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ABSTRACT. We prove an index theorem concerning the pushforward of flat fB-vector bun­
dles, where *B is an appropriate algebra. We construct an associated analytic torsion 
form T. If Z is a smooth closed aspherical manifold, we show that T gives invariants of 
7r*(Diff(Z)). 
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1. INTRODUCTION 

Let Z be a smooth connected closed n-dimensional aspherical manifold with fundamental 
group T. Let Diff(Z) be the group of diffeomorphisms of Z, with its natural smooth topol­
ogy [28]. What are the rational homotopy groups of Diff(Z)? Farrell and Hsiang made the 
following conjecture : 

Conjecture [13] : 7r1(Diff(Z)) ® z Q = center(r) ® z Q 

and if i > 1 is sufficiently small compared to n. 

7 r , ( D i f f ( Z ) ) 0 z Q = ( ® ^ H - 1 ^ ( r ; Q ) *niaodd> (1.1) 
10 if n is even. 

It follows from the work of Farrell and Jones [14] that the conjecture is true when n > 10, 
i < ^^ and F is a discrete cocompact subgroup of a Lie group with a finite number of 
connected components. (For example, it is true when Z is a torus, something which was 
already shown in [13].) The 7Ti-result is what one would expect from homotopy theory. 
However, (1.1) is peculiar to the fact that we are looking at diffeomorphisms; the analogous 
rational homotopy groups of Homeo(Z) vanish. In the cases when the conjecture has been 
proven, the proofs are very impressive but rather indirect, using a great deal of topological 
machinery. 

From a constructive viewpoint, suppose that we are given a smooth based map a : 
Sl —* Diff(Z). How could we compute the corresponding rational homotopy class [a]q € 
7Ti(Diff(Z)) <8>z Q? First, let us make an auxiliary fiber bundle. Using a, we can glue two 
copies of Dl+l x Z along their boundaries to obtain a smooth manifold M which fibers over 
Sl+1, with fiber Z. Any (smooth) topological invariant of fiber bundles will give an invariant 
of 7Ti(Diff(Z)). 

Wagoner suggested [33] that the relevant invariant is a fiber-bundle extension of the Ray-
Singer analytic torsion [32]. In [2], J.-M. Bismut and the author constructed a certain exten­
sion of the Ray-Singer analytic torsion which does give some information about 7r*(Diff(Z)). 
However, that extension is inadequate to capture all of the information in (1.1). In this 
paper, using ideas from noncommutative geometry, we will construct a "higher" analytic 
torsion which does potentially detect the right-hand-side of (1.1). 

One can think of the analytic torsion as arising from the transgression of certain index 
theorems. We describe the relevant index theorems. Suppose that M -^ B is a smooth fiber 
bundle with connected closed fibers Z. Let E be a flat complex vector bundle on M. In 
[2], certain characteristic classes c(E) G H0<W(M;E) were defined. The pushforward of E is 
defined to be 

dim(Z) 

«*(E)= £ ( - l ) P H p ( Z ; £ | z ) , (1.2) 

Research supported by NSF grant DMS-9403652. 
2Received by the editor September 22, 1997. 
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2 JOHN LOTT 

a formal alternating sum of flat vector bundles on B constructed from the cohomology 
groups of the fibers. Let e{TZ) G Rdim{z)(M;o(TZ)) be the Euler class of the vertical 
tangent bundle TZ. The index theorem of [2, Theorem 0.1] stated 

c(n*E) = / e{TZ) U c(E) in Uodd(B: R). (1.3) 

In its proof, which was analytic in nature, a certain differential form T G Qeven(B) appeared, 
called the analytic torsion form. 

This index theorem was reproved topologically and extended by Dwyer, Weiss and Williams 
[12]. Their setup was a fiber bundle as above, a ring 93 and a local system £ of finitely-
generated projective 03-modules on M. The local system defines a class [£} G K^9(M) in 
a generalized cohomology group of M. One again has local systems {HP(Z; S\z)}p

1^ ' of 
finitely-generated 03-modules on B. Suppose that they are projective. Define 7r*(£) as in 
(1.2). Then [12, Equation (0-3)] stated 

M £ ) ] = tr*[£] in < * ( £ ) , (1.4) 

where tr* is the Becker-Gottlieb-Dold transfer. When 03 = C. (1.3) is a consequence of 
applying the characteristic class c to both sides of (1.4). 

In the present paper, we essentially give an analytic proof of (1.4). Provided that 03 is an 
algebra over C which satisfies certain technical conditions, we define a characteristic class 

[CS}:K$9(M)-* 0 H*(M;77,(<B)). (1.5) 
p>q 

p+q odd 

where #*(03) is the noncommutative de Rham cohomology of the algebra 03. Using analytic 
methods, we prove the following theorem. 

Theorem 1. Let the fiber bundle M —> B be as above. Let £ be a local system of finitely-
generated projective 03 -modules on M. Suppose that the fiberwise differentials dz have closed 
image. Then 

[CS(*.£))]= f e(TZ)U[CS(£)} in 0 W(B;Hq(<B)). (1.6) 
JZ p>q 

p+q odd 

The condition that dz have closed image guarantees that U*(Z;£\Z) is a local system of 
projective 03-modules. If 03 = C then 

and so we recover (1.3). 
The statement of Theorem 1 can also be obtained by applying the characteristic class 

[CS] to both sides of (1.4). The condition of having projectivity of W{Z\£\Z) enters in 
related ways. In (1.4), projectivity is necessary just in order to make sense of the left-hand-
side. (One could also assume 03 to be a regular ring, meaning that every finitely-generated 
03-module has a finite resolution by finitely-generated projective 03-modules.) In Theorem 
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DIFFEOMORPHISMS AND NONCOMMUTATIVE ANALYTIC TORSION 3 

1 the assumption that dz have closed image arises for technical reasons, but it also ensures 
projectivity of H*(Z;£\Z). 

As in [2], the interest of the analytic proof is that it gives a more refined statement at 
the level of differential forms. With notation that will be explained later, a certain explicit 
differential form T 6 l ] ' (B, 93)/Im(<i) appears naturally in the proof of Theorem 1. We 
call it the analytic torsion form. 

Theorem 2. With the hypotheses of Theorem 1, 

dT= [ e(TZ,VTZ)ACS{V£,h£)-CS{W*£Jf-£) in^'Md\B^). 
Jz (1.8) 

Here h£ is a 03-valued Hermitian metric on £ and hn*£ is the induced 93-valued Hermitian 
metric on TT*£. 

If dim(Z) is odd and H*(Z;£ |Z) = 0 then the right-hand-side of (1.8) vanishes automat­
ically, implying that T is closed. 

Theorem 3. With the hypotheses of Theorem 1, suppose in addition that dim(Z) is odd 
and H*(Z;£ L) = 0. Then the cohomology class 

[T}€ 0 H'(B; #,(»)) (1.9) 
p>q 

p+q even 

is a (smooth) topological invariant of the fiber bundle M —> B and the local system £. 

In particular, [T] will give invariants of 7r*(Diff(Z)) when Z is a smooth closed aspherical 
manifold. 

We now describe the contents of this paper. We start with a smooth manifold M and 
a local system £ of finitely-generated projective 93-modules on M. The local system £ 
can be thought of as a flat 93-vector bundle on M. The first order of business is to define 
the relevant characteristic classes of £. Unlike in [2], it is not enough to just use the flat 
connection on £. Instead, we will need a connection on £ which also differentiates in the 
"noncommutative" directions. The correct notion, due to Karoubi. is that of a partially flat 
connection (called a "connexion a courbure plate" in [17]). 

In Section 2 we briefly review the geometry of 93-vector bundles. We define certain 
complexes of noncommutative differential forms and describe their cohomologies. We review 
the notion of a 93-connection on £ and its Chern character. We define the relative Chern-
Simons class of two 93-vector bundles which are topologically isomorphic, each having a 
partially flat connection. Because our connections are partially flat and not completely flat, 
the formalism involved is fundamentally different than that of [2]. 

In Section 3 we look at the case when T is a finitely-generated discrete group and 93 lies 
between the group algebra CT and the group C*-algebra C*T. If M is a manifold with a 
normal T-covering M' —> M then there is a canonical 93-vector bundle £ — 93 x r M' on M. 
We describe an explicit partially flat connection on £ and compute the pairing of its Chern 
character with the group cohomology of T. This computation is important for applications. 

In Section 4 we define the notion of a 93-valued Hermitian metric h£ on a 93-vector bundle 
£. With our assumptions on 93, a Hermitian metric on £ always exists and is unique up 
to isotopy. A Hermitian metric gives a topological isomorphism between £ and its antidual 
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4 JOHN LOTT 

bundle £ . If £ has a partially flat connection, we can use this isomorphism to define the 
relative Chern-Simons class CS (E,he) £ Q (M, 93) of £ and £ . Its cohomology class is 
independent of the choice of Hermitian metric, giving the characteristic class 

\CS(£)] e 0 H"(M;77,(«B)). (1.10) 
p>q 

p+q odd 

One can consider [CS] to be a noncommutative Borel class, in that in the special case of 
53 = C. one recovers the continuous cohomology classes used to define the Borel regulator. 

In Section 5 we generalize the preceding results from connections to superconnections. 
This generalization will be crucial for the fiber bundle results. We define the notion of 
a partially flat superconnection on M. We construct the relative Chern-Simons class and 
analytic torsion form. Using these constructions, we prove a finite-dimensional analog of 
(1.4). This analog is similar to [2, Theorem 2.19], but the large-time analysis requires new 
techniques. We then relate the finite-dimensional analytic torsion form to various versions 
of the Reidemeister torsion. 

In Section 6 we extend the methods of Section 5 to the setting of a fiber bundle Z —> 
M A B. First, we prove some basic facts about 53-pseudodifferential operators. Using 
heat kernel techniques, we prove Theorem 1. We then define the analytic torsion form 
T e n ' (£ , 53)/Im(d) and prove Theorems 2 and 3. 

Relevant examples of the preceding formalism come from finitely-generated discrete groups 
T. Let us introduce a certain hypothesis on T : 

Hypothesis 1. There is a Frechet locally m-convex algebra 53 containing CT such that 
1. 53 is dense in C*Y and stable under the holomorphic functional calculus in C*T. 
2. For each [r] € H^(T;C) ; there is a representative cocycle r G ZQ(T;C) such that the 
ensuing cyclic cocycle Zr G HCq(CF) extends to a continuous cyclic cocycle on 93. 

Hypothesis 1 arises in analytic proofs of the Novikov Conjecture. It is known to be 
satisfied by virtually nilpotent groups and Gromov-hyperbolic groups [9, Section 3.5]. Using 
the characteristic class [CS], in Section 4 we give a simple proof that the algebraic K-theory 
assembly map is rationally injective for such groups. 

Let Z be a smooth connected closed n-dimensional manifold with fundamental group 
T. If the hypotheses of the preceding theorems are satisfied, we can define invariants of 
7Tj(Diff(Z)), i > 1, by constructing the auxiliary fiber bundle mentioned at the beginning, 
computing its analytic torsion form T and integrating over B = Sl+1 to get 

/"[Tie 0 J7,(»). (l.ii) 
J B q<i+l 

qmi+l mod 2 

By Hypothesis 1, fB[T] then pairs with H*(r ;C). 
To make contact with (1.1), in Section 7 we assume that Z is a K(T, l)-manifold. In 

order to satisfy the hypotheses of the preceding theorems, we would have to know that the 
differential form Laplacian on the universal cover Z is invertible in all degrees, something 
which is probably never the case. We present two ways to get around this problem. First, we 
consider the case when T = Zn. In this case we can apply ordinary "commutative" analysis 
to study the problem. We show that we can define a pairing between fB[T] and H 9 ( r ;C) 
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DIFFEOMORPHISMS AND NONCOMMUTATIVE ANALYTIC TORSION 5 

provided that q < min(z + l , n ) . This pairing vanishes for trivial reasons unless n is odd 
and q = i -f 1 mod 4. Second, we consider general V satisfying Hypothesis 1. Using the 
fact that the auxiliary fiber bundle M —* Sz+1 is fiber-homotopically trivial, we construct a 
relative analytic torsion form T such that fB[T] pairs with Hq(T; C) provided that q < z-f 1. 
Again, the pairing vanishes for trivial reasons unless n is odd and q = i + 1 mod 4. 

Based on a comparison with (1.1), we expect that the pairing between JB[T] and H9(r ; C) 
will be nonzero if n is odd and q = i\ +1 mod 4, at least if i is sufficiently small with respect 
to n. To show this, one will probably have to make a direct link between the analytic 
constructions of the present paper and the topological machinery. 

We note that we do not construct a "higher" analytic torsion of a single manifold, in the 
sense of Novikov's higher signatures. In the case of a single manifold, i.e. if the base B 
of the fiber bundle is a point, the analytic torsion that we construct in this paper lies in 
53/[53,53], something which pairs with the zero-dimensional cyclic cohomology of 53. The 
higher-dimensional cyclic cohomology of 53 only enters when the base of the fiber bundle is 
also higher-dimensional. 

So far, our topological applications of the analytic torsion form are to the rational ho-
niotopy of diffeomorphism groups of aspherical manifolds. There are also results in the 
literature about the rational homotopy of diffeomorphism groups of simply-connected man­
ifolds [7, §4]. It would be interesting to see if there is an analog of the analytic torsion form 
in the simply-connected case. 

Finally, let us remark that in [21], we constructed a higher eta-invariant of a manifold 
with virtually nilpotent fundamental group. Using the methods of Sections 5 and 6 of the 
present paper, one can relax this condition to allow for Gromov-hyperbolic fundamental 
groups. 

I thank Alain Connes and Michael Weiss for helpful discussions. I thank the Max-Planck-
Institut-Bonn for its hospitality while this paper was written. 

2. NONCOMMUTATIVE BUNDLE THEORY 

In this section we review some facts about 53-vector bundles and their characteristic 
classes. The material in this section is taken from [17], along with [10] and [20]. 

2.1. Noncommutat ive Differential Forms. Let 53 be a Frechet locally m-convex algebra 
with unit, i.e. the projective limit of a sequence 

. . . — • Bj+i — • Bj —> . . . —> Bo (2.1) 

of Banach algebras with unit. (A relevant example is 03 = C°°(Sl) and Bj = C^S1).) We 
recall some basic facts about such algebras [26]. For j > 0, let i3•, : 53 —> Bj be the obvious 
homomorphism. The Banach norm | • \j on Bj induces a submultiplicative seminorm || • \\j 
on 53 by || 6 \\j= 1^(6)^. Given b € 53, its spectrum a(b) C C is given by 

oo 

a{b) = | J o{i3(b)). (2.2) 
i=o 

As each Banach algebra Bj has a holomorphic functional calculus, it follows from (2.2) that 
53 also has a holomorphic functional calculus. 
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6 JOHN LOTT 

We assume that B0 is a C*-algebra A, that i0 is injective with dense image and that 
23 is stable under the holomorphic functional calculus in A. A consequence is that the 
invertible elements Inv(03) are open in 93, as Inv(A) is open in A and Inv(03) = i^"1(Inv(A)). 
Furthermore, a(b) = cr(ij{b)) for all j > 0. 

Let us ignore the topology of 03 for a moment. The universal graded differential algebra 
(GDA) of 03 is 

oc 

fi.(») = 0fifc(tB) (2.3) 
fc=0 

where as a vector space, ftfc(03) = 03 <g> (®fc(03/C)). As a GDA, O*(03) is generated by 
03 = ft0(93) and d03 C ^i(03) with the relations 

dl = 0, d2 = 0, d(ukuji) = (dujk)ui + ( - l ) W M (2.4) 

for u)k G ft/. (03). iO[ G Q/(Q3). It will be convenient to write an element uok of 1^(03) as a 
finite sum J2 W&i • • • dbk. There is a differential complex 

ft,(03) = ft*(03)/[ft*(03), ft*(03)]. (2.5) 

Let Z*(03), B*(03) and #*(03) denote its cocycles, coboundaries and cohomology, respec­
tively. The latter is given by 

H (*) = iKer{B' —°m {= ^/P8'®]) -" ^O8 '®)) if * = °> (2 n 
*[ } | K e r ( B : / f a ( 0 3 ) — ^ ^ + i ( 0 3 , 0 3 ) ) if * > 0. l ' j 

Here #C*(03) is the reduced cyclic homology of 03 and #,,(03,03) is the Hochschild homol­
ogy. In particular, there is a pairing between #*(03) and the (reduced) cyclic cohomology 
of 03. 

Taking the topology on 03 into consideration, there is a Frechet completion of 17* (03), 
which we again denote by ft*(03). Furthermore, there is a Frechet space ft*(03) defined as 
in (2.5). except quotienting by the closure of the commutator. Hereafter, when we refer 
to spaces of differential forms we will always mean these Frechet spaces. Furthermore, all 
tensor products of Frechet spaces will implicitly be projective tensor products. We again 
denote the (separable) homology of ft*(03) by #*(03). It pairs with the (reduced) topological 
cyclic cohomology of 03. 

