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Ideas from optimal transport = Nonsmooth
geometry

Ideas from nonsmooth geometry = Optimal
transport



Some basics of differential geometry

M a smooth n-dimensional manifold with a
Riemannian metric g

m a point in M

TmM the tangent space at m.

Sectional curvature : To each 2-plane P C
TmM, one assigns a number K(P), its sectional
curvature.




Ricci curvature : an averaging of sectional cur-
vature.

Fix a unit-length vector v € T),, M.

Definition :
Ric(v,v) = (n—1)-(the average sectional curvature

of the 2-planes P containing v).

Fact : Ric(v,v) extends to a symmetric bi-
linear form on 1), M, called the Ricci tensor.

Given K € R, we say that M has RiccCi curva-
ture bounded below by K if for all m € M
and all v € T;,,, M,

Ric(v,v) > Kg(v,v).



Question : Does it make sense to say that a
metric space (X, d) has " Ricci curvature bounded
below by K"7

1. For simplicity, take K = 0.
2. For more simplicity, assume X is compact.

To get started, assume that X is a length
space, meaning that for all zg,z1 € X,

d(xg,x1) = i[\ny(fy), where

~ :[0,1] — X continuous ,~(0) = xg,v(1) = 1

and

L(v) = sup sup > d(y(tj—1), ().
J 0=tg<t1<..<t;=1

J
j=1

Note : Any Riemannian manifold (M, g) has a
length space structure on the set of points M.



Empirical observation (Fukaya, Cheeger-Colding)
When dealing with Ricci curvature, it's better
to consider “measured length spaces” (X,d,v).

Here v is a Borel probability measure on X.

If (M,g) is a compact Riemannian manifold,

: . . _  dvol
canonical choice is v = Vol(MY

Rephrased Question : Is there a good no-
tion of a measured length space (X,d,v)
having “nonnegative Ricci curvature” ?

Rules of the game :

1. If (X,d,v) = (M,g,%), should get back
classical notion.

2. If {(X;,d;,v)}52, have “nonnegative Ricci
curvature” and lim;_ . (X;,d;,v;) = (X,d,v)
then (X,d,v) should have ‘“nonnegative Ricci
curvature” .

3. Want nontrivial consequences.



Gromov-Hausdorff (GH) topology :

“Two metric spaces are GH-close if Mr. Ma-
goo can't tell them apart.”

Definition : Iim,_ . (X;,d;)) = (X,d) if there
are maps f; : X; — X and a sequence ¢; — O
such that

1. (Almost isometry) For all z;, 2} € X,

dx (fi(zi), fi(2})) — dx, (x5, 2)| < €.

2. (Almost surjective) For all x € X and all 1,
there is some z; € X; such that

dx(fi(z;),z) < €.

Note : X; and X don’t have to look much alike.

Fact : If each X, is a length space, so is X.



Measured Gromov-Hausdorff (MGH) topol-
ogy :

Definition. |Imz_>OO(XZ, d;, Vi) = (X, d, I/) if

1. lim;(X;,d;)) = (X,d) in the GH topology,
by means of Borel approximants f; . X; — X,

and

2. lim; L (f;)«v; = v in the weak-x topology.



Historical background :

For sectional curvature, there's a notion of a
length space having “nonnegative Alexandrov
curvature’ .

Properties :

1. If (X,d) = (M,g), get back classical no-
tion of nonnegative sectional curvature.

2. If {(X;,d;)}?2, have nonnegative Alexan-
drov curvature and lim;_,.(X;,d;) = (X,d) in
the GH topology then (X,d) has nonnegative
Alexandrov curvature.

3. Nontrivial consequences.

Obvious question : Is there something like this
for Ricci curvature?



Another motivation : Gromov precompact-
ness theorem

Given N € ZT and D > 0, have precompact-

ness of
M.g dvol
vol (M)

in the MGH topology, where M ranges over
Riemannian manifolds with

1. dim(M) < N,

2. diam(M) < D and

3. Ric(M) > 0.

What are the limit spaces?

Generally not manifolds, but should have “non-
negative Ricci curvature’.

What are the smooth limit spaces? (Will
answer)



Optimal transport

For Riemannian manifolds, Otto-Villani and Cordoro-
Erausquin-McCann-Schmuckenschlager showed
that nonnegative Ricci curvature has some-
thing to do with “displacement convexity” of
certain functions on the Wasserstein space.

Idea of the sequel : To X is canonically asso-
Ciated its Wasserstein space. Instead of look-
ing at the geometry of X directly, look at the
properties of its Wasserstein space.

