Optimal transport and nonsmooth geometry

John Lott

http://www.math.lsa.umich.edu/~lott

Joint work with Cédric Villani.

Related work done independently by K.-T. Sturm.

Ideas from optimal transport \Rightarrow Nonsmooth geometry

Ideas from nonsmooth geometry \Rightarrow Optimal transport

Some basics of differential geometry

M a smooth $n\mbox{-dimensional}$ manifold with a Riemannian metric g

 \boldsymbol{m} a point in \boldsymbol{M}

 $T_m M$ the tangent space at m.

<u>Sectional curvature</u> : To each 2-plane $P \subset T_m M$, one assigns a number K(P), its sectional curvature.

<u>Ricci curvature</u> : an averaging of sectional curvature.

Fix a unit-length vector $\mathbf{v} \in T_m M$.

Definition:

 $Ric(v, v) = (n-1) \cdot (the average sectional curvature)$

of the 2-planes P containing v).

Fact : Ric(v, v) extends to a symmetric bilinear form on $T_m M$, called the Ricci tensor.

Given $K \in \mathbb{R}$, we say that M has **Ricci curvature bounded below by K** if for all $m \in M$ and all $\mathbf{v} \in T_m M$,

 $\mathsf{Ric}(v,v) \, \geq \, \mathsf{K}\, \mathsf{g}(v,v).$

Question : Does it make sense to say that a metric space (X, d) has "Ricci curvature bounded below by K"?

- 1. For simplicity, take K = 0.
- 2. For more simplicity, assume X is compact.

To get started, assume that X is a **length** space, meaning that for all $x_0, x_1 \in X$,

$$d(x_0, x_1) = \inf_{\gamma} L(\gamma)$$
, where

 $\gamma: [0,1] \to X$ continuous $,\gamma(0) = x_0,\gamma(1) = x_1$ and

$$L(\gamma) = \sup_{J} \sup_{0=t_0 \le t_1 \le \dots \le t_J = 1} \sum_{j=1}^J d(\gamma(t_{j-1}), \gamma(t_j)).$$

Note : Any Riemannian manifold (M,g) has a length space structure on the set of points M.

Empirical observation (Fukaya, Cheeger-Colding) When dealing with Ricci curvature, it's better to consider "measured length spaces" (X, d, ν) .

Here ν is a Borel probability measure on X.

If (M,g) is a compact Riemannian manifold, canonical choice is $\nu = \frac{dvol}{vol(M)}$.

Rephrased Question : Is there a good notion of a measured length space (X, d, ν) having "nonnegative Ricci curvature"?

Rules of the game :

1. If $(X, d, \nu) = (M, g, \frac{dvol}{vol(M)})$, should get back classical notion.

2. If $\{(X_i, d_i, \nu_i)\}_{i=1}^{\infty}$ have "nonnegative Ricci curvature" and $\lim_{i\to\infty}(X_i, d_i, \nu_i) = (X, d, \nu)$ then (X, d, ν) should have "nonnegative Ricci curvature".

3. Want nontrivial consequences.

Gromov-Hausdorff (GH) topology :

"Two metric spaces are GH-close if Mr. Magoo can't tell them apart."

Definition : $\lim_{i\to\infty} (X_i, d_i) = (X, d)$ if there are maps $f_i : X_i \to X$ and a sequence $\epsilon_i \to 0$ such that

1. (Almost isometry) For all $x_i, x'_i \in X_i$, $|d_X(f_i(x_i), f_i(x'_i)) - d_{X_i}(x_i, x'_i)| \leq \epsilon_i$.

2. (Almost surjective) For all $x \in X$ and all i, there is some $x_i \in X_i$ such that

$$d_X(f_i(x_i), x) \leq \epsilon_i.$$

Note : X_i and X don't have to look much alike.

Fact : If each X_i is a length space, so is X.