Let <£ be a Frechet left 03-module, meaning a Frechet space which is a continuous left 
03-module. Hereafter, we assume that <E is a finitely-generated projective 03-module. If 5 is 
a Frechet right 03-module then there is a Frechet space #<8><B £• If 5 is a Frechet 03-bimodule 
then there is a "trace map" 

TV : Hom(B(€,y®a €) —• 5/[03,5]. (2.7) 

(We quotient by the closure of [03, #] to ensure that the result lies in a Frechet space.) If S 
is a Frechet algebra containing 03 then Tr gives a trace 

TV : H o m » ( € , S ® » <£) — 3/[&$]• (2.8) 

In the case that <£ is Z2-graded by an operator T^ G End<B(<£) satisfying T | = 1, we can 
extend Tr to a supertrace by 

Tra{T) = Tr(UT). (2.9) 

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Tue Jun 14 11:21:18 EDT 2016for download from IP 192.68.254.4.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



DIFFEOMORPHISMS AND NONCOMMUTATIVE ANALYTIC TORSION 

Let M be a smooth connected manifold. Put 

QP'9(M,93) = Op(Af; 0,(93)), f f *(M,93) = Q,p(M;Uq{<B)) 

fi*(M,<B) = 0 ^(A/,93), ?f(M,93) = 0 Sf,9(M,»). 
p+<j=fc p+g=fc 

We also write C°°(M; 93) for ft°(A/,93). There is a total differential d on Q*(M,93) which 
decomposes as the sum of two differentials d = d1,0 + d0,1. Put 

rt2\M,<B) = Zk(M;nk{<B))®\ 0 ff,<7(A/,93) (2.10) 
L p+q=2k 

p<q 

fi''2k+1(M,rS)= 0 JffM.B), 
p+q=2k+l 

p<q 

n ' (M,») = n (M,») / f i ' (M,«) . 

Then Q''*(M, 93) and f r ^ ^ , 93) are also differential complexes. Let H^{M), H'£(M) and 
H'£*(M) denote the cohomology groups of Q*(M,93), n''*(A/,93) and n"'*(M, 93), respec­
tively. Then 

H&M)= 0 H"(M;ff,(S$)), (2.11) 
p+q=k 

\ 
H'*k{M) * Ek(M; Zfc(18)) ® 0 HP(A/; ff,(B)) 

, p+q=2k 
p<q J 

H'ik+\M)^ 0 H'(M; #,(»)), 
p+g=2fc+l 

P<<? 

flS2*(Af)S 0 H'(M; #,(»)), 

#; •//,2Jfe+l 
33 (M) 

p+q=2k 
p>q 

Kk+1 (M; nt(g) \ 
B*(®)/ 

0 H*(M; #,(»)) 
p+<7=2fc+l 

To realize the first isomorphism in (2.11) explicitly, if u; E Q (M, 93) is d-closed and z € 
ZP(M;C) then -fzu G Zfc_p(93). The other isomorphisms can be realized similarly. 

2.2. Noncommutative Connections and Chern Character. Let E be a smooth 93-
vector bundle on M with fibers isomorphic to <£. This means that if 8 is defined using 
charts {Ua} then a transition function is a smooth map <j>ap : UaDUp -^ Aut<s(<£). There is 
a corresponding element [£] in the topological K-group K^(M) = [M, K0(*8) x BGL(*B)]. 
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8 JOHN LOTT 

We will denote the fiber of 8 over m G M by Sm. If J is a Frechet 03-bimodule, let #<8><B 8 
denote the 03-vector bundle on M with fibers (#<8><8£)m

 = S ^ ^ ^ m and transition functions 

Let C°°(M; 8) denote the left 03-module of smooth sections of 8 and let ft(M; £) denote 
the left *B-module of smooth sections of A(T*M) ® 8. We put 

ft™(M, 03; 5) = ftp (M; fypB) <g>* 8) (2.12) 
and 

ftfc(A^,03;£) = 0 flp'*(M,<8;£). (2.13) 

Definition 1. A connection on 8 is a C-linear map 

VE : C°°{A4;8) -> ^ ( M , ® ; ^ ) (2.14) 

suc/i that for all f G C°°{M; 03) and 5 G C°°(Af ;£ ) , 

V* (/$) = / V6S + d/ ®C~(M;*) 5. (2.15) 

We can decompose V^ as 

V£ = V ^ ° e V w , (2.16) 

where 
v£,i,o . Coo(M;^>^ _^ fii(M;f) (2.17) 

is a connection on 8 in the usual sense which happens to be 03-linear, and 

v5,o,i : C 0 0 ( M ; ^ ) - ^ C 0 0 ( M ; n 1 ( Q 3 ) ® < B ^ ) (2.18) 

is a C°°(M)-linear map which comes from a C-linear bundle homomorphism 

dE : £ - ^ ( 0 3 ) (£)<»£ (2-19) 
satisfying 

d£(bsm) = b desm + db <8><B sm (2.20) 

for all m G M, sm G £m and 6 G 93. One can consider V5 '0 '1 to be the part of V^ which 
involves differentiation in the "noncommutative" direction. 

Extend Vs to a C-linear map 

Vs : ft*(M, 53; 8) -* ft*+1(M, 03; 5) (2.21) 

by requiring that for all to G ftfc(M, 03) and 5 G ft'(M, 03; £) , 

V£(o;s) = (-l)k UJ A V £ 5 + aw ®c<*(M;») 5. (2.22) 

Similarly, extend V f ,1,0 to 

V5 '1 '0 : ft*(M; £) -+ ft*+1(M; £). (2.23) 

Now (V£) is multiplication by an element of 

p+q=2 

which we also denote by (V f ) . 
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DIFFEOMORPHISMS AND NONCOMMUTATWE ANALYTIC TORSION 9 

Definition 2. The Chern character of V£ is 

ch(V^) = IV ( e " ( v £ ) 2 ) e Ueven(M,<B). (2.24) 

As usual, ch(V5) is d-closed and its cohomology class [ch(V£)] € H^en(M) only depends 
on [8}eK%p(M). If 6: and r are *B and *8'-vector bundles on M, respectively, then 

ch (V^ c ^ ' ) = ch(V£) • ch(V f /) e ?Te n(M,<B <8>c 03'). (2.25) 

Definition 3. A connection Vs is partially flat if its component V£,1,° is flat, meaning 
(V*.i.°)2 = 0. 

Definition 4. J4 /Zat structure on 8 is given by a connection 

V£jiat . Coo(M. ^ _^ ni(M. f ) (2.26) 

which is ^-linear and whose extension to Q,*(M\£) satisfies ( V ^ / a t ) = 0. 

Clearly a partially flat connection on £ determines a flat structure on S through its (1,0)-
part. Conversely, given a flat structure on £, there is a partially flat connection on 8 which 
is compatible with the flat structure, although generally not a unique one. 

The flat structure (£, V ^ / a t ) is classified by a map M —> jE?Aut<s ((£)<$, where 6 denotes 
the discrete topology. Then there is a composite map 

M - • BAut<z{<S)6 -+ BGL(<B)6 - • £GL(<8)+, (2.27) 

where + denotes Quillen's plus construction. Thus the pair (£, SJE^lat) gives an element 
[£?V*' / / a t] e K$9(M) = [M,K0(<B) x £GL(<B)+], the K0(<B) factor simply representing 
the K-theory class of the fiber <£. 

If Ve is partially flat then 

(V^)2 e nl{M; Rom<B(8, ftipB) ®<B £)) 0 0°(M; Hom s (^ , Q2(*B) (g)* £)). 
(2.28) 

Thus ch(V£) € 0 P<q T?'q(M, 93). As ch(V5) is d-closed, its (p,p)-component chp'p must 
p+q even 

satisfy d^ch"'" = 0. Hence ch(V£) € ffe"e n(M,<8) and [ch(V£)] e H'£ven(M). There is a 
commutative diagram 

K*(M) — Jf?(Af) 
ch | ch | (2.29) 

H'£ven(M) —-> J K g ^ M ) . 

E x a m p l e 1 : If <8 = C then Q0OB) = ZopB) = #o(93) = C and Q,(<B) - Z*(») = 
i/„(*8) = 0 for * > 0. Then if 8 has a flat structure, by (2.11) we have that [ch(V£)] lies 
in H°(il/;C) and simply represents rk(£). On the other hand, K^lg(M) can be very rich. 
Thus the Chern character does not see the interesting part of K^g. We now give another 
construction which will be used in Section 4 to see more of K$. 

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Tue Jun 14 11:21:18 EDT 2016for download from IP 192.68.254.4.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



10 JOHN LOTT 

2.3. Chern -S imons Classes of Pa r t i a l l y F l a t Connec t ions . Let Si and S2 be smooth 
93-vector bundles on M with flat structures. Suppose that there is a smooth isomorphism 
a : Si —* S2 of Si and S2 as topological 93-vector bundles. The triple (£i,£2, <*) defines an 
element of Karoubi's relative K-group K!£l(M), which fits into an exact sequence 

K£9~\M) —> Kg-\M) —• Kg(M) —> K%9{M) —• K%P(M). 
(2.30) 

Choose partially flat connections V £ l , V^2 which are compatible with the flat structures. 
For u G [0,1], put Ve(u) = vS7€l + (1 - u) a*V^2. Note that for u G (0,1), V£{u) may not 
be partially flat on E\. 

Definition 5. The relative Chern-Simons class CS (V£ ] , V^2) G Tt'Md(M, 93) is 

C 5 ( V £ l , V £ 2 ) = - f Tr((duX7£{u))e-(v£{u))2)du. (2.31) 

By construction, 

dCS (V £ l , V f 2) - ch(V£ l) - ch(V£2) (2.32) 

vanishes in W'^iM, 03). Thus there is a class [CS (VElJlai, Ve^flat)] G H^iM) which 
turns out to only depend on [£u£2ia] G K%l(M). In particular, [CS (V£lJlat,Vf2'//at)] is 
independent of the choice of the partially flat connections V £ l , V£2 and only depends on a 
through its isotopy class; this will also follow from Proposition 9. 

From (2.11), 

/ \ 

0 W(M;Hq(<B)) 
p>q+l 

[CS{V£"flat,V£*<flat)] € ( 0 H p + 1 (M-&^) 

\p+q odd ) 

The next proposition is implicitly contained in [10, p. 444-448]. We give a simpler proof. 

(2.33) 

Proposition 1. [CS (V£l'"af, Ve^lat)] actually lies in 0 P>q W(M;Hq(<B)). 
p+qodd 

Proof. Let CSP^P G ff+1,P(M,<B) denote the (p + l,p)-component of the explicit differ­
ential form in (2.31). From (2.32), rf1-0 CSP+1>P = 0 and so CSp+l>p defines an element of 
Hp + 1 (M; § £ g i y We show that this element lies in HP + 1(M,#P(<B)). For i G {1,2}, define 

Sh : Si -> fypB) (8)© £i (2.34) 

as in (2.19). Put 

-x2 _ 1 
p(a;) = - . (2.35) 
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DIFFEOMORPHISMS AND NONCOMMUTATIVE ANALYTIC TORSION 11 

If z G Zp+l(M; C) then in Op+1(Q3), 

d* fcSp+l* = / d 0 ' 1 CSP+1* = f (dh° CSp*+l + d0'1 CSP+1>P) (2.36) 

= | [iV ( e-(v^^) 2) - IV (e-^- 1 ^) 2 ) ] 

- f[Tr((V^^0d^)g(V^^°d^)) 

= I'd1'0 [TV ( S ^ V * ' 1 ' 0 ^ 1 ) ) - 1* ( ^ ( V * 2 ' 1 ' 0 ^ ) ) ] = 0. 

The proposition follows. D 

If 8' is a 55'-vector bundle with a flat structure and a partially flat connection \/£' then 

CS ( V 1 0 c < f \ V£2®c£") - CS {VSl, V^2) • ch ( V ' ) G n / / , 0 ^(M, <B 0 c « ' ) • 
V J V 7 (2.37) 

Finally, for future reference we define a trace on an algebra of integral operators on 8. 
Suppose that M is compact and Riemannian. Let $ be a Frechet algebra containing 03. Let 
H o m ^ ( £ , 5 ®<B £) be the algebra of integral operators 

T : C°°(M; 8) - • C°°(M; ff 0 * £) 

with smooth kernels T(mi, ra 2 ) € Hom<B(8m2>5 ®<B £mi)- That is, for s G C°°(M;£) , 

(Ts)(mi) = / T(m1 ,m2)5(m2)(ivol(m2) G 5 0 * ^ . (2.38) 

Put 

TR(T) - / Tr(T(ro, m)) dvol(ro) G 37[3, ff]. (2.39) 
JM 

o n H o m £ ( £ , £ 0 < B £ ) . 

/M 

Then TR is a trace on Hom§>(£, # 0® £). If £ is Z2-graded then there is a supertrace TRS 

3. G R O U P S AND C O V E R I N G S P A C E S 

In this section we review the calculation of the cyclic cohomology of a group algebra. We 
then describe the relationship between analysis on a normal covering space M' —• M and 
on a certain 93-vector bundle 8 over M. We put an explicit partially flat connection on 8 
and compute the pairing of its Chern character with the cohomology of the covering group. 

3.1. Cyclic Cohomology of Group Algebras. Let V be a discrete group. Let C r be 
the group algebra of T. Let (r) denote the conjugacy classes of T, and ( r ) ' (resp. (T)f/) 
those represented by elements of finite (resp. infinite) order. For x G T, let Zx denote its 
centralizer in T and put Nx — Zx/{x}, the quotient of Zx by the cyclic group generated by 
x. If x and x' are conjugate then Nx and Nxf are isomorphic groups, and we will write N(x) 
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12 JOHN LOTT 

for their isomorphism class. Let C[z] be a polynomial ring in a variable z of degree 2. Then 
the cyclic cohomology of CF is given [6] by 

tfC*(Cr)=( 0 H*(7V (T>;C)(8)C[z]]e 0 H'(JV(X>;C). (3.1) 

\(x)e(ry J (x)e(ry 

We will need explicit cocycles for HC*(CT). Fix a representative x G (x). Put 

Ck
x = {r :TM -> C : r is skew and for all ( 7 o . . . . , 7fc) G r fc+1 and z G Zx , 

(3.2) 
r (7o^ ,7 i2 , . . . ,7*2) = T ( 7 O , 7 I — - ,7*) a n d 

r ( 7 0 x , 7 i , . . . ,7fc) = r (7o ,7 i , . . . ,7 fc)}. 

Let 6 be the usual coboundary operator : 
fc+i 

(«r)(7o, • • • ,7*+i) = £ ( - l ) J " T ^ • • • ' ^ ' • • • ' ^+ i )* (3-3) 
3=0 

Denote the resulting cohomology groups by Hk. Then Hk is isomorphic to Hfc(Ar(x);C) and 
for each cocycle T £ Zk, there is a cyclic cocycle ZT G ZCk(CT) given by 

7( \ ( O i f 7 / c - 7 o ^ (a;) 
ZT(7o,7i,--- ,7fc) = < , . . . _! (3-4) 

[H7o0, 7I7O£, • • • , 7/c • • • log) « Ik - • • 7o = gxg . 

For k > 0, these are in fact reduced cocycles. In particular, from (2.6), they pair with 
^fc(cr). 

3.2. Noncommutat ive Geometry of Covering Spaces. The material in this subsection 
is essentially taken from [20], with a change from right modules to left modules. 

Let r be a finitely generated discrete group. Let || o || be a right-invariant word-length 
metric on T. Put 

<B" = {b : T -> C : for all g G Z,sup ( e* 1 1 ^^ ) ! ) < oo}. (3.5) 

Then Q5W is independent of the choice of || o || and is a Frechet locally m-convex algebra 
with unit. Note that %$" is generally not stable under the holomorphic functional calculus 
in the reduced group C*-algebra C*T. For this reason, we will eventually replace it with a 
larger algebra. But let us continue with 93^ for the moment. 

Let M be a smooth connected compact Riemannian manifold. Let p : TTI(M) -> T b e a 
surjective homomorphism. There is an induced connected normal T-covering M' of M, on 
which g G T acts on the left by Lg G Diff(M/). Let n : M' —• M be the projection map. Put 

27" = » " x r M'. (3.6) 

Then V" is a 93w-vector bundle on M with a flat structure. 
Let E be a complex vector bundle on M with connection VE and let E' be the pulled-back 

vector bundle ir*E on M' with connection V^ = TT*VE. Define 

fw = 2T <g> E, (3.7) 
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DIFFEOMORPHISMS AND NONCOMMUTATIVE ANALYTIC TORSION 13 

a S8W-vector bundle on M. Fix a basepoint x0 G M'. There is an isomorphism between 
C ° ° ( M ; ^ ) and 

{s G C°°(M'; E') : for all q G Z and multi-indices a, (3.8) 

sup (eqd{x»>x)\VQs{x)\) < o o } . 
xeM' 

The action of <BU on C°° (M;£^) is given explicitly by saying that b = J2gerbg 9 e ^ 
sends s G C°°{M';E') to 

6-5 = ^ 6 , L ; _ l 5 . (3.9) 

We now construct an explicit partially flat connection Vp~ on Vu. The (1, 0)-part V2^'1 , 0 

is determined by the flat structure on Dw . It remains to construct 

yZ^Ai . ^(M- Vu) -> C°°(M; QiW) ®& V"). (3.10) 

Let h G Co°(M') be a real-valued function satisfying 

X>;/> = i. (3.H) 

Given 5 G Co c(J\/;2>'), considering it to be an element of C°°(M') by (3.8), define its 
covariant derivative to be 

Vgs = h-LgseC°°{M'). (3.12) 

Proposit ion 2. [20, Prop. 9] 

y ^ , 0 , l 5 = J2dg ®C*(Af;»-) V,5 (3.13) 

defines the (0,1)-part of a partially flat connection on V". 