Plan :

1. Look at certain “entropy” functions on the
VWasserstein space.

2. Consider optimal transport on general length
spaces.

3. Show that “convexity” of these entropy
functions on the Wasserstein space gives a good
notion of “nonnegative Ricci curvature”.



Notation
X a compact Hausdorff space.

P(X) = Borel probability measures on X, with
weak-*x topology. Also a compact Haudorff

Space.

U : [0,00) — R a continuous convex function
with U(0) = 0.

Fix a background measure v € P(X).



“Negative entropy’” of u with respect to v

Uy (p) = /X U(p(z)) dv(z) + U'(c0) ps(X).

Here

p= pv + s

is the Lebesgue decomposition of u w.r.t. v
and

U'(o0) = lim 272

r—0oo r

Uy(u) measures nonuniformity of u w.r.t. v.
Minimized when u = v.

Proposition. a. Uy,(u) is lower-semicontinuous
with respect to (u,v) € P(X) x P(X).
b. U, (fep) < Up(p).



Effective dimension

N € [1,00] a new parameter (possibly infinite).
It turns out that there’s not a single notion of
“nonnegative Ricci curvature”, but rather a 1-

parameter family.

That is, for each N, there's a notion of a space
having “nonnegative N-Ricci curvature™.

Here N is an effective dimension of the space,
and must be inputted.




Displacement convexity classes

Definition. (McCann) If N < oo then DCy is
the set of such convex functions U so that the
function

A= AN
is convex on (0,c0).

Definition. DCy is the set of such convex
functions U so that the function

A— e U(e™)
is convex on (—oo, o).

Example

Nr(l—r=1/N) jf1< N < oo,
rlogr if N = oo.

Un(r) = {

(If U = Ux then corresponding functional is

plogpdrv if pis a.c. w.r.t. v,
Up(p) = {fX

otherwise.)



Notions from optimal transport

(X,d) a compact metric space.

Wa(po, n1)? = inf {/X d(zg,21)? dﬁ(wo,wﬂ} :

X

where

T € P(X X X)v(pO)*ﬂ- — MOa(pl)*ﬂ- — H1-

Then (P(X),W5>) is a metric space called the
Wasserstein space. The metric topology is
the weak-x topology.

Proposition. If X is a length space then so
is the Wasserstein space P(X).

Hence we can talk about its (minimizing) geodesics
{ut}ic[o,1], called Wasserstein geodesics

Proposition. Wasserstein geodesics < Opti-
mal dynamical transference plans
(i.e. dirt moves along geodesics in X.)



Convexity on Wasserstein space
v background measure.

We want to talk about whether U, is a convex
function on P(X).

That is, given ug,u1 € P(X), whether U, re-
stricts to a convex function along a Wasser-
stein geodesic {pt}ic[o,1] from po to py.



Nonnegative N-Ricci curvature

Definition. Given N € [1,00], we say that a
compact measured length space (X,d,v) has
nonnegative N-Ricci curvature if :

For all ug, u1 € P(X) with supp(ug) C supp(v)
and supp(u1) C supp(v), there is some Wasser-
stein geodesic {pit}ic(o,1] from po to py so that
for all U € DCy and all t € [0,1],

Up(ue) < tUp(p1) + (1 —1t) Up(po)-



Note : We only require convexity along some
geodesic from ug to pq, not all geodesics.

But the same geodesic has to work for all
U e DCly.

Weak displacement convexity. Works better.



What does this have to do with curvature?
Look at optimal transport on the 2-sphere.

vy = normalized Riemannian density.
Take ug, w1 two disjoint congruent blobs. Then

Up(po) = Up(p1).

Optimal transport from ug to pu; goes along
geodesics. Positive curvature gives focusing
of geodesics. Take snapshot at time ¢.

Intermediate-time blob us is more spread out,
SO it's more uniform w.r.t. v.
Negative entropy U, measures nonuniformity.

So Uv(ut) < Uu(ug) = Uv(p1), i-e.
Uv(p) < tUu(p1) + (1 —1) Un(po)-



Main result

Theorem. Let {(X;,d;,v;)}2, be a sequence
of compact measured length spaces with

Ilm (Xi7di71/i> — (X,d,l/)

1— 00

in the measured Gromov-Hausdorff topology.
For any N € [1,c0], if each (X;,d;,v;) has non-

negative N-Ricci curvature then (X,d,v) has
nonnegative N-Ricci curvature.

The proof is a bit involved.



What does all this have to do with Ricci
curvature?

Let (M, g) be a compact connected n-dimensional
Riemannian manifold.