Measured Gromov-Hausdorff (MGH) topology :

Definition. $\lim_{i\to\infty}(X_i, d_i, \nu_i) = (X, d, \nu)$ if

1. $\lim_{i\to\infty} (X_i, d_i) = (X, d)$ in the GH topology, by means of Borel approximants $f_i : X_i \to X$,

and

2. $\lim_{i\to\infty} (f_i)_*\nu_i = \nu$ in the weak-* topology.

Historical background :

For <u>sectional curvature</u>, there's a notion of a length space having "nonnegative Alexandrov curvature".

Properties :

1. If (X,d) = (M,g), get back classical notion of nonnegative sectional curvature.

2. If $\{(X_i, d_i)\}_{i=1}^{\infty}$ have nonnegative Alexandrov curvature and $\lim_{i\to\infty}(X_i, d_i) = (X, d)$ in the GH topology then (X, d) has nonnegative Alexandrov curvature.

3. Nontrivial consequences.

Obvious question : Is there something like this for Ricci curvature?

Another motivation : Gromov precompactness theorem

Given $N \in \mathbb{Z}^+$ and D > 0, have precompactness of

$$\left\{ \left(M, g, \frac{dvol}{vol(M)}\right) \right\}$$

in the MGH topology, where ${\cal M}$ ranges over Riemannian manifolds with

- 1. dim $(M) \leq N$,
- 2. diam(M) \leq D and
- 3. Ric(M) \geq 0.

What are the limit spaces?

Generally not manifolds, but should have "nonnegative Ricci curvature".

What are the smooth limit spaces? (Will answer)

For Riemannian manifolds, Otto-Villani and Cordoro-Erausquin-McCann-Schmuckenschläger showed that nonnegative Ricci curvature has something to do with "displacement convexity" of certain functions on the Wasserstein space.

<u>Idea of the sequel</u> : To X is canonically associated its Wasserstein space. Instead of looking at the geometry of X directly, look at the properties of its Wasserstein space.

<u>Plan</u>:

1. Look at certain "entropy" functions on the Wasserstein space.

2. Consider optimal transport on general length spaces.

3. Show that "convexity" of these entropy functions on the Wasserstein space gives a good notion of "nonnegative Ricci curvature".

Notation

X a compact Hausdorff space.

P(X) = Borel probability measures on X, with weak-* topology. Also a compact Haudorff space.

 $U : [0,\infty) \to \mathbb{R}$ a continuous convex function with U(0) = 0.

Fix a background measure $\nu \in P(X)$.

"Negative entropy" of μ with respect to ν :

$$U_{\nu}(\mu) = \int_{X} U(\rho(x)) d\nu(x) + U'(\infty) \mu_{s}(X).$$

Here

$$\mu = \rho \nu + \mu_s$$

is the Lebesgue decomposition of μ w.r.t. ν and

$$U'(\infty) = \lim_{r \to \infty} \frac{U(r)}{r}.$$

 $U_{\nu}(\mu)$ measures <u>nonuniformity</u> of μ w.r.t. ν . Minimized when $\mu = \nu$.

Proposition. a. $U_{\nu}(\mu)$ is lower-semicontinuous with respect to $(\mu, \nu) \in P(X) \times P(X)$. b. $U_{f*\nu}(f*\mu) \leq U_{\nu}(\mu)$.

Effective dimension

 $N \in [1, \infty]$ a new parameter (possibly infinite).

It turns out that there's not a single notion of "nonnegative Ricci curvature", but rather a 1parameter family.

That is, for each N, there's a notion of a space having "nonnegative N-Ricci curvature".

Here N is an <u>effective dimension</u> of the space, and must be inputted.

Displacement convexity classes

Definition. (McCann) If $N < \infty$ then DC_N is the set of such convex functions U so that the function

 $\lambda \to \lambda^N U(\lambda^{-N})$

is convex on $(0,\infty)$.

Definition. DC_{∞} is the set of such convex functions U so that the function

$$\lambda \to e^{\lambda} U(e^{-\lambda})$$

is convex on $(-\infty,\infty)$.