We will use the inclusion 

9T (M, » w ; £>") -> fl*08w) <8><B- ft* (M'). (3.14) 

The curvature of V p w , acting on 5 G C°°(Mf), is computed to be 

( V ° " ) 2 4 = - £<*<? (dM ' ft) i ; S + ] T dg dg1 h {L'gh) L'g,gs. (3.15) 
9er g,g'er 

Let r € Z^ be as in (3.2) and let ZT G ZCk(CF) be the corresponding cyclic cocycle. 
Suppose that there are constants C, D > 0 such that for all (70, . . . , 7^) G Tk+1, 

|Zr(7o,... ,7*)| < CeD^n+-n^«>. (3.16) 
Then ZT extends to an element of ZCk(<Bu). 

The cover M' of M is classified by a map v : M —• i?r , defined up to homotopy. If x = e, 
we can think of [r] as an element of H*(r;C) ^ H f c (£r :C) . Recall that [ ch (V p " ) j G 
#§Len(M). 
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14 JOHN LOTT 

Propos i t i on 3 . The pairing (ZT ,ch ( V p " ) ) G H*(M;C) is given by 

D - U jO tfx^e 

where Ck is a nonzero constant which only depends on k. 

Proof. Let ck denote a generic nonzero /c-dependent constant. We use equation (3.15) for the 

curvature of V 7 ^ . Consider first the term in ch (V 2^) coming from ( — J2ger ^9 (dM' h) IS J . 

For 5 € Coc{M'), we have 

Y,dg(dM'h)L*\ s= (3.17) 

Y: [dpi(dMVi)L^...[dPfc(d^)^] s= 
9\ -9 k 

Ck ] T d9l...dgk(dM'h) (L;idM,h)...(L;k_^gidM'h)L;k^s^ 
9i- -9k 

ck Y, dgi • • • dgk (dM' h) (LgidM'h) ... {Lgkl.gxdM'h) (gk . ..g^1 • s = 
91—9k 

ck 52 dg1...dgk(gk...gl)-1Li)k^ [(d»'h) fad"' h) ... ^_,...9ldM' h] s = 
91-9 k 

ck 52 d9l. ..dgk(gk .. .̂ O""1 (%....„ }->dA,'h) ... (Ll-^'h) s. (3.18) 
9\—9k 

The contribution of this term to (Z r , ch ( V 1 ^ ) ) , or more precisely the pullback of the 
contribution to M', is 

ck 52 ZT (dgx... dgk{gk ... g^1) (^...Sl)-.dM'fc) • • • (fydM'h) = 
91-9k 

ck 52 ZT ((gk . ..g,rldg,... dgk) ( ^ . . . 9 l , - . d M ' f t ) • • • (^dM'h) . 
91 •••gk 

It is clear at this point that a nonzero contribution only arises when x — e, in which case 
we get 

ck 52r{(gk...gl)-\...,gk
1,e) (Llgk,„Si)-ldM'h)...(L;ldM'h) = 

ai-at (3.19) 

ck 52 r (7 i , • • • , 7 . , e) (L^dM'h) ... (L;kdM'h) . (3.20) 
7i—7fc 

One can show [20, Lemma 3] that there is a closed form u € Q,k(M) such that 

52 r ( 7 i , - - - nk,e)(L'11dM'h)...(L;iidu'h)=n'U. (3.21) 
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DIFFEOMORPHISMS AND NONCOMMUTATIVE ANALYTIC TORSION 15 

Furthermore, the de Rham cohomology class [us] £ Kk(M;C) of u satisfies [20, Prop. 14] 

M = c*i/*[r]. (3.22) 

We now argue that this is in fact the only nonzero contribution to (Zr,ch (Vpu;)). First, 
looking at the group element factors in (V2^) and the structure of ZT, it is clear that 
(Zr,ch (V7^)) vanishes if x ^ e. Next, consider the possible contributions of the term 
J2g g'er dgdg' h (Lgh) L*,g to / Z r , Tr (V1^) 3 V For example, consider the case j = 1. Then 
for 5GC°°(M'), 

£ d ^ ' / i ( L ^ ) L ^ = (3.23) 

£ dgdg'h{L;h)(gfg)-l.s = 
9,9'er 

£ dpdp /(^r1^)- j[ / i(L^)]s = 

J2 dgdg\g'g)-1 ( L ^ - I / I ) (L^h) S. 
9,9'er 

If r G Zl then 

/ Z r, IV I £ dg dg' h (L*gh) L*g,g) \ = (3.24) 

] T ZT(dgdgf(g'g)'1) ( i ^ - i / i ) ( ^ - ^ ) 

EK(^rl'^1'e)(L*^-i/l)(^-ft) 
£ r (7 ,7 , , e ) (L; / i ) (L; / i ) . (3.25) 

7,7'€r 

Because of the antisymmetry of r, this vanishes. A similar argument using antisymmetry 
applies to all terms in (ZT, ch (V2^)) involving J2gg,er dg dg' h (L*h) L*g/g. • 

Remark 1 : There is a universal CT-vector bundle V° on BT. Working simplicially [17, 
Chapitre V], one can define a natural partially flat connection V2^ on T>°. Provided that 
one relaxes the regularity condition on h to being Lipschitz, one can realize Vpw as i/*Vr>°, 
extended from CT to S3". 

Remark 2 : Let C*T denote the reduced group C*-algebra of T. Suppose that there 
is a Frechet locally m-convex algebra *B°° such that 
i. <B" c <B°° c c;r. 
2. 03°° is dense in CLT. 
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16 JOHN LOTT 

3. 93 °° is stable under the holomorphic functional calculus in C*T. 
We can complete V" to a 93°°-vector bundle V°° on M and to a CrT-vector bundle V 
on M. The latter represents an element [V] e K^M) ^ KK(C,C(M) <g> C rT) and 
so gives a map a : K*(M) —> K*(C*T) = i f * ^ 0 0 ) . Composing with the Chern charac­
ter gives (ch o a)c : K*(M) <g) C —* #*(93°°), which coincides with the map coming from 
[ch (Vv )] e 0 p + < ? e w n H p (M;^ (Q3°° ) ) . Suppose that for each [r] € H*(r ; C), there is a 
representative r € Z*{T\ C) such that the cyclic cocycle ZT G ZC*(CT) extends to a contin­
uous cyclic cocycle on 93°°. Proposition 3 shows that if i/*[r] G H*(M; C) is nontrivial then 
ZT pairs nontrivially with Im(ch o a)c- Taking M to be a sufficiently good approximation 
to BY, we conclude that the Strong Novikov Conjecture (SNC) holds for T, meaning that 
the assembly map K*(BT) <g> C —* K*(C*T) 0 C is injective. The fact that the existence of 
93°° implies SNC is well-known [9, III.5], but we wish to emphasize how it comes from the 
computation of ch (yvo°). 

If r acts properly and cocompactly on a smooth manifold X then one can form the 93^-
vector bundle 93w x r I o n the orbifold T/X and carry out a similar analysis. The upshot 
is that if a finitely-generated discrete group T satisfies Hypothesis 2 below then the Baum-
Connes map [9, Il.lO.e] is rationally injective. 

R e m a r k 3 : In [20] we gave a heat kernel proof of the higher index theorem. This 
proof can be reinterpreted using partially flat connections. For example, let M be a even-
dimensional closed connected spin Riemannian manifold and let E be a Hermitian vector 
bundle on M with Hermitian connection VE. Then [20, Prop. 12] can be interpreted as 
saying 

l i m ( z r , T R 5 f e - ^ 2 ) ) = / A(X7™) A ch (V E ) A (Z r , ch ( V 2 ^ ) ) . 

Here TRS is the supertrace, s > 0 is a factor which rescales the metric on M and Ds denotes 
the (rescaled) Dirac operator on M, coupled to Su using the connection V f u \ One can also 
prove (3.26) using the methods of Section 6 of the present paper. 

4. 93 -HERMITIAN M E T R I C S AND CHARACTERISTIC CLASSES 

In this section we discuss the basic properties of a 23-valued Hermitian metric on a 93-
vector bundle. We use such a Hermitian metric to define a characteristic class of a 93-vector 
bundle with a flat structure. (Related ideas occur in [17, 6.31-6.32].) We show that the 
explicit partially flat connection described in the previous section, in the context of covering 
spaces, is self-adjoint. We give an application to the question of the rational injectivity of 
the algebraic K-theory assembly map. 

4.1. 93-Hermit ian M e t r i c s . Let M, 93 and <E be as in Section 2. We assume that M is 
compact, possibly with boundary. Suppose that 95 has an anti-involution, meaning a C-
antilinear map * : 95 —> 93 such that (6162)* = 6J6J and (6*)* = 6. We extend * to f2*(95) by 
requiring that (db)* = —d(b*). Let <£ be the vector space of C-antilinear maps t : <E —> 93 
such that t(be) = t(e)b* for all 6 G 93 and e € <£. It is a left 95-module. If 8 is a 95-vector 
bundle on M then there is an associated 95-vector bundle £ such that (£*)m = £m*. If £ 
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DIFFEOMORPHISMS AND NONCOMMUTATIVE ANALYTIC TORSION 17 

has a flat structure then so does S . An element t G C°°(M;£ ) extends to a C-antilinear 
map t : fi(M, 05; 8) -* Q(M, 05) such that 

t(LJ®<Be) = t(e)u* (4.1) 

for all UJ G O*(05) and e € C°°(M;£) . If V £ is a connection on 8 then there is an induced 
connection Vs on £ given by 

d (t{e)) = ( V r i ) (e) - i (V fe) G Qi(05) (4.2) 

for all t G C°°(M; £*) and e G C°°(M; £) . (The funny sign in (4.2) comes from the definition 
of the involution on fix(05).) If V^ is partially flat then so is V^ . 

Definition 6. 1. A Hermitian form on (£ is a map (•,•): <E x (£—> 05 which is C-linear in 
the first variable, C-antilinear in the second variable and satisfies (61e1,62e2) = ^i(ei 1^2)62 
for all &!, b2 G 05 and e\, e2 G (£. 
2. 4̂ Hermitian form (•,•) zs nondegenerate if it induces an isomorphism h* : (£ —* € 6?/ 
(ft'£(e1))(e2) = (e1 ,e2). 

We can extend (•, •) to a Hermitian form on Q*(05) <S><B € by requiring that 

(LUI (g)«B ei,tJ2 ®<B ^2) = cj1(ei,e2)cc;2 G Q*(05) (4.3) 

for all u)i,LJ2 € f2*(05) and ei ,e 2 G (6. 
There is a canonical Hermitian form (•, -)° on 05n given by ({xi}™=l, {*/t}™=1)° = ]T^=1 xiy*. 

Definition 7. 4̂ Hermitian metric on (B is a Hermitian form {•, •) on (£ which is positive-
definite, meaning that there is an embedding i : <£ —• 05n for some n such that (•, •) = z*(-, -)°. 

The method of proof of [18, Lemme 2.7] shows that a Hermitian metric is nondegenerate. 
Since € is a finitely-generated projective 05-module, it is clear that it admits some Her­

mitian metric. The method of proof of [18, Lemme 2.9] gives the following proposition. 

Proposit ion 4. If (•, -)0 and (*,-)i are Hermitian metrics on (£ then there is a smooth 
I-parameter family {at}te[o,i] ^n Aut<s((£) such that ao = Idg and (•, -)0 = aj(-, -)i. 

Definition 8. A Hermitian metric on a 05-vector bundle 8 is given by a smooth family of 
Hermitian metrics on the fibers {£m}m€M-

Proposition 5. There is a Hermitian metric on a 05-vector bundle 8. Any two such Her­
mitian metrics are related by an automorphism which is isotopic to the identity. 

Proof The algebra C°°(M; 05) is a Frechet locally m-convex algebra in a natural way. Fur­
thermore, C°°(M;£) is a finitely-generated projective C°°(M; 05)-module. (The proof is 
similar to that of the usual case when 05 = C, the essential tool being that Inv(M/v(05)) is 
open in MAT(05).) A Hermitian metric on the 05-vector bundle £ is the same as a Hermitian 
metric on the Q°°(M; 05)-module C°°(M; 8). The result now follows from Proposition 4. • 

A Hermitian metric on £ gives a C°°(M; 05)-linear isomorphism hE : £ —> £ . 

Definition 9. Given a connection Vs on 8, its adjoint connection is 

( V ^ = ( A £ ) " ' o V r o ^ , (4.4) 
another connection on 8. 
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18 JOHN LOTT 

(4.5) 

Explicitly, 

d(ci ,e2) - (V fe!,e2> - {eu (V £ )*e 2 ) e fii(M,<B). 

We say that Vs is self-adjoint if (V£)* = V*. 

Suppose that £ has a flat structure. The triple (£ , £*, /i£ J defines an element of K^l(M) 
In this case, we write 

C S (V£ , ftf) = CS ( V , V r ) G n"'°dd(M, 25). 

Proposition 5 implies that 

[CS(V£,h£)} G 0 Hp(Af;779(<8)) 

(4-6) 

p>q 
p+q odd 

only depends on the flat structure on £. To put it another way, the assignment of f £, £*, /i f J 

to £ gives an explicit map A"<£P(M) —• K^l(M). We can then apply C S to obtain an 
invariant of K^9(M). In total, we have defined a map 

\ 
ch © CS : K^g{M) ®H*(M;Z„(«B)) © ® H'(M; #,(»)) 

P<<? 
\p- fg even / 

(4.7) 

® H>(M; #,(»)) 

\p+q odd 

\ 

) 

/ 

Let (M, *) and ( M \ *') be smooth connected manifolds with basepoints. Let £ be a 93-
vector bundle on M and similarly for £'. Let T = M x £ | denote the trivial 93-vector bundle 
on M with the same fiber at * as £, and similarly for T'. Then [5] — [T] is an element of 
the reduced group K^P(M), and similarly for [£') - [T). The virtual 93 <g>c93'-vector bundle 
£®c£'-T®c£'-£®cT'+T®cT' o n M x M ' is trivial on (Mx{*'})U({*}xM') and so passes 
to an element of K^c<B>(M A M') which represents the product ([S] - [T]) • {[£'] - [T7]). If 
£ and £' have flat structures then we get the product in Kalg [19, Chapitre II]. 

Let Vs and V 5 ' be connections on £ and £', respectively. There are induced connections 
on T and V. Let z G Z*(M, *;C) and z' e Z*(M',*';C) be relative cycles. Let zzf e 
Z+(M A M', *; C) be the product. Then with an obvious notation, (2.25) implies that 

f Ch h^-T)^-T)\ = Lh (yf-T) . I ch (V'-r') . 
» J zz' J z J z1 

(4.8) 

Suppose that £ and £' have partially flat connections and Hermitian metrics. Suppose that 
V£ ' is self-adjoint. Then from (2.37), 

f c s (v< £ - 7 >< £ ' - T ' \ f c< £ - T H*' -T 'A = jcS{V£-r,h£-7)- f ch(vf'-T') 
J zz' Jz Jz' (4.9) 
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DIFFEOMORPHISMS AND NONCOMMUTATIVE ANALYTIC TORSION 19 

4.2. 23-Hermitian Metrics, Group Algebras and Assembly Maps. We use the no­
tation of Subsection 3.2. Define an involution on 93^ by * ( X ^ e r c s # ) ~ Ylger^g9~l-
Considering 93^ as a left-module over itself, it has a Hermitian form given by (bi,b2) = b-^b^. 
We can transfer this Hermitian form fiberwise to 2>\ In what follows, we will freely identify 
differential forms on M and T-invariant differential forms on M'. 

Definition 10. Given s i , s 2 £ COG{M\VUJ), consider them to be elements o/C°°(A/ /) by 
(3.8). Then the Hermitian form ( s i , ^ ) " € C^iM:^) is given by 

(sus2r(x) = ] T g(L;g,Sl)(x) (L; ,^)(x) (4.10) 
9,9'er 

= Yl 9Si(gg'x)s^(g'x). 
g,g'er 

We do not claim that (•, -)w is a Hermitian metric, in that it may be degenerate. Recall 
the definition of Vp u ; from Subsection 3.2. 

Proposit ion 6. V77" is self-adjoint with respect to ( T ) ^ , meaning that for all Si ,s2 € 
C°°{M]Tr), 

d(sus2)u = (S?1>"slis2)u - (si , V 2 ^ ) " e fii(M,!8w). (4.11) 

Proof As T-invariant differential forms on M\ we have 

d (su s2r = E k (^< s 0 Ll'^ + 9 (dM'L'gglSl) L;,S~2 + g {Lgg,Sl) dM'LJ,d 
W L V J (4.12) 

and 

(^'ifis1,s2r=(dM's1.S2y (4.i3) 
9:9' 

(V™sus2)u = (Tdy(hL;Sl) ,s2\ (4.14) 

= YldrygL;g,(hL;Sl)L*g,s-2 

9,9'n 

= E W™) -Jdg] Lgg,h (L;gg,Sl) L;,S~2 

9,9',1 

= E ^ L*-,-**h ( ^ ) L ^ - E ̂  Li9'h to^o^ 
5,0',7 9,9',1 

9,9' 9,9',1 

Switching s\ and s2 gives 

(Vv^s2,Siy = Y,9 (L;g,dM's2) Lg,sl (4.15) 
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20 JOHN LOTT 

and 

Then 

( V 2 ^ 0 ^ , stf =^d<yg Ugg, (hL;s2) L ^ . (4.16) 
g,g'r, 

and 

<«i, V ^ 1 ^ ) " = - E ^ " 1 ( ^ ) ^ ^ (4-17) 
9,9' 

= -53s(^i ) i ; - v d M '^ 

= -EH^)^ M ^ 

<*, V*-W52y = - E 5 " rf^ ^ ( L ^ ) L-<^ (4-18) 

= - E Td5^s i (^;-v / l) ^-W's '5* 
S.S',7 

= - E 7 d5 L W s i (Llg-h) Ll'~^-
9,g'n 

Combining (4.12), (4.13), (4.14), (4.17) and (4.18) gives (4.11). • 

We now give examples in which the map (4.7) is nontrivial. Recall the notation of Sub­
section 3.1. 

