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Two-dimensional topology

All of the compact surfaces that anyone has
ever seen :

These are all of the compact connected ori-
ented surfaces without boundary.

How to distinguish the sphere from the other
surfaces? It is simply-connected.

Recall : A topological space is simply-connected
if any closed curve in the space can be contin-
uously contracted to a point.



What about three dimensions?

Notation : M a compact connected ori-

entable 3-dimensional manifold without bound-

ary.

Basic Question : How can we distinguish

the three-dimensional sphere from the other

three-dimensional manifolds?



Conjecture. (Poincaré, 1904)

If M is simply connected then it is topologi-

cally equivalent to the three-sphere S3.



Extension to non-simply-connnected case

Thurston’s “Geometrization Conjecture”

Motivation : Recall that any compact sur-

face carries a Riemannian metric of constant

curvature 1, 0, or −1.

Question : Does every closed 3-manifold

carry a constant curvature metric?

Answer : (Un)fortunately, no.



Geometrization Conjecture (rough version)

Conjecture. (Thurston, 1970’s) M can be

canonically cut into pieces, each of which car-

ries one of eight magic geometries.

Picture :

The eight magic geometries :

1. Constant curvature 0

2. Constant curvature 1

3. Constant curvature −1

and five others.

Fact : Geometrization =⇒ Poincaré



Analytic approach to Geometrization Conjecture

Idea : Start with the manifold M in an arbi-

trary “shape”.

Evolve the shape to smooth it out. Maybe,

as time goes on, one will start to “see” M ’s

geometric pieces.



Background from differential geometry

M an n-dimensional manifold.

By a “shape” of a manifold M , we mean a

Riemannian metric g on M .

To each point p ∈ M , the Riemannian met-

ric specifies an inner product on the tangent

space TpM .



Sectional curvature

Given the Riemannian metric g, one can com-

pute its sectional curvatures.

For each point p ∈ M and each 2-plane P ⊂
TpM , one computes a number K(P ).

(Example : If M is a surface then there is

only one 2-plane P ⊂ TpM , and its sectional

curvature K(P ) equals the Gaussian curvature

at p.)



Ricci curvature

The Ricci curvature is an average sectional

curvature :

Given a unit vector v ∈ TpM , let Ric(v,v) be

(n − 1) times the average sectional curvature

of all of the 2-planes P containing v.

Fact : Ric(v,v) extends to a bilinear form

on TpM . This is the Ricci tensor on M .



Hamilton’s Ricci flow

A prescribed 1-parameter family of metrics g(t),
with g(0) = g0.

Goal : to smooth out the original metric g0.

Idea : Let the “shape” evolve by its curvature.

Ricci flow equation :

dg

dt
= − 2 Ric(g(t)).

Both sides are the same type of object : at
each point p ∈M , a bilinear form on TpM .

In terms of local coordinates,

∂gij

∂t
= − 2Rij.

Introduced by Hamilton in 1982.



Somewhat like the heat equation

∂f

∂t
= ∇2f,

except nonlinear.

∂gij

∂t
= − 2Rij.

Heat equation evolves a function.

Ricci flow evolves a Riemannian metric.

Recall : heat flow evolves an initial function f0

towards a constant function.

Hope : for a three-dimensional manifold, the
Ricci flow will evolve the metric g0 so that we
see the geometrization decomposition.

This works for surfaces!



Examples of Ricci flow solutions

1. 3-torus : g(t) = gT3 for all t (flat metric)

2. 3-sphere : g(t) = r2(t) gS3,

r2(t) = −4t for all t < 0.



3. hyperbolic 3-manifold : g(t) = r2(t) ghyp,

r2(t) = r2
0 + 4t for all t ≥ 0.

4. shrinking cylinder : g(t) = r2(t)gS2 + g
R

,

r2(t) = −2t for all t < 0.



How to prove the Poincaré Conjecture

Start with simply-connected three-dimensional

M . Put any Riemannian metric on it.

Run Ricci flow. What can happen?