We could take the canonical measure, but let’s
be more general.

Say W € C°°(M) has
—W
e dvoly = 1.
fyp ™ avolu
Put v = e V¥ dvoly.

Any smooth positive probability measure on M
can be written in this way.



Definition. For N € [1,00], define the N-Ricci
tensor Ricy of (M, g,v) by

(Ric + Hess(Ww) if N = oo,

J Ric + Hess(W) — CrdWedy  ifn < N < oo
Ric + Hess(V) — co (dW ®dW) if N =n,
— 00 if N <n,

\

where by convention oo -0 = 0.

Ricp is a symmetric covariant 2-tensor field on
M that depends on g and W.

(If N = n then Ricy is —oo except where W
is locally constant. There, Ricy = Ric.)

Rico = Bakry-Emery tensor.

Intuition : M has dimension n but pretends
to have dimension N. (Identity theft)

Ricy would be the “effective” Ricci tensor if
M did have dimension N.



Abstract Ricci recovers classical Ricci

Recall that v = e~V dvoly.

Theorem. For N € [1,0], the measured length
space (M, g,v) has nonnegative N-Ricci curva-
ture if and only if Ricy > O.

(Related to earlier work of Cordoro-Erausquin-
McCann-Schmuckenschlager and Sturm-von
Renesse.)

Classical case : W constant, so v =

Then (M, g,v) has abstract nonnegative N-Ricci
curvature if and only if it has classical nonneg-
ative N-Ricci curvature, provided that N > n.




Nontrivial consequences of the definition

Had Gromov precompactness theorem. What
are the limit spaces (X,d,v)? Suppose that
the limit space is a smooth measured length
space, i.e.

(X,d,v) = (B, gp,e” Vdvolg)

for some n-dimensional smooth Riemannian man-
ifold (B,gg) and some W € C*°(B).

Corollary. If (B,gp,e Vdvolg) is a measured
Gromov-Hausdorff limit of Riemannian mani-
folds with nonnegative Ricci curvature and di-
mension at most N then Ricy(B) > 0.

Note : the dimension can drop on taking limits.

Converse essentially true

If (B, gp, e Ydvolg) has Ricy(B) > 0 then it
IS 2 measured Gromov-Hausdorff limit of Rie-
mannian manifolds with nonnegative Ricci cur-
vature and dimension at most N, provided that
N > dim(B) 4+ 2.




Proof of Corollary :

dvolp. S
Suppose that {(Mi, gi, WI\DAI.I)) } . IS @ sequence
1=

of Riemannian manifolds with
1. d”ﬂ(ﬂﬂ) < N.
2. Ric(M;) > 0.

: dvol.
3.|”ﬂ@ﬁa3 Aﬁ '

» 9i> yol(My) ) = (B,gp,e” Vdvolg)
in the measured Gromov-Hausdorff topology.

dvolp.
From the second theorem, each (Mz-, ' )

9is voIl(M;)
has nonnegative N-Ricci curvature in the abstract

sense.

From the first theorem, (B, gg,e~ Vdvolg) has
nonnegative N-Ricci curvature in the abstract
sense.

From the second theorem, this means that
Ricy > 0 on B (as a classical tensor).



More consequences of the definition
1. Bishop-Gromov-type inequality

Theorem. If(X,d,v) has nonnegative N-RiccCi
curvature and x € supp(v) then r— v(B.(z))
IS nonincreasing in r.

2. Sharp global Poincaré inequality

Theorem. If (X,d,v) has N-Ricci curvature
bounded below by K > 0 and f is a Lipschitz
function on X with [y fdv = O then

[;me/é _*llt/|Vdeu

Here

| f(y) — f(x)]
d(y,z)

Special case (Lichnerowicz’' theorem) : If a
connected N-dimensional Riemannian manifold
has Ric > Kg then A\(—A) > 7 K.

IV fl(x) = limsup
y—T




3. Local Poincaré inequality :

Theorem. If(X,d,v) has nonnegative N-RiccCi
curvature and f is a Lipschitz function on X
then for any ball B = B,(x) with v[B] > 0,

][|f Vpldv < 22N+1, ][|Vf|du

2B
prowded that for almost all (zg,xz1) € X x X,
there’'s a unique minimizing geodesic from xg
to x1.

Here 2B = By,(x),

]é'dy - u(iB) /B°dy
Np = ffadv
B

(Related work by von Renesse.)

and

4. Ricci O'Neill theorem



Open questions :

1. Take any result that you know about Rie-
mannian manifolds with nonnegative Ricci cur-
vature (or Ricci curvature bounded below).