Hypothesis 2. There is an involutive Frechet locally m-convex algebra 93°° such that 
i. »" c 33°° c c;v. 
2. *B°° is dense in C*T and stable under the holomorphic functional calculus in C*T. 
3. For each (x) G ( r ) ' and [r] G H*(7V(X);C)7 there is a representative r G Z* such that the 
cyclic cocycle Zr G ZC*(CT) extends to a continuous cyclic cocycle on 93°°. 

Hypothesis 2 is known to be satisfied by virtually nilpotent groups [16] and Gromov-
hyperbolic groups [30]. 

We can extend P ^ t o a <B°°-vector bundle V°° on M, V p " to a connection Vp°° on V°° 
and (•r)us to a Hermitian metric (•, -)00 on V°°. 

By [17, Chapitre III], we can consider an element k of K^9(ZF) to be given by a formal 
difference of homology n-spheres HSn equipped with flat bundles £° of finitely-generated 
projective Zr-modules. For simplicity, we just consider a single HSn. As in [17, p. 98], we 
may approximate HSn by compact manifolds (possibly with boundary), so for simplicity we 
assume that HSn is a compact manifold. Let [HSn] G H n ( / / S n ; C) denote its "fundamental 
class". Putting £°° = 93°° <S>zr£°5 the algebraic K-theory class of [£°°] represents the image 
of k under the map K^(ZT) -> K*9 pB°°). Now apply (4.7) to [£°°], pair the result with 
ZT and integrate over [HSn] to get a number. This procedure gives a map 

^ ( Z r ) 0 z C - > 0 Hn(7V(x);C)© Q H ^ M ^ ; ! 
<*)e<r'> \ \ fc=o II (4.19) 
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DIFFEOMORPHISMS AND NONCOMMUTATIVE ANALYTIC TORSION 21 

which is conjecturally injective. 

E x a m p l e 2 : Take F to be the trivial group and 5°° = C. In this case, (4.7) becomes 

ch © CS : K%9{M) — H°(M: C) 0 j 0 W{M; C) J . (4.20) 
\p odd J 

Applied to a flat complex vector bundle E on M. this represents the rank of E along with 
its Borel classes [2, Section Ig]. It is known that 

K*9{Z)®C-. 
C if n = 0 
C if ?? EZ 1 mod 4, n > 1 (4.21) 
0 otherwise, 

with the higher terms being detected by the Borel classes [4]. Thus for all n = 1 mod 4, n > 
1, there is a homology n-sphere HSn and a flat bundle £° of finitely-generated projective 
Z-modules on HSn such that if £ = C <g>z £° then f[HSn] CS (£) ^ 0. 

Example 3 : Take F to be a finite group and 23°° = CI \ We can write CT = 
(B er MUi(C), where n* = dim(pi). Then (4.7) becomes 

c / i © C S : / ^ ( M ) - + 0 
per 

H%/l/;C)0 ( 0H p (M;( 
,p odd 

(4.22) 

Consider the case n — 1 of (4.19). Take the homology sphere to be a circle 5 1 . Given 
T e GL r (Z r ) , form a flat Zr-bundle £° on S1 by gluing the ends of [0,1] x ( Z r ) r using T. 
Then £°° = CT <g>zr £° is a flat Cr-vector bundle on Sl with holonomy T. One computes 
that 

/ , 
C5([fo o]) = 0 2 1og|det(p(T))|. (4.23) 

per 

Thus CS detects all of Af* (Zr ) <g> C [31]. 

Example 4 : Suppose that F satisfies Hypothesis 1 of the introduction. For an algebra 
A, let KA denote the algebraic K-theory spectrum of A, with (K^) 0 = K0(A) x BGL(A)^. 
For an abelian group G, let H ^ denote the Eilenberg-Maclane spectrum of G. We can think 
of the class CS as arising from a map 

K ^ ^ r j 57(Hff,(9}0O)). (4.24) 
p>q 

p+q odd 

We recall the assembly map of [19, Chapitre IV], extended from Z r to 93°°. The inclusion 
of T into GL(Zr ) , as a diagonal matrix which is the identity along the diagonal except 
possibly in the upper left corner, induces maps 

BT - • BGL(ZF)6 -» BGL(ZF)+ -> BGL (<B°°)+ , (4.25) 
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22 JOHN LOTT 

which extend to 

Br -> K0(ZY) x BGL(ZY)6 -* K0(ZY) x BGL(ZY)+ — K0 (<B°°) x £GL (<B°°)+ . 

(4.26) 

Smashing with Kz gives the assembly map 

K z A 5 r - ^ K z r - K<B- . (4.27) 

We can compose with CS to get 
K z A B r - Kzr - K f f l«-» ]J ^ ( H ^ . , ) . (4.28) 

p>q 
p+q odd 

Taking homotopy groups gives 

Hp (BY; Kz) - KP(ZY) - KP(<B°°) -+ 0 77,(23°°). (4.29) 
q<p 

q+p odd 

Then tensoring with C, we obtain 

0 (Kl(Z)^zC)^c^m(Y;C)^Kp(ZY)^zC^Kp(^OG)^zC-^ 0 77,(<B°°). 
Z+m=p q<P (4.30) 

q+p odd 

Let HSl and £ be as in Example 2. Let [£]c € ^/(Z) 0 Z C be the corresponding K-theory 
class. Then (4.30) gives a map 

[£}c:Kp-i(Y;C)^Kp(ZY)®zC-+Kp(<Boc)®zC-* 0 77,(23°°). 
*<P (4.31) 

q+p odd 

Tracing through the definitions, (4.31) can be interpreted concretely as follows. Assume 
that BY is a manifold, possibly with boundary. (Otherwise, approximate it by manifolds.) 
Let £' be the 93°°-vector bundle V°° on BY. The map (4.25) is realized geometrically by 
[£'] - [T] e K$L(BY), where T is as in the discussion above equation (4.8). Consider the 
S3°°-vector bundle (£ - T) <g>€ (£' - T) on HSl A BY. Then 

C S ( [ ( £ - T ) ® C ( £ ' - T ' ) ] ) € 0 ff(HSlABr;Hq(<B°°)) (4.32) 
q<p 

q+p odd 

= 0 RP~'(r;C)®Hq(<B°°). 
<j+podd 

The map (4.31) comes from pairing Hp_,(r; C) with CS {[{£ - T) ®c (£' - T)]). 
From Proposition 6, V5' is self-adjoint. Thus we can apply (4.9), with z € Zi(HS\ *;C) 

and z' e Zp-i(BY, *'; C). If / = 1 mod 4 and / > 1 then by Example 2, we can choose HSl 

and £ so that fzCS {V£~T,h£~T) is nonzero. Applying Proposition 3 to fz, ch (V5 '~T '), 

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Tue Jun 14 11:21:18 EDT 2016for download from IP 192.68.254.4.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms
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we conclude that (4.30) gives an injection 

0 H p - x - ^ r ; C) - KP(ZT) ® z C -» KP(<B°°) ® 2 C -» (4.33) 
fc=i 

0 //p-i^CB00) - 0 Hp-x^frjC). 
fc=0 

Thus 
fE^il 

0 H p - ^ r ; C) - i^p(Zr) ®z C (4.34) 
k=i 

is injective. Including the contribution of the characteristic class ch and taking more care 
with reduced vs. unreduced homology gives the injectivity of 

HP(r; C) 0 0 Hp_i-4ib(r; C) - KP(ZT) ® z C. (4.35) 

This is not an optimal result, as (4.35) is known to be injective for all groups T such that 
dime H*;(r; C) < oo for all k G N, regardless of whether or not they satisfy Hypothesis 1 [3]. 
The proof of [3] uses more complicated methods. 

There is a conjecture that (4.35) is an isomorphism if T is torsion-free. This is known 
to be true when T is a discrete cocompact subgroup of a Lie group with a finite number of 
connected components [14]. 

5. NONCOMMUTATIVE SUPERCONNECTIONS 

In this section we first extend the results of the preceding sections from connections to 
superconnections. For basic information about the superconnection formalism, we refer to 
the book [1]. We then use superconnections to prove a finite-dimensional analog of our fiber-
bundle index theorem. We also construct the associated finite-dimensional analytic torsion 
form and relate it to various versions of the Reidemeister torsion. The main technical 
problems of this section involve the large-time behaviour of heat kernels in Frechet spaces. 

5.1. Partially Flat Superconnections. Let M, 93 and £ be as in Subsection 4.1. Suppose 
that £ is Z-graded as a direct sum 

n 

5 = 0 r (5.i) 

of 93-vector bundles on M. We use the induced Z2-grading on £ when defining supertraces. 
The algebra Q (M; Hom<B(£, &*(%$) ®<B £)) has a trigrading as 

fi(M; Homes ( f ,n„ (») (8 )<8f ) )= 0 ftp,<7,r(M, 03, End (£)), (5.2) 
p,<7,r£Z 
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where by definition 

ft™'r(M, 53, End(£)) - ftp (M; H o m ^ r , 0,(93) 0 ^ 8*+r)) . (5.3) 

Define a subalgebra of O (M; Horn® (5, Q*(*B) ®<s 8)) by 

ft' (M; Hom^(^, Q*(53) (g)* £)) = 0 ft™'r(M, 53, End(£)). (5.4) 
p+r<q 

Definition 11. A degree-! superconnection A' on 8 is a sum 

A' = J2A'P (5-5) 
p>0 

where 
1. A[ is a connection V£ on 8 which preserves the Z-grading. 
2. ForV+\, A'p e ®p+q+r=in™-r(M,<B,End(£)). 

We will sometimes omit the phrase "degree-1". For p ^ 1, let A'pqr denote the component 
of A'p in 0^ ' r (M,<B,£) . As in (2.16), we write V^ - V^'1'0 0 V ^ ' 1 . 

The superconnection A' gives a C-linear map 

A' : C^iM-.S) -> ft*(M,53;£) (5.6) 

which satisfies the Leibniz rule. We extend A1 to a C-linear map on $l*(M. 53; £) by requiring 
that for all u G fifc(M, 03) and 5 G ftz(M, 53; £), 

V£(UJS) = (-l)k to A V£s + du; 0Coc(M;(B) 5. (5.7) 

The curvature of A' is 

(A')2e 0 fi™'r(M,®,End(£)). (5.8) 
p+q+r=2 

Let (4')p,q,r denote the component of (A'f in QP'«'r(A/, 53, End(£)). 
The Chern character of A' is 

ch (A') = Trs (e- ( y l , ) 2) € n " e n ( M , 53). (5.9) 

It is a closed form whose cohomology class [ch {A')) 6 H^en(M) is independent of the choice 
olA'. 

Definition 12. The superconnection A' is partially flat if (A')2
p02_p = 0 for allp>0. 

Definition 13. A superflat structure on S is given by a degree-l superconnection 
A,,flat . C o c ( M ; £ : ) _> Q * ( M ; £ ) (5 1 Q ) 

which is ^-linear and whose extension to Q*(M;£) satisfies ^A'^lat) = 0. 

Note that the map in (5.10) does not involve any 53-differentiation. A partially flat 
superconnection determines a superflat structure on 8 by 

00 

A'Jlat = 4u>,i + V*-1-0 + £ A'pA1_p. (5.11) 
P=2 
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Conversely, given a superflat structure on 8, there is a partially flat superconnection on 8 
which is compatible with the superflat structure, although generally not a unique one. 

Example 5 : If 03 = C then a partially flat degree-1 superconnection on 8 is the same as 
a flat degree-1 superconnection on 8 in the sense of [2, Section Ha]. 

Example 6 : If 8 is concentrated in degree 0 then a partially flat degree-1 supercon­
nection on 8 is the same as a partially flat connection on 8 in the sense of Subsection 2.2. 

Hereafter, we assume that A' is a partially flat degree-1 superconnection. 

P ropos i t ion 7. We have oh(A') G U',even(M,<B). 

Proof. As (A'f G W (M; Hom<B(^, ft*(93) <g>» £)), the same is true for e~{A'f. As Trs van­
ishes outside of © p g > 0 HP,<7'°(A^, 93, End(£)) and ch is closed, the proposition follows. • 

Thus [ch(A')] G H'£ven(M). 
Let 8\ and 82 be smooth 93-vector bundles on M with superflat structures. Suppose 

that there is a smooth isomorphism a : 8\ —> 82 of 8\ and 82 as topological 93-vector 
bundles. Choose partially flat superconnections A[, A'2 on 8\ and 82) respectively, which 
are compatible with the superflat structures. For u G [0,1], put A(u) = uA[ + (1 — u) a* A'2. 
Note that for u G (0,1), A(u) may not be partially flat on 8\. 

Definition 14. The relative Chern-Simons class CS (A[,A'2) G O ' (M, 93) is 

Trs ((9 t tA(u)) e-^2 ( u )) du. (5.12) 

By construction, 

dCS (A[,Af
2) = ch(A[) - ch{A'2) (5.13) 

vanishes in U",even(M,<B). Thus there is a class [ C S ^ , A'2)] G H'^odA(M). 

P r o p o s i t i o n s . [CS {A'^A^)] actually lies in 0 P > 9 HP(M; 77^(93)). 
p+q odd 

Proof. The proof is like that of Proposition 1. We omit the details. • 

Proposition 9. The class [CS (A^A^)] is independent of the choice of partially flat con­
nections A[, A'2; hence we denote it by It only depends on a through 
its isotopy class. More precisely, let {a(e)}€€R be a smooth I-parameter family ofa's. Then 
the variation af CS (Af

vA2) G Q ' (M, 93) is given by 

deCS (A[,A(
2) = d(f Tr5 f oT^e) ^ ~ e~A^A du+ f f u(l - u) (5.14) 
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26 JOHN LOTT 

Proof. We first prove (5.14). Put M = Rx M. Let p : K x M —> M be the projection onto 
the second factor. For i € {1,2}, put E{ = p*Ei, A[ = pM-. Then A[ is partially flat on E{. 
Define a : £i —> £2 by saying that 5?L > x M = a(e). Let d — de dc + d denote the differential 

e n " ' ^ ( M , < B ) a s on n" ' * (M,» ) . Write CS {A!^A'2\ 

CSfa/ty = CS{A,
1,A!2)(e) + deAT(e) 

with T{e) e U"'even(M,<B). Then the equation dCS (A^A!?) = 0 implies that 

dcCS(A[,A2) = dT(e). 

It remains to work out T(e) explicitly. 
With an obvious notation, we have 

A[ = deAd€ + A[, 

a*A2 = deA dc + a-l(e) 
da(e) 

de 

Then 

A(u) = de A 

= deA 

de + (l-u)a-l(e) 

de + (l-u)a~l(e) 

da(e) 

da(e) 
de 

da(e) 
de 

+ a(e)M'2. 

+ uA!x + (1 -u) a(e)*A2 

+ A(u), 

duA{u) = -deA a~l(e) — ^ + A[ - a(e)*A2. de 

As a(e)*A2 = a~1(e) o A2 o a(e), it follows that 

de[a(eYA'2] 

Then one finds 

A2(u) = u{\ ~u)deA 

Thus de A T(e) is the de-term of 

a(eyA'2,a-He)d^f 

a-i(e)^,A[-a(eyA'2 + A2(u). 

/

I 
TV s ( (d u ! (u ) ) e -*< u >)d W = 

- f Trs ((- de A cT^e) ^ + A\ - o?A\\ 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 
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giving 

j\a(a-i{e)^e-A>{u)]du 
de 

de A T(e) = de A 

+ J1 J* Tra fa-a*Al^e'V 

u(l — u) de A 

(5.22) 

-r)A2{u) 

_! da(e) , „ , 

= de A 
! da (e ) ^2 (w] lW <"> rfiz 

+ deA J J w ( l -w)Tr . 
Jo Jo 

(A\-a*A'2)e~(-l-T)A2^drdu 

de A j f TV, (*-*(£) ^ e - * < « > ) d « 

+ <k/\ f1 T u(l - w)Trs L " 1 ^ ) ^ 

e - M 2 ( « ) d r d u 

r/l2(u) 

Ai - aM!,, e^-42 '" ' (Ai - a * 4 ) e ^ 1 " ^ " ) ] ) drdu 

Equation (5.14) follows from combining (5.16) and (5.22). 
Thus [CS (A[, A'2)] only depends on a through its isotopy class. A similar argument, 

working on R x M, shows that [ C S ^ ^ , J ^ ) ] is independent of the choice of partially flat 
connections A[, A'2. D 

Put 

v = 4M>,I ^ C°° (M;Hom» ( f , f + 1 ) ) • 

Then the partial flatness condition implies that 

v2 = 0, 

Thus there is a cochain complex of 93-veetor bundles 

(5.23) 

(5.24) 

(5.25) 

Definition 15.- For m e M, let H(£,v)m = 0 ^ = o H t ( ^ , f ) m 6e tfie cohomology of the 
complex (£, v)m over m. 

We cannot conclude immediately that # ( £ , v)m is a projective module. Recall that *B is 
contained in the C*-algebra A. Put S = A 0® £ and ̂ m = WA ®<B vm. 