Example

$$U_N(r) = \begin{cases} Nr(1 - r^{-1/N}) & \text{if } 1 < N < \infty, \\ r \log r & \text{if } N = \infty. \end{cases}$$

(If $U = U_{\infty}$ then corresponding functional is

$$U_{\nu}(\mu) = \begin{cases} \int_{X} \rho \, \log \rho \, d\nu & \text{ if } \mu \text{ is a.c. w.r.t. } \nu, \\ \infty & \text{ otherwise.} \end{cases}$$

Notions from optimal transport

(X, d) a compact metric space.

$$W_2(\mu_0,\mu_1)^2 = \inf\left\{\int_{X\times X} d(x_0,x_1)^2 d\pi(x_0,x_1)\right\},\,$$

where

 $\pi \in P(X \times X), (p_0)_*\pi = \mu_0, (p_1)_*\pi = \mu_1.$

Then $(P(X), W_2)$ is a metric space called the **Wasserstein space**. The metric topology is the weak-* topology.

Proposition. If X is a length space then so is the Wasserstein space P(X).

Hence we can talk about its (minimizing) geodesics $\{\mu_t\}_{t\in[0,1]}$, called **Wasserstein geodesics**

Proposition. Wasserstein geodesics \leftrightarrow Optimal dynamical transference plans (i.e. dirt moves along geodesics in X.)

Convexity on Wasserstein space

 ν background measure.

We want to talk about whether U_{ν} is a convex function on P(X).

That is, given $\mu_0, \mu_1 \in P(X)$, whether U_{ν} restricts to a convex function along a Wasserstein geodesic $\{\mu_t\}_{t \in [0,1]}$ from μ_0 to μ_1 .

Nonnegative *N*-Ricci curvature

Definition. Given $N \in [1,\infty]$, we say that a compact measured length space (X,d,ν) has nonnegative N-Ricci curvature if :

For all $\mu_0, \mu_1 \in P(X)$ with $\operatorname{supp}(\mu_0) \subset \operatorname{supp}(\nu)$ and $\operatorname{supp}(\mu_1) \subset \operatorname{supp}(\nu)$, there is some Wasserstein geodesic $\{\mu_t\}_{t \in [0,1]}$ from μ_0 to μ_1 so that for all $U \in DC_N$ and all $t \in [0,1]$,

 $U_{\nu}(\mu_t) \leq t U_{\nu}(\mu_1) + (1-t) U_{\nu}(\mu_0).$

Note : We only require convexity along some geodesic from μ_0 to μ_1 , not all geodesics.

But the same geodesic has to work for all $U \in DC_N$.

<u>Weak</u> displacement convexity. Works better.

What does this have to do with curvature?

Look at optimal transport on the 2-sphere.

 $\nu =$ normalized Riemannian density. Take μ_0 , μ_1 two disjoint congruent blobs. Then $U_{\nu}(\mu_0) = U_{\nu}(\mu_1)$.

Optimal transport from μ_0 to μ_1 goes along geodesics. **Positive** curvature gives **focusing** of geodesics. Take snapshot at time t.

Intermediate-time blob μ_t is more spread out, so it's *more* uniform w.r.t. ν . Negative entropy U_{ν} measures *nonuniformity*. So $U_{\nu}(\mu_t) \leq U_{\nu}(\mu_0) = U_{\nu}(\mu_1)$, i.e.

 $U_{\nu}(\mu_t) \leq t U_{\nu}(\mu_1) + (1-t) U_{\nu}(\mu_0).$

Main result

Theorem. Let $\{(X_i, d_i, \nu_i)\}_{i=1}^{\infty}$ be a sequence of compact measured length spaces with

 $\lim_{i\to\infty} (X_i, d_i, \nu_i) = (X, d, \nu)$

in the measured Gromov-Hausdorff topology.

For any $N \in [1, \infty]$, if each (X_i, d_i, ν_i) has nonnegative N-Ricci curvature then (X, d, ν) has nonnegative N-Ricci curvature.