Does it extend to measured length spaces (X, d,v)
with nonnegative N-Ricci curvature (or N-Ricci
curvature bounded below)?

2. Take an interesting measured length space
(X,d,v). Does it have nonnegative N-Ricci
curvature (or N-Ricci curvature bounded be-
low)?

T his almost always boils down to understand-
ing the optimal transport on X.



Another topic :

Alexandrov geometry of Wasserstein space

Definition. A compact length space X has
nonnegative Alexandrov curvature if any geodesic
triangle in X is “fatter” than the corresponding
triangle in R2.



Formal Riemannian geometry of \Wasser-
stein space

Suppose that (M,g) is a compact connected
Riemannian manifold. What does its Wasser-
stein space P(M) look like?

Otto, Otto-Villani :

1. Formally, P(M) is an infinite-dimensional
manifold with a certain Riemannian metric.

(Note : an honest infinite-dimensional Hilbert
manifold is never locally compact.)

2. Formally, the corresponding distance on
P(M) is Wo.

3. (Otto) Formally, the Riemannian metric on
P>(R™) has nonnegative sectional curvature.

T his started the whole story.



Theorem. (M,g) has nonnegative sectional
curvature if and only if P(M) has nonnegative
Alexandrov curvature.

(Makes rigorous Otto’'s formal sectional curva-
ture calculation.)

P(M) is an interesting “Alexandrov” space :
compact but infinite topological dimension.

Gradient flows : One has existence and unique-
ness of the (downward) gradient flow for any
semiconvex function on a complete Alexandrov
space (Perelman-Petrunin).

Hereafter, suppose that M has nonnegative
sectional curvature. (For example, the n-torus.)



How to make sense of the formal Rieman-
nian metric on Wasserstein space

A compact length space X with nonnegative
Alexandrov curvature has tangent cones
(replacing tangent spaces).

Given z € X, look at the space X/ of mini-
mal geodesics v emanating from X.

Say ds(v1,7v2) = angle between 1 and ~».

Take the metric completion of (X', dy/) to get
the space of directions 2.

Definition. The tangent cone K, is the met-
ric cone over 2_.

Example : If X is a Riemannian manifold (M, g)
then K, =1T,M, with the Euclidean metric on
K, coming from g.



Theorem. If u € P(M) is absolutely contin-
uous with respect to dvoly, then the tangent
cone of P(M) at u is a Hilbert space. Its inner
product is the same as Otto’s formal Rieman-
nian metric.

More precisely, consider the quadratic form

Q9) = [ V4 du
on Lip(M).

Quotient by the kernel to get Lip(M)/Ker(Q).

Then the tangent cone at u is the metric com-
pletion of Lip(M)/Ker(Q).

Compare with the formal parametrization of
the “tangent space’ :

op = — V- (uVo).
Note : Tangent cones at non-a.C. measures
need not be linear spaces. (Example : u = 6m)



Some apparently weird things about Wasser-
stein space

1. The formal exponential map exp,, : T,P(M) —
P(M) doesn't cover a neighborhood of u.

2. There is a formal Riemannian metric but
no manifold structure.

Claim : This happens all the time for Alexan-
drov spaces.



Problems with the exponential map

Take a cone in R3 with cone angle less than
27,

A geodesic that hits the vertex cannot be ex-
tended as a minimal geodesic beyond the ver-
tex.

Now take a tetrahedron in R3. Add conical
bumps with a small defect angle.

Add more bumps with smaller defect angle.



Continue and take limit in R3.

Get a 2-dimensional space X with nonnega-
tive Alexandrov curvature. But for no point of
X is there an exponential map from the tan-
gent cone onto a neighborhood of the point.

The way out : Use Lipschitz coordinates in-
stead of normal coordinates.

Theorem. (Otsu-Shioya, Perelman) Any finite-
dimensional Alexandrov space X has a Lipschitz-
manifold structure almost everywhere. On the
“regular’” part of X there are

1. A continuous Riemannian metric.

2. Measurable Christoffel symbols.

3. Jacobi fields.



A simple infinite-dimensional Alexandrov space
X=8'xslxslx...
with the “Pythagorean’” metric :

BTN
o (dgr (ewj,ewj)

%

dx ({1} {e}) =

J

\

The metric topology on X is the product topol-
ogy.

Formal (flat) Riemannian metric on X:

@)
g =Y j2dos.
j=1
All tangent cones of X are Hilbert spaces with
this inner product. But X is not a Hilbert

manifold (since it's compact).



Upshot

Alexandrov geometry may be relevant for un-
derstanding Wasserstein space.