Hypothesis 3. For all m € M, the map vm has closed image. 
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28 JOHN LOTT 

Remark 4 : If 03 = A = C then, as the fiber of S is finitely-generated, Hypothesis 3 is 
automatically satisfied. 
Proposition 10. Under Hypothesis 3, H(£, v)m is a finitely-generated projective 03 -module. 
Proof. The claim is that if we have a cochain complex 

(<S, v) : 0 -> £° A (S1 ^ . . . -^ e1 -> 0. (5.26) 
of finitely-generated projective 03-modulcs and if Im(t;) is closed then W{<£,v) is a finitely-
generated projective 03-module. We first prove a small lemma. 
Lemma 1. Suppose that E is a finitely-generated projective left 03-module. Put E = A ®<B 
E. Given T G End«a(£), put T = IdA 0«» T G EndA(£). / / T is invertible then T is 
invertible. 
Proof. Write £ = 03Ne for some projection e G il//v(03). Then £ = ANe, with e G Myv(A). 
We can consider T to be an element V G MN(*B) satisfying er ' = T'e = V. Put S = 
V + 1 - e G MN (93) and 5 = V + 1 - e G Jl/N(A). Then 5 is invertible. Hence S is 
invertible [5, Proposition A.2.2]. The inverse of T is given by the restriction of 5 - 1 to 
Im(e). D 

Now put 03-Hermitian metrics on {<£l}?=1. Let v* G Hom<B (6#, £*-1) be the adjoint to 
v, defined using these metrics. Put A = vv* -f v*v. Put € = A ®<» (£, t; = IdA <£><» V and 
A = vv* -f v* tJ. Then ((£, tJ) is a cochain complex of finitely-generated projective Hilbert A-
modules with Im(t;) closed. We use [34, Theorem 15.3.8], about operators with closed image, 
throughout. It implies that Ker(v) is a finitely-generated projective Hilbert A-module with 
lm(v) as a Hilbert A-submodule. As usual, 

Ker(v) fl Im(zy)1 = Kev{v) D Ker(tT) = Ker(A). (5.27) 

As v* is conjugate to v, lm(v*) is also closed. There is an inclusion map r : Im(A) —> 
lm(v) 0 Im(t>*). We claim that r is onto. We have that v is an isomorphism between 
Ker^) 1 = Im(zT) and Im(?J). Thus if z G Im(v) then there is a y such that 2 = vv*(y). 
Similarly, there is an x such that v*(y) = v*v(x), giving that z = A(v(x)). The same 
argument applies if z G Im(iJ*). Thus r is an isomorphism. 

In particular, Im(A) = \m(v) ® lm(v*) is closed, implying that A restricts to an isomor­
phism between Ker(A)1 = Im(A) and Im(A). It follows that 0 is isolated in the spectrum 
a(A) of A. By Lemma 1, cr(A) = a(A). Hence we can take a small loop 7 around 0 and 
form the projection operator 

pKer(A) ' l i L ^ < 5 - 2 8 ' 
It follows that Ker(A) is a finitely-generated projective ^B-module. 

If 7' is a contour around a(A) — {0} then the Green's operator of A is given by 

G 

For x G (£, let x = l<g><Ba; denote its image in (£. If x G Kev(v)f)Kev(v*) then x G Ker(A). 
Conversely, if x G Ker(A) then x G Ker(A), implying that x G Ker(TJ) D Ker(zJ*). Hence 
x G Ker(v) D Ker(v*), showing that Ker(u) fl Ker(v*) = Ker(A). 
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Finally, consider the map s : Ker(t;) D Ker(i;*) —» H((£. v). We claim that s is an isomor­
phism. If x 6 Ker(s) then x = v(y) for some y. Then v*v(y) = 0, so v*v(y) = 0, so rJ(^) = 0, 
so x = 0. Thus s is injective. If /i € H(<£,v), choose some i/ G Ker(^) in the equivalence 
class of h. Clearly y — vGv*(y) G Ker(i>). By usual arguments, y — vGv*(y) € Ker(F*) and 
hence t/ — vGv*(y) £ Ker(v*). As s(y — vGv*(y)) — /i, 5 is onto. 

We have shown that H(€, v) = Ker(v) n Ker(u*) = Ker(A) is a finitely-generated projec­
tive *8-module. • 

Hereafter, we assume that Hypothesis 3 is satisfied. 

Proposit ion 11. The {H(£,v)rn)rneM fit together to form a Z-graded ^-vector bundle 
H(£,v) on M with a flat structure. 

Proof. By (5.24), v is covariantly-constant with respect to the connection V£ ,1 '°. Given 
m € 71/, we can use the parallel transport of V^ 1 0 to extend the result of Proposition 10 
uniformly to a neighborhood of m, giving the *B-vector bundle structure on H(£,v). The 
flat structure on H(£,v) comes from [2, Prop. 2.5]. • 

There is a Hermitian metric hH^£^ on H(£, v) coming from its identification with Ker(A) C 
£. Letting pKer(A) be as in the proof of Proposition 10, there is an induced connection 

y#(£,tO = p/ver(A)V<f ( 5 > 3 0 ) 

onH(£,v). 

Proposit ion 12. The connection V ^ ^ 1 ^ is partially flat and compatible with the flat struc­
ture on H(£.v). Furthermore, ( V H ^ ) * = P '^ (A) (V£)*. 

Proof. The proof is similar to that of [2, Prop. 2.6]. We omit the details. • 

5.2. A Finite-Dimensional Index Theorem. Let (•, •) be a Hermitian metric on £ as in 
Subsection 4.1, which respects the Z-grading on £. As in that subsection, there is a partially 
flat degree-1 superconnection A on £ and an adjoint partially flat degree-1 superconnection 
A" = (A')* on £ given by 

A'={hsyloTohs. (5.31) 
Explicitly, define an adjoint operation on O (M; Hom<B(£, ^*(23) <8><B £)) by requiring that 
1. For a, a ' € ft (M; Horn®(5, fi*(95) 0© £)), (aa')* - a'*a*. 
2. If V e C°° (M; Hom<B(£, ft*(<8) <g><B 5)) then V* is the adjoint defined using the Hermitian 
form (4.3). 
3. If a; € Q,l(M) then its extension by the identity to become an element of Q1 (M; End<B(£)) 
satisfies u* — —u. 

Then for A! as in (5.5), 

^ = ZX (5-32) 
v 

where A'[ = (Ve)* and for p + 1, A£ = ( ^ ) * . We write 

CS(A ' , / i 5 ) =CS(AX) € n " , a W ( M , » ) . (5.33) 

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Tue Jun 14 11:21:18 EDT 2016for download from IP 192.68.254.4.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



30 JOHN LOTT 

Let N be the number operator on £, meaning that N acts on C°° (M; Ej) as multiplication 
by j . For t > 0, let (•, -)t be the Hermitian metric on E such that if e1? e2 G C°° (M; £ J) then 

<ei,e2>t = ^ i , e 2 ) € C % W : « B ) . (5.34) 

Letting hf : E —> E be the isomorphism induced from (-.•)*, we have /if = / / £ N . Letting 
A'/ denote the adjoint of A' with respect to (•, -) t, we have A" = £-7V A" ^ . 

P ropos i t i on 13. For u G [0,1], put A{u) = uA' + (1 - u),4". 77ien 

<9tCS (A', hE
t)=-d(j Trs ( M r ^ W ) du + /" / u( l - u) (5.35) 

Trs (N [A' - ylj', e-rA2{u) (A' - A?) e-( i - 'M 2(")]) drdu) . 

Proof. This follows from Proposition 9. • 

To make the equations more symmetric, put B[ = ^ 2 A' t~NJ2 and £J' = t~N'2 A" tN'2. 
Then B" is the adjoint of B[ with respect to (•,•). Explicitly, 

3=5>(1-p)/M;, (5.36) 

p>0 

p>0 

Propos i t i on 14. Foru G [0,1], putBt{u) = uJ^ '+Cl- t / )^" . DefineT(t) G n" , e"en(M,<B)/Im(d) 

T(*) = - - ( / T r * ( M T ^ ) rfw + / / u ( l - u ) (5.37) 

TV5 (TV \B't - B't\e-rB?M (B[ - £,") e ^ 1 ^ ^ ] ) drdiz) . 

T/ien 

and 

C S (4 ' , /if) = C S (B't1 h£) = - f Trs ( (£ j - B't') e"^ ( u >) du (5.38) 

d t CS (BJ, /i5) = - dT(t). (5.39) 

Proof. This follows from (5.12) and (5.35) by conjugating within the supertrace by tN/2. • 

We now discuss the large-t asymptotics of ch(Bt(u)). CS (B't,h€) and T(t). We must 
first specify the notion of convergence. Define ij and || • \\j as after equation (2.1). 

Let € be a finitely-generated projective left 93-module with a 93-Hermitian metric. Write 
€ = <BNe for some fixed projection e G MN(<B). Put e, = ij{e) G MN{Bj) and £ , = B j ^ . 
Then i£j inherits a Banach space structure as a closed subspace of B^. Furthermore, 
End# (Ej) inherits a Banach algebra structure as a closed subalgebra of End(Ej). Note 
that EndB0(Eo) is the same underlying algebra as the C*-algebra EndA(€), but may have a 
different norm. 
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We can identify End<B(<£) with the projective limit of Banach algebras 

. . . —> EndBj+l(EJ+1) — EndBj{Ej) — > . . . — > EndBo(E0). (5.40) 

We again write || * ||j for the induced submultiplicative seminorm on End<»((E). Given 
T € End<B(£), let Td be its image in EndBj(Ej). Then 

. . . D a(Tj+1) D a{Tj) 5 . . . 2 CJ{TQ) (5.41) 

and cr(T) = \J7L0^(Tj). As EndBo(E0) is the same underlying algebra as the C*-algebra 
EndA(£), a (To) = a(T). By Lemma 1, cr(T) = a(T). Thus a(T) = a{Tj) = a(T) for all j . 

Using the description of fi*(Q3) in [20, Section II], there is a sequence of seminorms 
{|| • ||j}jlo o n e a c n ^fc(^) coming from the norms on Bj. We obtain seminorms || • ||j on 
Hom<B (€,Q/b(53) <8><B <£) and 17^(53), with respect to which (2.8) is continuous. Convergence 
of ch (Bt(u)) or CS (B't, h£) will mean convergence in all seminorms {|| • | |j}Ji0. 

Proposition 15. For all u £ (0,1), as t —• oo; 

ch(Bt(u)) = ch (VHi^v)(u)) + 0 ( r 1 / 2 ) (5.42) 

uniformly on M. Also, 

CS (Bf
t, h£) = CS (yWri^Wrt) + 0(rl/2) (5.43) 

uniformly on M. 

Proof We will only prove (5.43), as the proof of (5.42) is similar but easier. We begin with 
some generalities. Suppose that E is a finitely-generated projective left $3-module, T\ is an 
element of End<&(E) and T2 is an element of End<»(i£) <g) 0 for some Grassmann algebra 
(5. We assume that T2 has positive Grassmann degree. Suppose that tj(Ti) C E and that 
0 is isolated in cr(Ti). Let 71 be a small loop around 0 and let 72 be a contour around 
o(Ti) — {0}. We orient 71 and 72 counterclockwise. Then we can write 

pKer(Ti 
771 2; - 7\ 2TTZ 

and 

p I m m = /• 1 * ( 5 4 5 ) 

As a(Ti + T2) = o-(Ti), we can write 

g-tdl+ib)2
 = /" L_! — + f — (5 46) 

I z-(Ti+ T2) 2m + / - ' - " ^ <>--• ^ 4 0 j 

Using the series 

z - (7\ + T2) 2 - 7\ z-Tx z-Tx 
+ I - ^ 2 - - 7 F - f . . . , M 7 ) 
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the first contour integral becomes 

f *— — = PKer{T^ - P X e r ( T l ) T2G-GT2 PKer™ (5.48) 
771 z - (Ti + T2) 2m 

+ P K e r ( T l ) T2GT2G + GT2 PKer{T>} T2 G 
-\-GT2GT2 PKer{?^ - £ pKciTi) T<2 pKer(Ti) ^ pKer^) 

+ ... 

where C is the Green's operator of 7\ . 
Writing out PJ and B" explicitly, we have 

B[ - B'l = yft (v - v*) + V^ - (V£)* + 0 ( r 1 / 2 ) , (5.49) 

Bt{u) = \Tt{uv + {l- u)v*) + uV£ + (1 - u) (VeY + 0{rl/2). 

We apply equations (5.44) - (5.48) with 

I \ =uv + (l-u)v*, (5.50) 

T2 = r1/2Bt(u) - Ti = r1/2 (^v£ + (i - u) (v£)*) + 0(rx). 

For u e (0,1), Ker(Ti) = Ker(u(l - u)A) = Ker(A). Let us write 

CS (B'u h€) = CSi + CS2, (5.51) 

with 

c s " - 1 ' • * • ( ( B ; - B;,) /, H^m i ) *• <5JH> 
CS, --£•*.(«-«)^j^rjZ)* 

Substituting the series (5.48) into CSi, we see that the leading terms in t come from the 
terms in (5.48) without any factors of G. Using (5.30) and Proposition 12, one finds 

CSi = - f TYS (JVi (v - v*) + V€ - (V*)*) PKer{A) (5.53) 

J71 Z - t-l/2p^er(A) ( u V * + (1 - U) (V*)*) P*«»<*) 2 7 ^ + l j 

= - TTV', ((VHW - {VH^Y) c-(«v^)+(i-«)(v^))-)^ ^ + 0(̂ -1/2) 

= cs(v/f(^,/iif(5',;>)+o(r1/2). 

Note that only a finite number of terms of the series (5.48) contribute to the component of 
CS\ of a given degree in O ' (M, *B). Thus the derivation of (5.53) is purely algebraic. 
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It remains to estimate CS2. Put X = T1T2 + T2Tl+T% and e~r7T2 = p^i^^rTf pim^)^ 
We use the heat kernel expansion 

[ , C * ^ ¥~ = I"0 e~roT'26(ro - t) dr0 (5.54) 
Jr2 z - (71 + T2) 2m J0 ' K ' 

roc /*oo 

- / / e-roT?Xe-riT?6{r0 + rx - t) drQdrx 
Jo Jo 

roo 
+ / P / < e r ( T l )Xe- r < ) T"^(r0 - 0 dr0 

Jo 

+ / e ' ^ ' I P ^ ^ ^ r o - t) dr0 + . . . 
Jo 

Here 0 is the Heaviside function : 0(r) — 1 + s^ . The series (5.54) is similar to the Duhamel 
expansion of e ~ ^ T l + A \ with each intermediate factor of e~rT] in the Duhamel expansion 
being replaced by either e~rTi or pKer(T^, A term on the right-hand-side of (5.54) with A; 
X's and / PKer(T^% k>l, will have a factor of 

(-i)^(Eto^-O if / = 0' 
» « ( S r r t ) ( ^ r r f if * > 1-

In our case, from (5.50), 

X = r 1 / 2 (u2V£i; + u( l - u) ((V*)* v + W ) + (1 - u)2 (V5)* v*) + O ^ " 1 ) . 
(5.55) 

Put 
e - r A ' = p/m(A) e-rAp/m(A)_ ^ ^ 

Using (5.54) gives 

CS2 = - f Trs [ (V£ - (V*)*) e" t u ( 1-u ) A /] du (5.57) 

+ / / / Tr5 I (v - v ^ e - ^ ^ 1 - " ) ^ (u2V£v + u( l - u) ( (V 5 )* v + V V ) 

+(1 - uf (V £ ) V ) c " ^ ^ 1 - " ) ^ ] <5(r0 + ri - t) dr0dridti + . . . 

We now use the crucial fact [11, Theorem 1.22] that if {ar}r>o is a 1-parameter semigroup 
in a Banach algebra then the number 

a = lim r " 1 log || ar || (5.58) 
r—*oo 

exists. Furthermore, for all r > 0, the spectral radius of ar is given by 

SpRad(a r) - ear. (5.59) 

Let Ao > 0 be the infimum of the nonzero spectrum of A. Then by the spectral mapping 
theorem, SpRad(e~ r A) = e_rAo . Thus for any j > 0, there is a constant Cj > 0 such that 
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for all r > 1, 

\\e-'*l<Cje--*»>2. (5.60) 

Consider the ft ' (A/, 33)-component of CS2, which is given explicitly in (5.57). First, we 
have 

|| f TYS \(Ve - {VEY) e - ^ 1 - ) ^ ] du \\3 < const, f e'tu^-u^2du = Oit'1). 
Jo L J Jo ( 5 6 1 ) 

Next, consider the second term in (5.57). Recall that CS (B't, he) lives in the quotient space 
n"'°^(M,<B) defined in (2.10). It follows from (5.24) that Vsv will not contribute to the 
Vt ' (A/, 53)-component of CS2, and similarly for (V f ) v*. Hence the second term in (5.57) 
is bounded above in the || • ||j-seminorm by 

r\ roo ryz 

const. / / u(l- u)e~tu{l-u)x"/26{rQ + rx - t) dr^du = 0{t~l). 
Jo Jo Jo (5 6 2 ) 

Thus we have shown that for each j , the || • ||j-seminorm of the ft ' (M, 93)-component of 
CS2 is 0(t~l). One can carry out a similar analysis for all of the terms in CS2. The point 
is that for large t, the e-Mi-u)A()/2 factor ensures that in the u-integral, only the behavior 
near u = 0 and u — 1 is important. Consider, for example, what happens when u is close 
to 1. When u = 1, Bt{\) is partially flat and so X lies in Q! (A/; Hom<s(£, fi*(*8) <2><B £)), as 
defined in (5.4). Consider the value at u = 1 of a given term of CS^- The contribution from 
B[ - B'l lies in 0 p + < 7 ± r = 1 Q™'r{M,<B,End{£)) and the contribution from the X's lies in 
©P'+r'<0' ^p,,q',r'(M, 53, End(£)). For the supertrace to be nonzero, we must have r + r' = 0. 
The explicit factor of t appearing is 

1 _ P + P+qW p'W + r' i-p-9-r 

Ut 2 t 2 = t 2 (5.63) 

Suppose first that p + q + r = 1. The integral near u = 1 of e-*w(i-")W2 yields an additional 
factor of t~l, giving a total estimate of 0(t~l). Suppose now that p + q — r — 1. The explicit 
factor of t is t~r. Along with the integral of e- t u(i-«)W2? w e obtain a total estimate of 
0{t~l~r). For this to be more significant than 0(t~l), we must have r < 0. As r = p + q — 1 
andp, q > 0, the only possibility isp — q = 0 and r = — 1. Then r' = 1 and sop'-f 1 < </. The 
supertrace of such a term lies in QP '* (M, 53) C ft'° (M, 53) and so vanishes in Q, ,<? (M, 53). 