The proof is a bit involved.

What does all this have to do with <u>Ricci</u> curvature?

Let (M, g) be a compact connected *n*-dimensional Riemannian manifold.

We could take the canonical measure, but let's be more general.

Say
$$\Psi \in C^\infty(M)$$
 has $\int_M e^{-\Psi} \operatorname{dvol}_{\mathsf{M}} = 1.$

Put $\nu = e^{-\Psi} \operatorname{dvol}_{\mathsf{M}}$.

Any smooth positive probability measure on M can be written in this way.

Definition. For $N \in [1, \infty]$, define the *N*-Ricci tensor Ric_{N} of (M, g, ν) by

 $\begin{cases} \mathsf{Ric} + \mathsf{Hess}(\Psi) & \text{if } N = \infty, \\ \mathsf{Ric} + \mathsf{Hess}(\Psi) - \frac{1}{\mathsf{N}-\mathsf{n}} \, \mathsf{d}\Psi \otimes \mathsf{d}\Psi & \text{if } n < N < \infty \\ \mathsf{Ric} + \mathsf{Hess}(\Psi) - \infty \left(\mathsf{d}\Psi \otimes \mathsf{d}\Psi\right) & \text{if } N = n, \\ -\infty & \text{if } N < n, \end{cases}$

where by convention $\infty \cdot 0 = 0$.

 Ric_{N} is a symmetric covariant 2-tensor field on M that depends on g and Ψ .

(If N = n then Ric_N is $-\infty$ except where Ψ is locally constant. There, $\operatorname{Ric}_N = \operatorname{Ric}$.)

 $Ric_{\infty} = Bakry-Emery$ tensor.

<u>Intuition</u> : M has dimension n but pretends to have dimension N. (Identity theft)

 Ric_N would be the "effective" Ricci tensor if M did have dimension N.

Abstract Ricci recovers classical Ricci

Recall that $\nu = e^{-\Psi} \operatorname{dvol}_{\mathsf{M}}$.

Theorem. For $N \in [1, \infty]$, the measured length space (M, g, ν) has nonnegative N-Ricci curvature if and only if $\operatorname{Ric}_{N} \geq 0$.

(Related to earlier work of Cordoro-Erausquin-McCann-Schmuckenschläger and Sturm-von Renesse.)

Classical case : Ψ constant, so $\nu = \frac{dvol}{vol(M)}$.

Then (M, g, ν) has <u>abstract</u> nonnegative N-Ricci curvature if and only if it has <u>classical</u> nonnegative N-Ricci curvature, provided that $N \ge n$.

Nontrivial consequences of the definition

Had Gromov precompactness theorem. What are the limit spaces (X, d, ν) ? Suppose that the limit space is a smooth measured length space, i.e.

 $(X, d, \nu) = (B, g_B, e^{-\Psi} dvol_B)$

for some *n*-dimensional smooth Riemannian manifold (B, g_B) and some $\Psi \in C^{\infty}(B)$.

Corollary. If $(B, g_B, e^{-\Psi} dvol_B)$ is a measured Gromov-Hausdorff limit of Riemannian manifolds with nonnegative Ricci curvature and dimension at most N then $\operatorname{Ric}_N(B) \geq 0$.

Note : the dimension can drop on taking limits.

Converse essentially true

If $(B, g_B, e^{-\Psi} dvol_B)$ has $\operatorname{Ric}_N(B) \geq 0$ then it is a measured Gromov-Hausdorff limit of Riemannian manifolds with nonnegative Ricci curvature and dimension at most N, provided that $N \geq \dim(B) + 2$.