(Overly) optimistic hope :

Maybe the solution shrinks to a point, and get

rounder as it shrinks. If so, M has a metric of

constant positive sectional curvature.

But M is simply connected, so then it must

be topologically a 3-sphere!

Theorem. (Hamilton, 1982) This works if the

initial metric has positive Ricci curvature.

But what if it doesn’t?



With a general initial metric

New problem : the flow could go singular be-

fore it can shrink to a point. For example,

Neckpinch :

The positive curvature of the two-dimensional

cross-section can make it squeeze to a point

in finite time.

What to do now?



Idea (Hamilton) : Do surgery on a neckpinch.

Then continue the flow. If more neckpinches

occur, do the same.



Basic problem : How do we know that the

singularities are actually caused by neckpinches?

Solved by Perelman (2002).



Outline of an argument to prove the

Poincaré conjecture

1. Start with M a simply-connected compact

three-dimensional manifold.

2. Put an arbitrary Riemannian metric g0 on

M .

3. Claim (Perelman II) :

There is a well-defined Ricci-flow-with-surgery.

4. Run flow up to first singularity time (if there

is one).

a. First case : Entire solution disappears.



Claim (Perelman II) :

If an entire solution disappears then the man-

ifold is topologically equivalent to

(i) S3/Γ (with Γ a finite subgroup of SO(4)

acting freely on S3), or

(ii) S1 × S2, or

(iii) (S1 × S2)/Z2.

(Not assuming here that M is simply connected.)

b. Next case : If the entire solution doesn’t

disappear, say Ω is what’s left at the singular

time.



Form a new manifold M ′ by surgering out

the horns in Ω.

Note : M ′ may be disconnected. Flow to next

singularity time.



Remove high-curvature regions by surgering

out the horns and by throwing away iso-

lated components.

Continue.



5. Claim (Perelman III, Colding-Minicozzi)

After a finite time, there’s nothing left. The

entire solution went extinct.

Here we use the assumption that the original

manifold was simply connected.



6. How to reconstruct the original manifold?

Pieces that went extinct, or were thrown away,
were each diffeomorphic to

S3/Γ, S1 × S2 or (S1 × S2)/Z2.

Going from after a surgery to before a surgery
amounts to piping components together, i.e.
performing “connected sums”.

(Possibly with some new S1×S2’s and RP3’s).



To reconstruct the original manifold

Let’s go backwards in time.

We start with the empty set ∅.

We repeatedly see a new copy of S3/Γ, S1×S2

or (S1 × S2)/Z2 appearing and we pipe it in.

We end up with M .



7. Conclusion

The original manifold M is topologically equiv-

alent to a connected sum :

(S3/Γ1)# . . .#(S3/Γk)#(S1×S2)# . . .#(S1×S2).

By van Kampen’s theorem,

π1(M) = Γ1 ? . . . ? Γk ? Z ? . . . ? Z.

But M is simply connected! So each Γi is triv-

ial and there are no S1 × S2 factors. Then

M = S3# . . .#S3 = S3.

This would prove the Poincaré Conjecture!



What if the starting manifold is not simply-

connected?

The solution g(t) could go on for all time t.

(Example : manifolds with constant negative

sectional curvature.)

Shrink by a factor of t :

ĝ(t) =
g(t)

t
.

(Motivation : if M has constant negative cur-

vature then g(t) increases linearly.)



Claim (Perelman II) : For large t, M decom-
poses into “thick” and “thin” pieces (either
one possibly empty) :

M = Mthick ∪Mthin

where

a. The metric ĝ(t) on Mthick is close to con-
stant sectional curvature −1

4. The interior of
Mthick admits a complete finite-volume Rie-
mannian metric of constant negative sec-
tional curvature.

b. Mthin is a graph manifold. These are
known to have a “geometric” decomposition.

c. The gluing of Mthick and Mthin is done along
incompressible 2-dimensional tori
(i.e. π1(T2)→ π1(M) is 1-1).



This would prove the Geometrization Con-

jecture!