One can carry out a similar analysis near u = 0. Finally, the convergence is clearly 
uniform on M. • 

Corollary 1. We /ia?;e 

[ch (4')] = [ch (VH{€'v))] m H'£ven{M) (5.64) 

and 

[C5(/l',/i£)] = [CS(V#(£'o)
)ftw(£l,,))] tn 0 HP(M;77,(33)). (5.65) 

P><7 
p + g odd 

Proof. For all u e (0,1), [ch(A(w))] = [ch (>!')] and [ch {VH^v\u))] = [ch ( V " ( £ ' v ) ) ] . As 
A' = B[, the corollary follows from (5.39) and Proposition 15. • 
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Remark 5 : If 03 = C then (5.65) is equivalent to [2, Theorem 2.14]. 

P r o p o s i t i o n 16. As t —• oo, 

T(t) = 0(r3/2) (5.66) 

uniformly on M. 

Proof. We will prove the claim for the explicit form in (5.37). Let 6 be a new variable which 
commutes with the other variables and satisfies e2 = 0. Then 

T(t)= - - { I Tra(Ne-B?{u))du + dc f u(l - u) (5.67) 

Trs (N [B[ - B^e'B^)+<Bi'B"^du) . 

The implication is that we can again write T(t) as 71(f) -h T2(t), wliere %{t) is a contour 
integral around j t . Using the method of proof of Proposition 15, one finds 

Tl(t) = - - ( f Tra (Ne-vme-v)2M) du + f f u(l - u)Trs (N [ V * ^ - ( V 7 ^ ) * > 
^ VA ^ / Jo Jo ^ L (5.68) 

e_rV//(,.,r'(u) ^y//(£ft>) _ ( y / , ^ ) ^ c-(l-r)V<^)a(u)]Jdrd^ + 0 ( r 3 / 2 } 

= - \ rTV5(7Vc-vl,(f-,,,2w)du + 0(r3/2). 

As Trs (wc-v" ( f- , ' )2< t t>) G n , , e v e n ( M , « ) , it follows that 7](0 is 0 ( r 3 / 2 ) in ff , e" e n(M, 03). 
Next, consider 7^(t). Counting powers of £ as in the proof of Proposition 15, one finds that 

T2(t) is 0(t~3/2) except for possible terms which decay like £_1 and lie in 0 p f F ' P ( M , 03) 
m o d r f ^ M , ^ ) . Let us write such a term as t~lT2

p'p, with T2
P'P G ?F ,P(M, 03). From 

(5.39), we see that t~ld}^T^v comes from the ^-derivative of the Q, ' (M, 03)-component 
of CS (B(

t,h£). However, as CS (B't,he) has no log(£)-term in its asymptotics, it follows 
that dh°T^p = 0. Thus Z,p,p lies in Zp (M;UP(<B)). As we quotient by this subspace in 
defining Q ' (M, 03), equation (5.66) follows. 

Again, the convergence is clearly uniform on M. D 

R e m a r k 6 : There may seem to be a contradiction between Proposition 16 and [2, Theorem 
2.13], in which a nonzero 0(t~l) term for T(t) was found. However, in the present paper 
we quotient by Zk (M;Uk(<B)) in defining Q2k (M;HP(03)). When 03 = C, as in [2], this 
quotienting removes the 0(t~l) term of [2, Theorem 2.13] and so there is no contradiction. 

5.3. The Analytic Torsion Form. In this subsection we consider the special case when 
£ has not only a partially flat degree-1 superconnection, but has a partially flat connection 
in the sense of Definition 3. Let 

(£,v) : 0 -* 8° ^> El ^ ... ^ £n -> 0 (5.69) 

be a cochain complex of 03-vector bundles on M. Let 
n 

V £ = 0 V r (5.70) 
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36 JOHN LOTT 

be a partially flat connection on £ = 0"=o£*. Suppose that V^'1,0!' = 0. Put 
A' = v + Ve. (5.71) 

Then A' is a partially flat degree-1 superconnection. In the notation of Subsection 5.2, 
B't=Viv + Ve, (5.72) 

B'l=yTtv* + {Ve)\ 
Proposition 17. As t —» 0, 

ch (Bt(u)) = ch (V£(u)) + 0(t), (5.73) 

CS (5 (\ h£) = CS (V f , h£) + 0(t) (5.74) 
and 

T{t) = 0(1). (5.75) 

Proof. Equations (5.73) and (5.74) are evident. From (5.37), the (_1-terni of T is 
1 

f1 Trs (iVe-vf2(u») du + fl fl tt(l - u)Tvs (JV [V£ - (Vf )*. 

e-rV^(«, (V* _ (y^* ) e-(l-r)V^(«)j^ d r d ^ 

As 

(5.7G) 

TV, ( M T ^ " * ) = Trs ( j V e ^ 0 ' ) mod Im(d) (5.77) 

and Trs (jVe-vt'2<0>) € W'e"en(M, 03), it follows that Trs (^Ne-^^A vanishes in 

U"'even(M,<3)/Im(d). 
It is easy to check that there is no 0(t-1/2)-term. • 

Corollary 2. We have 
[ch (V f)] = [ch ( V " ^ ) ] in H'£ven{M) (5.78) 

and 
[CS{V£

1h€)] = [CS(VH{€>v\hH^)] in 0 JP(M;Hq(<B)). (5.79) 

p+q odd 

Proof For all u G (0,1), [ch (V*(u))] = [ch(V£)] and [ch(VH<*'w>(u))] = [ch(V"<*»w>)]. 
The corollary now follows from Corollary 1 and Proposition 17. • 

Remark 7 : If 93 = C then Corollary 2 is equivalent to [2, Theorem 2.19]. 

Definition 16. The analytic torsion form T G £1 (M, 53)/Im(c?) is given by 
/•oo 

T = / T(t)dt. (5.80) 
Jo 

By Propositions 16 and 17, the integral in (5.80) makes sense. 
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Proposition 18. We have 

dT = CS (V£, h£) - CS (V"<^>, hHV'v)) in H'M\M, 95). (5.81) 

Proof. This follows from (5.39) and Propositions 15 and 17. • 

Let us look more closely at 7[0], the component of T in O ' (M, 03). Assume for simplicity 
that M is connected. Then 

n"'°(M, 35) = (C°°(M)/C) 0 ( B / [ 5 T « ] ) • (5.82) 

From (5.37) and (5.80), 
coo / /•! 

Tm = - ( / Trs (Ne'^-^du + t / u(l-u) (5.83) 
Jo wo Jo Jo 

Trs (N [v - v*, e—(1-")A (v - v') e-tf--W-«>A]) d r r f u) * 

r°° r1 rit 
= - Trs(N(l- 2tu(l - u) A) e~tu{1-u)A) du~ 

Jo Jo t 

To give a specific lifting of T[0] to C°°(M) <g> AB/[<8,<B]Y we use the fact that Trs (N\£) 

and Trs ( N\ „,„ A are constant on M. Put 
5 \ \H(E,v)J 

g(t) = - [ ( ! - 2u(l - u)0c"ttt(1"tt)rfii. (5.84) 
Jo 

The asymptotics of <? are given by 
p(0) = - 1 and lim #(£) = 0. (5.85) 

t—>oo 

Then we can define the lifting to be 

7f0] = 2 " [I*. (JVff (<A)) - (Tr5 (JV|J - Trs ( N | „ ( £ > I ) ) ) ) 5(t) (5.86) 

+M"U*,,)]T-
Let A' be the restriction of A to Im(A). Then 

7f01 = j H [ft. (Ng (tA')) - TVS (iV|/m(A)) <?(*)] f • (5.87) 

It follows from (5.85) that for A > 0, 

/
°° dt 

l9(\t)-g(t)}j = log(\). (5.88) 
Thus by the hodomorphic functional calculus, 

T[0] = Tvs (N log(A')) € C°°(M) ® ( < B / [ M ] ) . (5.89) 

Example 7 : If <8 = C then 7jo] is the usual Reidemeister torsion of the cochain complex 
{£,v) [32], considered to be a function on M. 
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38 JOHN LOTT 

E x a m p l e 8 : Suppose that T is a finite group and 93 = CI \ Then 7[0] is equivalent 
to the equivariant Reidemeister torsion of [25]. 

E x a m p l e 9 : Suppose that T is a discrete group and 03 = C*T. Let r be the trace 
on 03 given by r(^2 er c77) = ce. Then r (Tfoj) is the L2-Reidemeister torsion of [8], in 
the case when there is a gap in the spectrum. (One can define the L2-Reidemeister torsion 
for a cochain complex of modules over the group von Neumann algebra, not just the group 
C*-algebra.) 

6. F I B E R BUNDLES 

In this section we extend the results of Section 5 to the fiber bundle setting. The transla­
tion is that the algebra of endomorphisms of a finitely-generated projective 03-module gets 
replaced by an algebra of 03-pseudodifferential operators. In the case 03 = C, we recover 
the fiber-bundle results of [2]. We emphasize the necessary modifications to [2] and refer to 
[2] for some computations. 

6.1. 03-Pseudodifferential Ca lcu lus . Let Z n be a smooth closed manifold. Let £l and 
£2 be smooth 03-vector bundles on Z, with fibers isomorphic to (B1 and (£2, respectively. In 
the case when 03 is a C*-algebra, an algebra ^!g{Z\£l,£2) of classical 03-pseudodifferential 
operators was defined in [29, §3]. We extend this notion to the Frechet locally m-convex 
algebra 03 as follows. First, define seminorms {|| • | |}ji0

 o n Hom«B(€1,€2) similarly to the 
discussion after Proposition 14. Let U = Rn be a coordinate patch of Z equipped with 
isomorphisms £l\ = U x 6 1 and S2\u = U x €2 . We define an algebra ^^{U\£l,£2) 
of classical 03-pseudodifferential operators on U by requiring that the symbol a(z^) G 
Hom<B(<£\ £2) of an order-m operator T G ^^(Z\£l,£2) be compactly supported in z and 
satisfy 

\\dz^a(z,0\\3< Ca,w(l + Kir-'"" (6.1) 
for all multi-indices a and (5. Then we define ^^{Z]£l,£2) using a partition of unity as in 
[29, §3]. 

Using the representation of 03 as the projective limit of the sequence (2.1) of Banach 
algebras {JBj}ji0, with B0 a C*-algebra, we can say that ^^{Z\£l^£2) is the projective 
limit of the sequence of pseudodifferential operator algebras 

. . . — • * ? (Z;E)+ 1 ,& i + 1) — *^(Z;E) ,E} ) — . . . — 9%(Z; E%,El). 
(6.2) 

Let £ be a 03-vector bundle on Z. Given T G # < B ( Z ; £ , £ ) , let ij(T) be its image in 
^(Z^EJ^EJ). 

Proposit ion 19. Ifio(T) is invertible in ^ ^ ( Z ; E0l E0) then T is invertible in ^ ^ ( Z ; £, £). 

Proof. It is enough to show that each ij(T) is invertible in ^g5 (Z; Ej, Ej), as then T _ 1 will 
be the inverse limit of { ( ^ ( T ) ) " 1 } ^ . So suppose that B is a Banach algebra which is dense 
in a C*-algebra B and stable under the holomorphic functional calculus in B. Let E be & 
B-vector bundle on Z. Let E — B (g># E be the corresponding B-vector bundle on Z. Given 
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T e # B ( Z ; E, E), let T be its image in $ g ( Z ; E, E). We will show that if T is invertible in 
#g?(Z; £ , £ ) then T is invertible in Vf(Z: E, E). 

Write E as the image under a projection e € Coc(Z;AIN(B)) of a trivial B-vector 
bundle Z x BN. Let E' = Im(l — e) be the complementary B-vector bundle. Choose 
V e # £ ( £ ; E\ E') such that V is invertible in ^ ( Z : F , F ) . If we can show that T®V 
is invertible in W§(Z; BN,BN) then the inverse of T will be given by the restriction of 
(TOT')'1 to Im(e). So we may as well assume that E is a trivial B-vector bundle with 
fiber BN. 

Note that as T is invertible, T is elliptic. By the usual parametrix construction, we can find 
U e ^Bm(Z; E, E) such that TU = I - K with Ke ^ ° ° ( Z ; E, E), and similarly for UT. 
Perturbing U a bit if necessary, we can assume that U is invertible. Then I — K is invertible, 
with inverse U T . If we can show that I — K is invertible then T~l — U(I — K)~~l. 

Thus we are reduced to showing that if K £ ^~^{Z\E,E) and I — K is invertible 
then I — K is invertible. Fix a Riemannian metric on Z. Let {e^\^x be the orthonormal 
basis of smooth functions on Z given by the eigenf unctions of the Laplacian. For AI > 1, 
let PM G ^ ° ° ( Z ; C , C ) be the obvious projection operator from L2(Z) to [(&l=1ei) and 

let PM € ^^°°(Z;E,E) be its extension by the identity on BN. Consider the operator 
DM = I — (I — PM)K{I — PM)- We claim that if M is large enough then DM is invertible. 
To see this, write the Schwartz kernel of (/ — PM)K{I — PM) as 

[(/ - PM)K(I - PM)} (*, Z') =K(Z, Z') - f PM(z, w)K(w, z')dw - f K{z, w')PM(w\ z')dw 
Jz Jz (6.3) 

Jz Jz 
PM(z, w)K(w, w')PM{w', z')dwdw'. 

The sequence of Schwartz kernels {^PM(W,W/)}M=I forms an approximate identity. By as­
sumption, K(z, z') is a smooth function from Z x Z to AI^(B). It follows that for any e > 0, 
there is an M > 1 such that for all z, z' £ Z. in the Banach norm, 

\[{I-PM)K(I-Pu)](z,z')\ <e. 

Taking e small enough, the sum of convolutions 

(6.4) 

DM1 = Y,{{I - PM)K{I - PM))k 

fc=0 

(6.5) 

converges in the algebra / 4- \£B°°(Z; E, E). 
With respect to the decomposition / = PM 4- (/ — PM), write 

• - « - ( ' ! ) • 

We have shown that 6 is invertible. Then 

(? f) - G T') ("" 
PS^-y 0\ ( 1 0 
0 6) U - 1 ! 1 

(6.6) 

(6.7) 
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40 JOHN LOTT 

As I — K is invertible, it follows that a — /?<5_17 is invertible in MMN(B). Then a — (36 lj 
is invertible in MMN(B) [5, Proposition A.2.2]. Hence 

is well-defined in / + ^ ° ° ( z ; #> #)• • 

Note that ^ ^ ° ° ( Z ; ^ , ^ ) is an algebra in its own right (without unit). Given T G 
Wxx(Z\£,E), let a*-^(T) denote its spectrum in ^^{Z\£.£) and let c r ^ ( T ) denote 
its spectrum in ^ ^ ( Z ; £ ,£ ) . 

L e m m a 2. a^-oc(T) = oy^(T). 

Proof. As # - ° ° ( Z ; £ , £ ) has no unit, 0 G a^-oc(T). As T is not invertible in ^ ( Z ; £ , £ ) , 
0 G cr^^c(T). If A ^ 0 then by definition, A ^ cr^-oc(T) if and only if we can solve the 
equation TU - XU - X^T = UT - XU - X~XT = 0 for some U G ^°°(Z;£,£). Thus 
if A i a^-oc(T) then in ^ ( Z ; £ , £ ) , we have (T - \){U - A"1) = {U - A " 1 ) ^ - A) - / 
and hence A ̂  a^oo(T). Conversely, if A ^ a^oc(T) then we can solve (T — X)(U — A - 1) = 
([/ — A - 1)(T — A) = / for some U G \J /^(Z;£ ,£) . By the pseudodifferential operator calculus, 
U = X~lT(T - A)"1 = \~l(T - X)'lT e \ ^ ° ° ( Z ; £ , £ ) and so A £ a^-^T). D 

Fix a Riemannian metric on Z. Given a 03-vector bundle £ on Z, write £ = 93 ̂ e for 
some N and some projection e G C°°(Z; Mjv(*B)). Then 

Horn* (£22,£Z1) = {£ G M^pS) : /c = e(z1)ke(z2)}. (6.9) 

Consider the algebra 21 of integral operators whose kernels K(z\, z2) G Hom*g (£22,<f2l) &re 
continuous in Zi and z2, with multiplication 

(KK')(zu z2) = y K(Zl,z)K'(z, z2) dxo\{z). (6.10) 

Let v4j be the analogous algebra with continuous kernels K(zi,z2) G Hom# ((Ej)Z2,(Ej)zl). 
Give Hom^ ((Ej)Z21 (Ej)Zl) the Banach space norm |-|j induced from Horn (B^, Bj1). Define 
a norm | • \j on Ad by 

\K\t = (vol(Z))"1 max | / r (* i ,z 2 ) | j . (6.11) 

Then one can check that A, is a Banach algebra (without unit). Furthermore, 21 is the 
projective limit of {AJ}J>Q and so is a Frechet locally m-convex algebra with seminorms 
{II ' lb'}j>o coming from {| • |J}J>O- Any T G ^ ° ° ( Z ; £ , £ ) gives an element of 21 through 
its Schwartz kernel. Let a^(T) be its spectrum in 21. 