Proof of Corollary :

Suppose that $\left\{\left(M_i,g_i,\frac{\mathrm{dvol}_{\mathsf{M}_{i}}}{\mathrm{vol}(\mathsf{M}_{i})}\right)\right\}_{i=1}^{\infty}$ is a sequence of Riemannian manifolds with

- 1. dim $(M_i) \leq N$.
- 2. $Ric(M_i) \ge 0$.
- 3. $\lim_{i\to\infty} \left(M_i, g_i, \frac{d\text{vol}_{M_i}}{\text{vol}(M_i)} \right) = (B, g_B, e^{-\Psi} d\text{vol}_B)$ in the measured Gromov-Hausdorff topology.

From the second theorem, each $\left(M_i, g_i, \frac{dvol_{M_i}}{vol(M_i)}\right)$ has nonnegative *N*-Ricci curvature in the <u>abstract</u> sense.

From the first theorem, $(B, g_B, e^{-\Psi} dvol_B)$ has nonnegative *N*-Ricci curvature in the <u>abstract</u> sense.

From the second theorem, this means that $Ric_N \ge 0$ on B (as a classical tensor).

More consequences of the definition

1. Bishop-Gromov-type inequality

Theorem. If (X, d, ν) has nonnegative N-Ricci curvature and $x \in \text{supp}(\nu)$ then $r^{-N} \nu(B_r(x))$ is nonincreasing in r.

2. Sharp global Poincaré inequality

Theorem. If (X, d, ν) has N-Ricci curvature bounded below by K > 0 and f is a Lipschitz function on X with $\int_X f d\nu = 0$ then

$$\int_X f^2 d\nu \leq \frac{N-1}{N} \frac{1}{K} \int_X |\nabla f|^2 d\nu.$$

Here

$$|\nabla f|(x) = \limsup_{y \to x} \frac{|f(y) - f(x)|}{d(y, x)}.$$

Special case (Lichnerowicz' theorem) : If a connected N-dimensional Riemannian manifold has Ric \geq Kg then $\lambda_1(-\Delta) \geq \frac{N}{N-1}K$.

3. Local Poincaré inequality :

Theorem. If (X, d, ν) has nonnegative N-Ricci curvature and f is a Lipschitz function on X then for any ball $B = B_r(x)$ with $\nu[B] > 0$,

$$\int_{B} |f - \langle f \rangle_{B} | d\nu \leq 2^{2N+1} r \int_{2B} |\nabla f| d\nu,$$

provided that for almost all $(x_0, x_1) \in X \times X$, there's a unique minimizing geodesic from x_0 to x_1 .

Here $2B = B_{2r}(x)$, $\int d\nu = \frac{1}{\nu(B)} \int_{B} d\nu$

and

$$\langle f \rangle_B = \oint_B f \, d\nu.$$

(Related work by von Renesse.)

4. Ricci O'Neill theorem

Open questions :

1. Take <u>any</u> result that you know about Riemannian manifolds with nonnegative Ricci curvature (or Ricci curvature bounded below).

Does it extend to measured length spaces (X, d, ν) with nonnegative *N*-Ricci curvature (or *N*-Ricci curvature bounded below)?

2. Take an interesting measured length space (X, d, ν) . Does it have nonnegative *N*-Ricci curvature (or *N*-Ricci curvature bounded below)?

This almost always boils down to understanding the optimal transport on X.

Another topic :

Alexandrov geometry of Wasserstein space

Definition. A compact length space X has nonnegative Alexandrov curvature if any geodesic triangle in X is "fatter" than the corresponding triangle in \mathbb{R}^2 .

Formal Riemannian geometry of Wasserstein space

Suppose that (M,g) is a compact connected Riemannian manifold. What does its Wasserstein space P(M) look like?

Otto, Otto-Villani :

1. Formally, P(M) is an infinite-dimensional manifold with a certain Riemannian metric.

(Note : an honest infinite-dimensional Hilbert manifold is never locally compact.)

2. Formally, the corresponding distance on P(M) is W_2 .

3. (Otto) *Formally*, the Riemannian metric on $P_2(\mathbb{R}^n)$ has nonnegative sectional curvature.

This started the whole story.

Theorem. (M,g) has nonnegative sectional curvature if and only if P(M) has nonnegative Alexandrov curvature.

