(
Mi, gi,

dvolMi
vol(Mi)

)}∞
i=1

is a sequence

of Riemannian manifolds with

1. dim(Mi) ≤ N .

2. Ric(Mi) ≥ 0.

3. limi→∞

(
Mi, gi,

dvolMi
vol(Mi)

)
= (B, gB, e

−ΨdvolB)

in the measured Gromov-Hausdorff topology.

From the second theorem, each
(
Mi, gi,

dvolMi
vol(Mi)

)
has nonnegative N-Ricci curvature in the abstract

sense.

From the first theorem, (B, gB, e
−ΨdvolB) has

nonnegative N-Ricci curvature in the abstract

sense.

From the second theorem, this means that

RicN ≥ 0 on B (as a classical tensor).



More consequences of the definition

1. Bishop-Gromov-type inequality

Theorem. If (X, d, ν) has nonnegative N-Ricci
curvature and x ∈ supp(ν) then r−N ν(Br(x))
is nonincreasing in r.

2. Sharp global Poincaré inequality

Theorem. If (X, d, ν) has N-Ricci curvature
bounded below by K > 0 and f is a Lipschitz
function on X with

∫
X f dν = 0 then∫

X
f2 dν ≤

N − 1

N

1

K

∫
X
|∇f |2 dν.

Here

|∇f |(x) = lim sup
y→x

|f(y)− f(x)|
d(y, x)

.

Special case (Lichnerowicz’ theorem) : If a
connected N-dimensional Riemannian manifold
has Ric ≥ Kg then λ1(−4) ≥ N

N−1 K.



3. Local Poincaré inequality :

Theorem. If (X, d, ν) has nonnegative N-Ricci
curvature and f is a Lipschitz function on X

then for any ball B = Br(x) with ν[B] > 0,

−
∫
B

|f − 〈f〉B| dν ≤ 22N+1 r −
∫
2B

|∇f | dν,

provided that for almost all (x0, x1) ∈ X × X,
there’s a unique minimizing geodesic from x0
to x1.

Here 2B = B2r(x),

−
∫
B

· dν =
1

ν(B)

∫
B
· dν

and

〈f〉B = −
∫
B

f dν.

(Related work by von Renesse.)

4. Ricci O’Neill theorem



Open questions :

1. Take any result that you know about Rie-

mannian manifolds with nonnegative Ricci cur-

vature (or Ricci curvature bounded below).

Does it extend to measured length spaces (X, d, ν)

with nonnegative N-Ricci curvature (or N-Ricci

curvature bounded below)?

2. Take an interesting measured length space

(X, d, ν). Does it have nonnegative N-Ricci

curvature (or N-Ricci curvature bounded be-

low)?

This almost always boils down to understand-

ing the optimal transport on X.



Another topic :

Alexandrov geometry of Wasserstein space

Definition. A compact length space X has

nonnegative Alexandrov curvature if any geodesic

triangle in X is “fatter” than the corresponding

triangle in R2.



Formal Riemannian geometry of Wasser-

stein space

Suppose that (M, g) is a compact connected

Riemannian manifold. What does its Wasser-

stein space P (M) look like?

Otto, Otto-Villani :

1. Formally, P (M) is an infinite-dimensional

manifold with a certain Riemannian metric.

(Note : an honest infinite-dimensional Hilbert

manifold is never locally compact.)

2. Formally, the corresponding distance on

P (M) is W2.

3. (Otto) Formally, the Riemannian metric on

P2(Rn) has nonnegative sectional curvature.

This started the whole story.



Theorem. (M, g) has nonnegative sectional

curvature if and only if P (M) has nonnegative

Alexandrov curvature.

(Makes rigorous Otto’s formal sectional curva-

ture calculation.)

P (M) is an interesting “Alexandrov” space :

compact but infinite topological dimension.

Gradient flows : One has existence and unique-

ness of the (downward) gradient flow for any

semiconvex function on a complete Alexandrov

space (Perelman-Petrunin).

Hereafter, suppose that M has nonnegative

sectional curvature. (For example, the n-torus.)



How to make sense of the formal Rieman-
nian metric on Wasserstein space

A compact length space X with nonnegative
Alexandrov curvature has tangent cones
(replacing tangent spaces).

Given x ∈ X, look at the space Σ′ of mini-
mal geodesics γ emanating from X.

Say dΣ′(γ1, γ2) = angle between γ1 and γ2.

Take the metric completion of (Σ′, dΣ′) to get
the space of directions Σ.

Definition. The tangent cone Kx is the met-
ric cone over Σ.

Example : If X is a Riemannian manifold (M, g)
then Kx = TxM , with the Euclidean metric on
Kx coming from g.



Theorem. If µ ∈ P (M) is absolutely contin-

uous with respect to dvolM then the tangent

cone of P (M) at µ is a Hilbert space. Its inner

product is the same as Otto’s formal Rieman-

nian metric.

More precisely, consider the quadratic form

Q(φ) =
∫
M
|∇φ|2 dµ

on Lip(M).

Quotient by the kernel to get Lip(M)/Ker(Q).

Then the tangent cone at µ is the metric com-

pletion of Lip(M)/Ker(Q).

Compare with the formal parametrization of

the “tangent space” :

δµ = −∇ · (µ∇φ).

Note : Tangent cones at non-a.c. measures

need not be linear spaces. (Example : µ = δm)



Some apparently weird things about Wasser-

stein space

1. The formal exponential map expµ : TµP (M)→
P (M) doesn’t cover a neighborhood of µ.

2. There is a formal Riemannian metric but

no manifold structure.

Claim : This happens all the time for Alexan-

drov spaces.



Problems with the exponential map

Take a cone in R
3 with cone angle less than

2π.

A geodesic that hits the vertex cannot be ex-

tended as a minimal geodesic beyond the ver-

tex.

Now take a tetrahedron in R
3. Add conical

bumps with a small defect angle.

Add more bumps with smaller defect angle.



Continue and take limit in R3.

Get a 2-dimensional space X with nonnega-

tive Alexandrov curvature. But for no point of

X is there an exponential map from the tan-

gent cone onto a neighborhood of the point.

The way out : Use Lipschitz coordinates in-

stead of normal coordinates.

Theorem. (Otsu-Shioya, Perelman) Any finite-

dimensional Alexandrov space X has a Lipschitz-

manifold structure almost everywhere. On the

“regular” part of X there are

1. A continuous Riemannian metric.

2. Measurable Christoffel symbols.

3. Jacobi fields.



A simple infinite-dimensional Alexandrov space

X = S1 × S1 × S1 × . . .

with the “Pythagorean” metric :

dX

(
{eiθj}, {eiθ

′
j}
)

=

√√√√√√√ ∞∑
j=1

dS1

(
eiθj , e

iθ′j
)

j


2

.

The metric topology on X is the product topol-

ogy.

Formal (flat) Riemannian metric on X:

g =
∞∑
j=1

j−2 dθ2
j .

All tangent cones of X are Hilbert spaces with

this inner product. But X is not a Hilbert

manifold (since it’s compact).



Upshot

Alexandrov geometry may be relevant for un-

derstanding Wasserstein space.