L e m m a 3. a%(T) — a^-oo(T). 

Proof. As 21 and ^°°{Z\£,£) have no unit, 0 G tra(T) and 0 G a*-oo(T). For A ^ 0, 
suppose that A i <r*-oo (T). Then we can solve TU - XU - X~XT = UT - XU - X~lT = 0 for 
some U G \£^°°(Z;£,£). As U defines an element of 21, we have A ̂  aa(T) . Now suppose 
that A £ (7a(T). Then we can solve TU - XU - X~lT = UT - XU - X^T = 0 for some 
U G 21. As J7 = A-1T(£7 - A"1) = X'1^ - A"1)!1, it follows that tf has a smooth kernel 
and so defines an element of ^ ° ° ( Z ; £ , £ ) . Thus A £ a^-=c(T). D 
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Define TR : 21 -+ <B/[<B,<B] as in (2.39). 

Corollary 3. Suppose that { a r } r > 0 is a l-parameter semigroup in ^ ° ° ( Z ; £, 8) whose spec­
tral radius in ^ g ( Z ; £*, 8) is given by SpRad(a r) = ear for some a < 0. Then for all j > 07 

as r —• oo, m 21 we have || a r | | j= o (e a r / 2) . /n particular, T R ( a r ) = o (e a r / 2 ) . 

Proof. By Lemmas 2 and 3, the spectral radius of ar in 21 is ear. Then its spectral radius in 
the Banach algebra A3 is less than or equal to ear. By (5.58) and (5.59), || ar \\j= o (e a r /2) . 
As TR is continuous on 21, the corollary follows. • 

6.2. Induced S u p e r c o n n e c t i o n s . Let Z —> M —> B be a smooth fiber bundle with total 
space M, compact base B and connected closed fibers {Z^^Q of dimension n. We use 
the notation of [2. Section 3] when discussing the topology or geometry of such a fiber 
bundle. Let TZ be the vertical tangent bundle of the fiber bundle, an En-bundle on M, 
and let o(TZ) be its orientation bundle, a flat M-bundle on M. Let THM be a horizontal 
distribution for the fiber bundle. Let 8 be a 93-vector bundle on M. There is an induced 
Z-graded 93-vector bundle W on B whose fiber over b € B consists of the smooth ^-valued 
differential forms on Z^ i.e. W& = Q* IZ\>\8\z ) . If n > 0 then W& is infinitely-generated. 
Using the horizontal distribution, there is an isomorphism 

ft(£,<B; W) = ft(M,<B;£). (6.12) 

We equip 8 with a partially flat connection Vs as in (2.21). Using (6.12), this induces a 
partially flat degree-1 superconnection A' on W. The connection component V w of A' has 
two pieces : 

vw,i,o . ft™(M,Q3;£) -+ np+hq(M,<B;8), (6.13) 

vw,o,i . SIP«(M,<B;S) - * QP '9+1(M,<B;£). 

As in [2, Proposition 3.4], Vw , 1 ' ° is given by Lie differentiation with respect to a horizontal 
vector field on M. On the other hand, V w ' 0 , 1 comes from the action of de as in (2.19). 
The other nonzero components of A' are ^ 0 , 1 = dz and ^20,-1 ~ ^T' ^ n e degree-1 
superconnection A'^lat defining the superflat structure on W is essentially the same as the 
flat degree-1 superconnection of [2, Section 3b]. The main difference between [2, Section 3] 
and the present paper is that we take into account Vw '0 , 1 , so that A' is not completely flat. 

Let gTZ be a family of vertical Riemannian metrics on the fiber bundle. Let * be the 
corresponding fiberwise Hodge duality operator, extended linearly from C°°(M\ A(T*Z)) to 
C°°(A/; k{T*Z) ®8)^ C°°(B] W) . Let h£ be a Hermitian metric on 8. Let (V£)* be the 
adjoint connection to V £ , with respect to h£. There is a self-adjoint connection on 8 given 
by 

ve,sa = i (V f + (V f )*) . (6.14) 

Put 

$ = (V£>1-0)* - V£'1>0 e Sl\M; End»(£)). (6.15) 
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Let us assume that (d8)* = 0s; this can always be achieved by replacing de by | (d8 + (d£)*) 
if necessary. Then 

V f .~ = V£ + | . (6.16) 

For notational convenience, put 

y£,/Zat ,sa _ _ f^jSJlat _j_ fry£,flat\*\ ( 6 . 1 7 ) 

Then 
^jSJlatysa _ y £ , / / a £ _^_ Z_ (6 18) 

y £ , s a = yf . /Zat .sa + fl£ (gjg) 

and 

(V^' / /a t 'sa)2 = - ^ . (6.20) 

Furthermore, one can check that \/TM<s>£jiat,sa^ v a n i s nes in a2 (M; End®(£:)). 
There is a Hermitian metric / i w on W such that for 5, s' € W*,, 

<s,sV> = / ( * A * s V G » . (6.21) 

Let (A')* be the adjoint superconnection to A\ with respect to hw. There is a self-adjoint 
connection Vw '5a on W given by 

V ^ ^ ( V w + ( V w f ) . (6.22) 

Let {ej}"=1 be a local orthonormal basis for TZ, with dual basis {rJ'}^=1. Let EJ denote 
exterior multiplication by r-7 and let V denote interior multiplication by ej. Put 

<? = £P - /J , (6.23) 

?' = £? + / ' . 

Then 
<Jc

k + c V = -2#*, (6.24) 

c ^ + cV^O. 
Thus c and d generate two graded-commuting Clifford algebras. 

Let VTZ be Bismut's connection on TZ [1, p. 322], with curvature RTZ. Let e (TZ, VTZ) € 
17n(M; o(TZ)) be the corresponding Euler form. Define 11 € Q2 (M; End(A(T*Z) (8) £)) by 

K = i ((e„ #TZefc),Tz ?c* ® /*) - J (/A(T-Z) 0 </>2) • (6.25) 

Let # € C°°(M) be the scalar curvature of the fibers. Let ra be a local basis of T*B and 
let £ a denote exterior multiplication by r a . For u € [0,1], define the superconnection Bt{u) 
on W by 5t(u) - uBJ + (1 - u ) ^ . 
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Proposition 20. We have 

43 

(6.26) 

^ 

+ (\ ~ U) 7t ^ ^ " ^ + ^ft "ONF&J, 
where 

VW,Sa,l,0 = Ea (vTZ®£,sa + 1 ^ 

yW.sa.O.l __ o£ 

(6.27) 

Proof This follows from a computation using [2, Propositions 3.5 and 3.7]. We omit the 
details • 

Let z be an odd Grassmann variable which anticommutes with all of the Grassmann 
variables previously introduced. Put 

2y/i 

V2 = VJVj-Vvrzer 

Proposition 21. The following Lichnerowicz-type formula holds : 

B2
4t(u) + 2u(l - u)z {B'At - B'lt) = 4t*(l - u) \t (-V2 + j \ 

(6.28) 

(6.29) 

+ yc
jn(el.,eJ) + y/iclEa1Z(ehea) + ^ £ a £ ^ ( e a , 

+ 

+ ^c* (vf/°^) - 2 Q - «)>/«?• (vf/°^) 

Proo/. Let us write Bu(u) = u£;fa t + (1 - u)B%flat + 8s. Then 

B|,(«) =u(l - u) [B'dlatB'ifat + B'ifatB'dlat) (6.30) 

+u [B'diat,&]+(i-«) [s:/ iat, ^ j + (^)2 . 
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A formula for \ (B'illat B'ifat + Blfat B'i[lai) + \ z (B'fat - B'ifat) was given in [2, The­
orem 3.11]. The rest of (6.29) can be derived using Proposition 20. • 

6.3. Small Time Limits. For t > 0 and u € (0,1), the restriction of B2(u) to a fiber 
Zb is an element of # | (zb\ A(T*Zb) ® £ | ^ , A(Tb*B) <g> fiU(<8) ®<B (A(T*Z6) <g> E\Zi)) with 
principal symbol cr(z^) = u(l — u)t\£\2. It follows that on Zb, 

e-Bf(u) e ^ o o /Zb. A ( T * Z 6 ) 0 £ | ? A(Tb*£) ® fi,(<8) ®<» (A(T*Zb) <g> £ | )) . 
V " J (6.31) 

Hence e~B< ^ has a smooth kernel e~Bi ̂ u\z, z') and using the notion of TRS from Subsection 
2.3, we can define TRS (e~B^uA G Qeven(B^). 

Put Vs(u) = uV^ + (1 - u) (V*)*. 

Proposit ion 22. For a// u € (0,1), as t —> 0, 

TRS (V f i .2M) = ( ^ 6 ̂ TZ' V T Z ) A Ch ^ ( U )^ + °{t) lfH l$ 6Ven' 
\ ) \0{\f£) if n is odd (f\^9) 

uniformly on B. 

Proof. Consider a rescaling in which dj —+ e~lt2dj, (9 —> e~l^2Ej — elt2P, Ea —> e~1/2Ea, 
o7 —• <? and dE —> Cll2de. One finds from (6.29) that as e —» 0, in adapted coordinates the 
rescaling of eB\(u) approaches 

1 
4 

+ EJ (Ve
efade) + Ea {V£

efd£) 

Using local index methods as in the proof of [2, Theorem 3.15], one finds 

[4t*(l - u)RTZ 

^u{l-u)[dj--ART^xk) +Au(l-u)K (6.33) 

tf\2 

lirnTR, ( e " ^ ( u ) ) = f (4u(l - u) )~ n / 2 Pf (6.34) 
2TT 

r l v^_[(V^/^.-^)+(i-u)[V,^]+(^) ' -u( l-u)^ 2] 

- / e (TZ, V T Z ) A T V a C - [ ( v £ ' , I o t ' - t t ^ ) + ( ^ « ) l ^ ) + ( ^ ) 2 - « ( 1 - ^ 2 ] . 

On the other hand, 

V*(u) = V f ' / / a t ' s a + ( I - u ^ + 0* (6.35) 

and so 

(V^(u))2 = ( V w ^ ) 4- Q - u ) ty,0*] + ( a £ ) 2 - u(l - u)iP2. (6.36) 
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This gives the t -> 0 limit of (6.32). 
We have error estimates as in [2, Theorem 3.16], from which the proposition follows. D 

Defini t ion 17. Define CS (B'tlhw) e fl',odd(B,<B) by 

CS (B;, hw) = - I TRS {{B't - B'l) e-stM) du (6.37) 

and T(t) G U",even{B,<B)/lm{d) by 

T{t)= - - (f TRs(Ne-B?{u))du+ f f u{l - u) (6.38) 

TRS (TV [ B ; - Bl e~rB'^u) (B[ - B'l) e-<i-'>*?(«)]) drdu} . 

The definitions in (6.37) and (6.38) are formally the same as those of Proposition 14. 
However, in the present infinite-dimensional setting it is not immediately obvious that the 
u-integrations in (6.37) and (6.38) make sense. The next proposition takes care of this. 

P r o p o s i t i o n 23 . The integrands of (6.37) and (6.38) are integrable in u. 

Proof. We will show that the integrands are integrable near u — 0; the case of u = 1 is 
similar. For simplicity, put t = 4; the case of arbitrary t is similar. 

Put 

Dj = V™***** - \ u;ajkE«ck - 1 ua0JE«EP. (6.39) 

From (6.29), we have 

Bl{u) = 4 u ( l - u ) \(-D2 + ^] + lclciTZ(ei,ej)+ciEan(ei,ea) + ~EaEl3n(ea,ef3) 
IA 4 / 2 2 (64Q) 

+ i (c* - c*)[^, <?£] - « c % , a6] + (af ) 2 . 
2 

Also, from (6.26), 

B'A - B'l = 2 ? V ^ s a - c?ipi - Earl>a - wajkEac*t - \ wa0jEaEl3ci. 
2 (6.41) 

Applying standard heat kernel asymptotics and using the structure of (6.40) and (6.41), we 
know that there is an asymptotic expansion near u = 0 : 

oo 

TRS ((B£ - B'l) e " ^ ) - u'n/2 ] T Gk uk. (6.42) 
fc=0 

We must show that the terms more singular than u~1^2 vanish. 
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We can consider the local density of (B'A — B'{) e B^(u) to have an asymptotic expansion 
on M of the form 

DC 

(Si - B'i) e-BJ>» = iT"/'2 Y, 9k u". (6.43) 

with gk(m) € Horn (A(Tr*nM) <g> £m , A(Tr^U) 0 Q*(£) 3 5 £„,). Then 

Cfc - J Tra(gk) dxo\z G Yi'JMi\B.<8). (6.44) 

the local supertrace being over the vertical Grassmaim variables and S. Using heat kernel 
asymptotics, we can express gk(m) as a polynomial in {£ J '} j= 1 . {P}™=1 and { i ^ } ^ • 
We claim that gk has degree at most 2k + 1 in the variables {£ J ' }"= 1 . To see this, first the 
claim would follow from standard counting arguments if we had only the 4u(l — u) [...] 
term on the right-hand-side of (6.40). Roughh' speaking, we would have at most 2k factors 
of {£J}™=1 coming from e~B^ and at most one more coming from B\ — B'[. However, if 
we write the remaining terms of (6.40) explicitly in terms of {£J'}™=1 and {/ J}^=1 , we see 
that each additional factor of E* conies with a factor of u. Then the claim follows from 
counting arguments. In order for gk to have a nonzero supertrace, it must have degree-
n in both {Ej}^=1 and {Ij}]=v Hence Gk vanishes if 2h + 1 < n. This implies that 

TRS ({B'A - B'I) e-B'ttuA is integrable in u. 
Let T(t,u) denote the integrand of (6.38). In order to show it is integrable in u, we use 

the trick of [2, Theorem 3.21]. Again, for simplicity put t = 4. Put M = M x M+ and 
B = B xR+. Define n : M -+ B by 5r(m. s) = (n{m). s). Let Z be the fiber of ST. Let gTZ 

be the metric on TZ which restricts to 5 l gTZ on M x {5}. As in [2, (3.114)], there is an 
Ln"'°"d(B,<B): 

TRS ( ( 5 4 - B'i) e~S'M) =TRS ((B4 s - B4',) C - B ? » ) + ds A T(4a,u) 

identity in n",oM(B,tB) 

(6.45) 

+ ^ A T R . ( , - * « ) . 

By similar counting arguments, TR5 (e-BJ.<"<) = 0(u°) as i/ —• 0. As we know that 

TRS ( ( f i 4 - B4 ') e-^2 ( u )) is integrable in u, the proposition follows. • 

Proposit ion 24. J4S t —> 0, 

^cfp> h^_lfze{TZyTZ)ACS(Vt.hC)+0(t) if n is even, 
Cb[Bt,h ) - ^ 0 { V i ) if n is odd 

(6.46) 

uniformly on B. 

Proof. Given a i , a 2 G $7 (5,03), let us write 

d 2 ( a i + ~a2) = Q2. (6.47) 
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Then 

CS (B't, hw) = - dz I' , 1 , T R . e - ^ 2 ^ ^ 1 - ^ ^ ^ - ^ ^ ^ . (6.48) 
2 J0 u(l-u) 

Let us do a rescaling as in the proof of Proposition 22, with z —> e~1^2z in addition. One finds 
from(6.29)that as e —+ 0, in adapted coordinates the rescaling of e {B\(u) -f 2u(l — u)z(B'A — B'D) 
approaches 

- 4w(l - u) (dj - j Rj?xk] + 4u(l - u)K - 2u{\ - u)zil> (6.49) 

4- Ej (Vf;sa<^) + Ea (Vffd 5 ) 

Proceeding as in the proof of [2, Theorem 3.16], one obtains 

limCS (£?;, hw) = \ dz t * . / c ( rZ, VT*) A Trse-[(V'"("))"'-2u(^")HdM 

^ ° v ; 2 ; 0 u ( i - u ) yz
 v ;

 ( G 5 0 ) 

= f J e {TZ, VTZ) A TV, Up e-(^W)'1] dM 

= f e (TZ, VTZ) A CS (V5, / i f) . 
Although we are integrating over it, there is no problem with the t —• 0 limit as the effective 
time parameter is u(l — u)t, which only improves the convergence. • 
Proposition 25. As t —• 07 

T(+\ J0^ if n is even, 
T ( ' ) = = < 0 ( r 1 / a ) if n is odd ( 6 ' 5 1 ) 

uniformly on B. 