(Makes rigorous Otto's formal sectional curvature calculation.)

P(M) is an interesting "Alexandrov" space : compact but infinite topological dimension.

<u>Gradient flows</u>: One has existence and uniqueness of the (downward) gradient flow for **any** semiconvex function on a complete Alexandrov space (Perelman-Petrunin).

Hereafter, suppose that M has nonnegative sectional curvature. (For example, the n-torus.)

How to make sense of the formal Riemannian metric on Wasserstein space

A compact length space X with nonnegative Alexandrov curvature has <u>tangent cones</u> (replacing tangent spaces).

Given $x \in X$, look at the space Σ' of minimal geodesics γ emanating from X.

Say $d_{\Sigma'}(\gamma_1, \gamma_2)$ = angle between γ_1 and γ_2 .

Take the metric completion of $(\Sigma', d_{\Sigma'})$ to get the space of directions Σ .

Definition. The tangent cone K_x is the metric cone over Σ .

Example : If X is a Riemannian manifold (M,g) then $K_x = T_x M$, with the Euclidean metric on K_x coming from g.

Theorem. If $\mu \in P(M)$ is absolutely continuous with respect to $dvol_M$ then the tangent cone of P(M) at μ is a Hilbert space. Its inner product is the same as Otto's formal Riemannian metric.

More precisely, consider the quadratic form

$$Q(\phi) = \int_M |\nabla \phi|^2 \, d\mu$$

on Lip(M).

Quotient by the kernel to get Lip(M)/Ker(Q).

Then the tangent cone at μ is the metric completion of Lip(M)/Ker(Q).

Compare with the formal parametrization of the "tangent space" :

$$\delta \mu = -\nabla \cdot (\mu \nabla \phi).$$

<u>Note</u> : Tangent cones at non-a.c. measures need not be linear spaces. (Example : $\mu = \delta_m$)

Some apparently weird things about Wasserstein space

1. The formal exponential map $\exp_{\mu} : T_{\mu}P(M) \rightarrow P(M)$ doesn't cover a neighborhood of μ .

2. There is a formal Riemannian metric but no manifold structure.

Claim : This happens all the time for Alexandrov spaces.

Problems with the exponential map

Take a cone in \mathbb{R}^3 with cone angle less than 2π .

A geodesic that hits the vertex **cannot** be extended as a minimal geodesic beyond the vertex.

Now take a tetrahedron in \mathbb{R}^3 . Add conical bumps with a small defect angle.

Add more bumps with smaller defect angle.

Continue and take limit in \mathbb{R}^3 .

Get a 2-dimensional space X with nonnegative Alexandrov curvature. But for no point of X is there an exponential map from the tangent cone onto a neighborhood of the point.

The way out : Use Lipschitz coordinates instead of normal coordinates.

Theorem. (Otsu-Shioya, Perelman) Any finitedimensional Alexandrov space X has a Lipschitzmanifold structure almost everywhere. On the "regular" part of X there are

- 1. A continuous Riemannian metric.
- 2. Measurable Christoffel symbols.
- 3. Jacobi fields.

A simple infinite-dimensional Alexandrov space

$$X = S^1 \times S^1 \times S^1 \times \dots$$

with the "Pythagorean" metric :

$$d_X\left(\{e^{i\theta_j}\},\{e^{i\theta'_j}\}\right) = \sqrt{\sum_{j=1}^{\infty} \left(\frac{d_{S^1}\left(e^{i\theta_j},e^{i\theta'_j}\right)}{j}\right)^2}.$$

The metric topology on X is the product topology.

Formal (flat) Riemannian metric on X:

$$g = \sum_{j=1}^{\infty} j^{-2} d\theta_j^2.$$

All tangent cones of X are Hilbert spaces with this inner product. But X is **not** a Hilbert manifold (since it's compact).

Upshot

Alexandrov geometry may be relevant for understanding Wasserstein space.