Important earlier case : when there are no

singularities and supM |Riem(gt)| = O(t−1)

(Hamilton, 1999).



Aside : What is a graph manifold?

Building blocks :

1. Solid doughnut

2. Solid doughnut with two wormholes

Take a bunch of these. Their boundaries are
a lot of tori.

Pair up some of the tori. For each pair, glue
the corresponding building blocks together.

By definition, the result is a graph manifold.
These are understood.



Back to claims :

Claim (Perelman II) :

There is a well-defined Ricci-flow-with-surgery.

Two statements here :

1. We know how to do surgery if we encounter

a singularity.

2. The surgery times do not accumulate.

How do we do surgery if we encounter a

singularity?

Fact : Singularities are caused by curvature

blowup.



If the solution exists on the time interval [0, T ),

but no further, then

lim
t→T−

sup
M
|Riem(gt)| = ∞.

(Here |Riem| denotes the largest sectional cur-

vature at a point, in absolute value.)

To do surgery, we need to know that singular-

ities are caused by tiny necks collapsing.

How do we know that this is the case?



Blowup idea

Suppose that the solution goes singular.

Take a sequence of points and times approach-

ing the singularity.

Blow up to bring those points up to a unit

scale.

Try to take a limit of the geometry near these

blowup points.

Hope that the limit geometry will satisfy some

PDE and will be special.



Rescaling argument

Choose a sequence of times ti and points xi in

M so that

1. limi→∞ ti = T .

2. limi→∞ |Riem(xi, ti)| = ∞.



Blowup

Zoom in to the spacetime point (xi, ti).

Define ri > 0 by r−2
i = |Riem(xi, ti)|.

(The intrinsic scale at the point (xi, ti).)

Note limi→∞ ri = 0.

Spatially expand M by a factor r−1
i so that

|Riem(xi, ti)| becomes 1.



Fact : If M is spatially expanded by a factor

of r−1 then we still get a Ricci flow solution

provided that we also expand time by r−2.

We were looking at the original solution on

a time interval of length approximately T , so

the rescaled solution lives on a time interval of

length approximately T |Riem(xi, ti)|.

This goes to infinity as i→∞.

Get a sequence of Ricci flow solutions gi(t) on

M , defined on larger and larger time intervals.

(Shift time parameter so they all end at time

0.)



Try to take a “convergent subsequence” as

i→∞ of the Ricci flow solutions (M, gi(t)).

Call limit Ricci flow solution (M∞, g∞(t)) (if

it exists).

It will live on an infinite time interval (−∞,0].

“Ancient solution”

Very special type of Ricci flow solution!

If we can find a near-cylinder S2 × [L,−L] in

(M∞, g∞(0)) then there were tiny necks in the

original solution near the (xi, ti)’s and we’re in

business.

With a bit more argument, get that any high-

curvature region in the original solution is mod-

eled by a rescaled chunk of an ancient solution.



Two problems :

1. Why can we take a convergent subsequence

as i→∞ of the Ricci flow solutions (M, gi(t))’s?

2. Even if we can, why is there a near-cylinder

in (M∞, g∞(0))?



Why can we take a convergent subsequence

as i→∞ of the Ricci flow solutions (M, gi(t))?

Need two things (Cheeger-Gromov, Hamilton)

First thing :

By the blowup construction

|Riem(xi,0)| = 1

for the solution (M, gi(t)).

So the curvature is uniformly bounded at the

spacetime points (xi,0).

Still need to know that the curvature is uni-

formly bounded in neighborhoods of the points

(xi,0).

(Since the supposed limit will have bounded

curvature in any compact spacetime region around

(x∞,0).)



Second thing :

We want a three-dimensional limit (M∞, g∞(t)).

We need to know that the rescaled solutions

(M, gi(t)) look uniformly three-dimensional.

(Enough to just show this for t = 0.)

More precisely, a unit ball in (M∞, g∞(0)) will

(obviously) have positive three-dimensional vol-

ume.

So to have a limit, need to know that the

unit balls around xi in the rescaled metrics

(M, gi(0)) have uniformly positive volume.

Hamilton compactness theorem : If one

has these two things then there is a blowup

limit (M∞, g∞(t)) that is an ancient Ricci flow

solution.



One gets the curvature bounds by choosing

the blowup points (xi, ti) cleverly.

How to get lower volume bound?

Even if we can do this, why is there a near-

cylinder in (M∞, g∞)?

Bad news possibility : R× cigar soliton

A particular ancient solution, which has noth-

ing like a cylinder in it.

If this appears in a blowup limit then we’re

in trouble.

This was the pre-Perelman status, as devel-

oped by Hamilton and others.



Perelman’s first big innovation in Ricci flow :

No Local Collapsing Theorem

Say we have a Ricci flow solution on a finite

time interval [0, T ).

The theorem says that at a spacetime point

(x, t), the solution looks noncollapsed at the

intrinsic scale of the spacetime point.

(Recall : intrinsic scale is |Riem(x, t)|−1/2.)



At a spacetime point (x, t), the solution looks

noncollapsed at the intrinsic scale of the

spacetime point.

More precisely, given the Ricci flow solution on

the interval [0, T ) and a scale ρ > 0, we can find

a number κ > 0 so that the following holds:



Suppose that a metric ball B in some time slice

has radius r (less than ρ). If

|Riem| ≤ r−2

on B then

vol(B) ≥ κ r3.

We say that the Ricci flow solution is κ-noncollapsed

at scales less than ρ.

Essentially scale-invariant, so it passes to a

blowup limit!



In short,

Local curvature bound =⇒ local lower bound

on volumes of balls

Of course, this is a statement about Ricci flow

solutions.

With the no local collapsing theorem, we

can take blowup limits. Furthermore, we won’t

get R× cigar soliton as a limit.



Still need to show that the blowup limit

actually has a near-cylinder in it (if it’s non-

compact).

I.e. have to understand “κ-noncollapsed an-

cient solutions”.



Three-dimensional ancient solutions

(Perelman) : Any three-dimensional ancient

solution that is κ-noncollapsed at all scales,

for some κ > 0, falls into one of the following

classes :

1. Isometric to S3/Γ, where S3 is the shrinking

round 3-sphere.

2. Diffeomorphic to S3 or RP3.

3. Shrinking round cylinder R × S2 or its Z2-

quotient.

4. Qualitatively similar to the Bryant soliton.



Using this, one can find the 2-dimensional spheres

to do surgery.

Main problem : How do we know that the

surgery times don’t accumulate?

Technically difficult, must do surgery in a very

precise way.



How to prove No Local Collapsing Theo-

rem :

Find some “functional” I(g) of metrics g with

the following two properties :

1. If g is “locally collapsed” somewhere then

I(g) is very small.

2. If g(t) is a Ricci flow solution then I(g(t))

is nondecreasing in t.

If we can find I then we’re done!



Not at all clear that there is such a functional.

Perelman found two :

1. Entropy

2. Reduced volume.

Conceptual framework :

The Ricci flow is a gradient flow on

{Metrics modulo diffeomorphisms}.



Gradient flows

If F is a smooth function on a Riemannian

manifold X then its gradient flow is

dx

dt
= ∇F

∣∣∣∣
x(t)

.

Easy fact : F is nondecreasing along a flow-

line, i.e. F (x(t)) is nondecreasing in t.



Ricci flow as a gradient flow

Given a metric g on M , let λ(g) be the smallest

eigenvalue of − 44 + R.

Equivalently,

λ(g) = inf
f∈C∞(M),f 6=0

∫
M

(
4|∇f |2 + R f2

)
dvol∫

M f2 dvol
.

If φ : M →M is a diffeomorphism then

λ(φ∗g) = λ(g),

so λ descends to a function on Metrics
Diffeomorphisms.

(Perelman) The Ricci flow on Metrics
Diffeomorphisms

is the formal gradient flow of the function λ.

Consequence :

If g(t) is a Ricci flow solution then λ(g(t)) is

nondecreasing in t.