Proof. Using the method of proof of [2, Theorem 3.21], one finds 

f f ^ T R ^ e - ^ d u + Oa) if' 
T{t) = { 2 t * — V r - > ~ ^ - n is even, 

\0(r1'2) if n is odd. 
By Proposition 22, if n is even then 

lim / TRS (e~B'{u)) du = f e (TZ, VTZ) A / ch (V€{u)) du. (6.53) 
t~*QJo ^ ' Jz Jo 

(Again, as the effective time parameter is u(l — u)t, there is no problem in switching the 
t —• 0 limit and the ^-integration.) Now 

ch (Vs(u)) = ch (Vf(0)) mod Im(d) (6.54) 

and ch(V£(0)) e 0 / ,et ;eri(M,S). As we quotient by Tt'^^iB, <B) and Im(d) in defining 
ft ' (J3,*B)/Im(d), the proposition follows. • 
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6.4. Index Theorems. We continue with the setup of Subsection 6.2. For each b G B, 
let H (zb;S\z J denote the cohomology of the complex (Wb,dz). Put Ab = dz (dz)* + 

(dzYdz € ^ ( z 6 ; A ( r * Z 6 ) ® f | Z 6 , A ( r * Z 6 ) ® £ : | Z 6 ) . P u t £ = A®*£ai idW6 = ft(z6;£|Z|>). 

Let Afc G ty2
A (zb\K{T*Zb) ®£\z^A(T*Zb) ® £ | z ) be the corresponding Laplacian in the 

A-pseudodifferential operator calculus. 

Hypothesis 4. For each b G B, the operator dz G EIKIA (Wb) has closed image. 

Proposition 26. Hypothesis 4 is satisfied if and only ifO is isolated in cr(A6). 

Proof. This follows from standard arguments. We omit the details. • 

Hereafter, we assume that Hypothesis 4 is satisfied. 

Proposition 27. For each b G B, H.(Zb;£\z ) is a finitely-generated projective 13-module. 

The {H iZb\S\z )}b£B fit together to form a Z-graded ^-vector bundle H (Z\£\7) on B 
with a flat structure. 

Proof. The proof is similar to the proofs of Propositions 10 and 11, with Proposition 19 
replacing Lemma 1. • 

There is an induced Hermitian metric h ^ ' \z' on H ( Z ; £ | z ) and an induced partially 

flat connection ^/H{Z;€\z) as in (5.30). 

Proposition 28. For all u G (0,1), as t —> oo, 

ch(Bt(u)) = ch (vH{zAy)(u)\ + 0 ( r 1 / 2 ) (6.55) 

uniformly on B. Also, 

CS (B't, hw) = CS ( v " ( Z ; f \z\ hH{Zi£\zA + 0(rin) (6-56) 

uniformly on B. 

Proof. Let Ao > 0 be the infimum of the nonzero spectrum of A. For r > 0, put ar — 
p/m(A)e-rAp/m(A) B y p r o p o s i t i o n 19 and Corollary 3, for each j > 0 there is a constant 
Cj > 0 such that for all r > 1, 

WarW^Cje-***. (6.57) 

The proof of the proposition is now formally the same as that of Proposition 15, with (6.57) 
replacing (5.60). • 

Proposition 29. We have 

ch ( V ' M z A j = / e{TZ) A [ch (V*)] in H'£ven{B) (6.58) 
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and 

Cs(vH{z'E\z\hH{z*\z)\\ = fe(TZ)A [CS(Ve,h£)] in 0 W(B\Hq(<B)). 
^ / J Vz p>q ( 6 5 9 ) 

p+q odd 

Proof As in the finite-dimensional setting, one can verify that [ch (Bt(u))] and [CS (B[, hw)] 

are independent of t. For all u £ (0,1) A i v"(Z:CUv d, VH(Z4) and 

[ch (V^(u))] = [ ch (V £ ) j . The proposition now follows from Propositions 22, 24 and 
28. • 

Remark 8 : Proposition 29 is also a consequence of the topological index theorem of [12]. 
Namely, Proposition 27 ensures that we can apply (0-3) of their paper, as given in (1.4) of 
the present paper. Proposition 29 follows from (1.4) by applying ch and CS. 

6.5. The Analytic Torsion Form II. We continue with the assumptions of Subsection 
6.4. Let N be the number operator on W. For t > 0, define T(t) as in (5.37). 

Proposit ion 30. As t —> oo, 

T(t) = 0(r3/2) (6.60) 

uniformly on B. 

Proof The proof is formally the same as that of Proposition 16. We omit the details. • 

Again, we have 

dtCS{B'vhw) = -dT(t). (6.61) 

Definition 18. The analytic torsion form T Eft (jl/, *8)/Im(d) is given by 

Jo 
T= / T(t)dt. (6.62) 

By Propositions 25 and 30, the integral in (6.62) makes sense. 

Proposit ion 31 . We have 

dT= / e ( T Z , V T Z ) A C 5 ( V ^ ^ ) - C 5 f v / / ( ^ l z ) , / l
/ / ^ i z A ™fi'''0* l(B,»). 

Jz ^ / (6.63) 

Proof This follows from Proposition 24, Proposition 28 and (6.61). • 

Corollary 4. If Z is odd-dimensional and H(Z;£\Z) = 0 then T is closed and so represents 
a class [T] e H">even(B,<B). 

Proof If Z is odd-dimensional then e (TZ, V T Z ) = 0. The corollary now follows from 
Proposition 31. • 

Proposit ion 32. If Z is odd-dimensional and H{Z\£\Z) = 0 then [T] € H"'even(B,<B) is 
independent of gTZ, THM, hE and 3s. Thus it only depends on the (smooth) topological 
fiber bundle Z —» M —> B and the flat structure on E. 
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Proof. Put T — {gTZ, THM, he, de) and let T' be another choice of such data. We can find 
a smooth 1-parameter family {T(e)}eeR such that ^(O) = T and T(\) = T'. Put Z = Z, 
M — R x M and B = E x B. Let p : M —• M be projection onto the second factor and 
put £ = p*£. Then the family {.F(e)}c(EiR provides the data gTZ, THM, he and c^ on the 
fiber bundle Z —> M -^ B. Let d = de dc + d denote the differential on Ct '*(£,53). By 
the preceding constructions, there is an analytic torsion form on B which we can write as 
T = T(e) + deA T'(e), satisfying 

*T= [e {TZ, VTZ) A CS (V, / / ) - CS (vH^~E\z\ hH^\A . 
Jz V / (6.64) 

By our assumptions, the right-hand-side of (6.64) vanishes. Thus dcT(e) = dT'(e), from 
which the proposition follows. • 

Proposit ion 33 . Suppose that 
1. Z is even-dimensional 
2. TZ is oriented 
3. Vs is self-adjoint with respect to he. 
Then T = 0. 

Proof. This follows from an argument using Hodge duality, as in [2, Theorem 3.26]. We 
omit the details. • 

Let us look more closedly at 7[0], the component of T in £7 ' (B, 53). Assume for simplicity 
that B is connected. Then 

n" '°(£, 53) = (C°°(B)/C) <g> ( ® / p 8 7 » l ) • (6-65) 

As in (5.83), 

rx rl Ht 
7f0] = - / / TRS (N (1 - 2tu(l - u)A) e~tu{1-u)A) du~. (6.66) 

Jo Jo t 

Define g as in (5.84). Then a specific lifting of T[0] to C°°(B) <g> ( » / [ » , ®]) is given by 

[TRS (A^ (*A)) - Q *(Z) 1VS (7|£) - TYS ( * 1 * ^ ) ) 9® 

+TV- K M J] f • 
Example 10 : If 53 = C then as in [2, Theorem 3.29], 7[0] is the usual Ray-Singer analytic 
torsion [32], considered to be a function on B. 

Example 11 : Suppose that T is a finite group and 53 = CI \ Then 7foj is equiva­
lent to the equivariant analytic torsion of [25]. 

Example 12 : Suppose that T is a discrete group and 53 = C*T. Let r be the trace 
on 53 given by i~(J2iercil') — ce- Then r (7[0]) is the L2-analytic torsion of [22, 27]. (In 

f 
Jo 
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DIFFEOMORPHISMS AND NONCOMMUTATIVE ANALYTIC TORSION 51 

the cited papers, the L2-torsion is defined using the group von Neumann algebra and with­
out the assumption of a gap in the spectrum of A, but with the assumption of positive 
Novikov-Shubin invariants.) 

7. DlFFEOMORPHISM GROUPS 

Let Z be a connected closed manifold and let Diff(Z) be its diffeomorphism group, en­
dowed with the natural smooth topology [28]. For i > 1, let a : (Sl, *) —* (Diff(Z), Id) be a 
smooth map. We want to find invariants of [a] G 7Ti(Diff(Z)). Put Mx = M2 = Dl+l x Z. 
Glue M\ and M2 along their common boundary Sl x Z by identifying (0,z) G dM\ with 
(6,(a{6))(z)) G dM2. Let M = Mx U 5 i x Z M2 be the resulting manifold. Then M is the 
total space of a fiber bundle with base B = Sl+l and fiber Z. Any (smooth) topological 
invariant of such fiber bundles gives an invariant of [a]. 

As mentioned in the introduction, we are interested in the case when Z is a K(F, 1)-
manifold. Then IT\{M) = I \ Suppose that T satisfies Hypothesis 1 of the introduction. 
There is a <B-vector bundle £ — <B x r M on M. Choosing h G CQ°(M) satisfying (3.11), 
Proposition 2 gives a partially flat connection V f on £. Let us add vertical Riemannian 
metrics gTZ and a horizontal distribution THM to the fiber bundle. 

We would like to use the formalism of Section 6 to define the analytic torsion form. By 
Proposition 6, V£ is self-adjoint and so Proposition 33 implies that the torsion form vanishes 
if dim(Z) is even. (As the analysis is effectively done on the universal cover Z, the orientation 
assumption on TZ is irrelevant.) So assume that dim(Z) is odd. Let r G Zq(Y\ C) be a 
group cocycle and let ZT G ZC9(S8) be the cyclic cocycle coming from (3.4) (with x — e). 
We want to use Proposition 32 to define the analytic torsion class 

[T] e H'^even(B) = 0 H'(£;77,(93)), 
p+q even 

p>q 

take its integral over B to get 

/ m e 0 77,(55) 
J B q=i+l mod 2 

q<i+l 

and pair the result with Z r . 
In order to satisfy the hypotheses of Proposition 32, we need to know that H(Z;£\Z) = 0 

and that Hypothesis 4 is satisfied. Equivalently, we need to know that the p-form Laplacian 
on Zf, is invertible for all 0 < p < dim(Z). This is a topological condition on Z, but it seems 
likely that it is never satisfied [23]. To understand the nature of the problem, let us look in 
detail at the case when T is a free abelian group. 

7.1. Free Abel ian Fundamental Groups. Suppose that T = Z n . Then Z = Tn. Let # r 
and T denote the classifying space of V and the Pontryagin dual of T, respectively. They 
are again n-tori, but it will be convenient to distinguish them from Z. 

Under Fourier transform, C r T ^ C(f ) . Take <B = C°°(f). Instead of using the universal 
GDA of 33, we will simplify things and use the GDA of smooth differential forms on T. This 
allows us to use ordinary "commutative" analysis. All of the relevant steps of the paper go 
through with this replacement. We now summarize the statements. 
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First, there is a natural Hermitian line bundle H with Hermitian connection V ^ on BYxT 
[21, Section 3.1.1]. (The third line of that section should read HX(M; Z)modTor C Hi (M; K).) 
For all 6 € T, the restriction of S7H to BT x {0} is the flat connection on BT with holonomy 
specified by 6. 

We assume that we are given a fiber bundle Z —• M —> B as above, endowed with a 
vertical Riemannian metric and a horizontal distribution. Consider the fiber bundle Z —> 
M x T —• 5 x T. It inherits a vertical Riemannian metric and a horizontal distribution. Let 
/ : M —> B r be a classifying map for the universal cover M —> A/. Put £ 0 = ( / x Id)*// , a 
Hermitian line bundle on M x T. The pulled-back connection V£() is partially flat. 

Let A be the vertical Laplacian of the fiber bundle Z —> M xT —> B x T , acting on 
Q(Z;E0\Z). Then A is invert ible except on the fibers over B x {1} C B xT. This lack of 
invertibility on 5 x {1} is responsible for the fact that Hypothesis 4 is not satisfied. The 
effect is that the analytic torsion form may be singular on B x T, with singularity along 
Bx{l}. 

In order to get around this problem, one approach is to just remove the singular subspace 
from consideration. Let U C T be a small neighborhood of 1 £ T. Consider the restriction 
of the fiber bundle to B x (T — U). Then the vertical Laplacian is invertible and we can 
define the analytic torsion class 

[T]e 0 Hp(£;C)®H*(f-l/;C). 
p+q even 

p>q 

Now H*(f - U\ C) ^ Eq{T\ C) if 0 < q < n, and H n ( f - U\ C) = 0. Thus there is a (smooth) 
topological invariant of the fiber bundle given by 

f[T\ € 0 H,(r;C). (7.1) 
JB q~i+l mod 2 

<7<min(z+l,n) 

In fact, an argument involving complex conjugation shows that the component of fB[T\ in 
Hg(r; C) vanishes unless q = i 4- 1 mod 4. 

Comparing (7.1) with (1.1) (in the case r = Zn) shows that /B[T] potentially detects all 
of 7r+(DifT(Tn))(g)zC in the stable range. By removing U from T, we have lost the component 
of fB[T\ in H n ( r ; C) if i -f 1 > n, but this lies outside of the stable range, anyway. 

R e m a r k 9 : Although Hypothesis 4 is not satisfied for the bundle Z —> M —> JB, we 
have seen that it is nevertheless possible to extract most of the information in [T], due to 
the fact that A is noninvertible only on a high-codimension subset of B x I \ Although [J] 
is possibly singular on B x {1}, it may be that its singularity is sufficiently mild to still 
define the component of fB[T] in Hn(T; C). We have not looked at this point in detail. 

In summary, when r = Z n then a certain part of the analytic torsion form is well-defined 
directly. We do not know what the* situation is for the analytic torsion form in the case of 
general I \ In the next subsection we will make use of the homotopic triviality of the fiber 
bundle in order to define a relative analytic torsion class for general I \ 
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7.2. General Fundamental Groups. Let Z —• M -^ B and S be as described at the 
beginning of Section 7. We again assume that T satisfies Hypothesis 1, that Z is a K(T, 1)-
manifold and that dim(Z) is odd. Let M' = Z x B be the product bundle over B. Let 8' 
be the corresponding 93-vector bundle on M'. From homotopy theory, we know that M and 
M' are fiber-homotopy equivalent by some smooth map f : AI —> M'. Furthermore, / is 
unique up to homotopy. It induces an isomorphism between the local systems 8 and 8''. We 
will show that the problems with invertibility of the Laplacian cancel out when we consider 
M relative to M'. 

Consider the restriction of / to a single fiber Zb. It acts by pullback on differential 
forms. However, this need not be a bounded, or even closable, operator. To get around this 
problem, we use the trick of [15], which involves modifying / to make it a submersion. 

Let i : Z —> RN be an embedding of Z in Euclidean space. For e > 0 sufficiently small, let 
U be an e-tubular neighborhood of i(Z), with projection P : U —• Z. Let pi : Z x B —-> Z 
be projection on the first factor. Let B ^ denote the unit ball in RN. Consider the fiber 
bundle B N x Z -> BN x M -> B. Define F : B N x M - • M' by 

F ( f , m ) = ( p ( | f + ( 2 o P l o / ) ( m ) ) , 7 r ( m ) ) . (7.2) 

Then F is a fiber-homotopy equivalence which is a fiberwise submersion. Choose v £ 
^ ( B ^ ) with support near 0 € BN and total integral 1. Define W as in Subsection 6.2 and 
let VV be the analogous object for the fiber bundle M'. Define a cochain map T : VV —> W 
by 

T{s')= In/AFV, (7.3) 

where F^ acts fiberwise. Then T is bounded. __ 
Put W = W e W, with the Z-grading >Vl = W 2 ' e (W' ) i + 1 . Let A; be the superconnection 

on W defined in Subsection 6.2 and let v4' be the analogous superconnection on W. For 
r G i , define a superconnection A!r on W by 

A' rT{-\ 
A ' r = ( Q Z> I " (7'4) 

The cochain part AJ. 0 0 x of 4̂̂ . is 

JZ dz r T ( - l ) 
0 d2 dr = ( n Vz ' ) • (7-5) 

Proposit ion 34. T/ie superconnection A!r is partially flat on W. 

Proo/. It is enough to show that A^latT{-l)N -f ^ - 1 ) ^ ^ ' ^ - 0. Now A^lat acts on 
0(£?;W) = 0(M;^) by exterior differentiation dM, and similarly for A'iflat. Taking into 
account that T is an odd variable, in ungraded language we must show that dMT = TdM'. 
A s T acts on Q(M';£ ' ) by 

T(u/) = JvAFu/, (7.6) 

the proposition follows. • 
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As T is a cochain homotopy equivalence, if r ^ 0 then H(W. d~) = 0, while if r = 0 then 
H*(W,dz) = H*(Z;Sz)®H*+l(Z;Sz). 

We now want to define an analytic torsion form T using the superconnection A'r. If t is 
large, we want r to be nonzero, in order to get the gap in the spectrum necessary for large-£ 
convergence of the integral for T . If t is small, we want r to be zero, in order to use the 
small-time estimates separately on M and M'. 

Choose a 0 G CQ°([0, OO)) which is identically one near t = 0. Put h(t) = \ft (1 — <j){i)) 
and 

&t=tNl*A!mt-N'\ (7.7) 

The cochain part B't00l of Bt' is 

'dz (1 - 4>(t)JT(-l)N' 
0 rfz 3 * 0 , = ^ n ^ - ^ ^ ) . (7.8) 

Let B{' be the adjoint of B[. For u € ( 0 , l ) , put £ ((u) =uB[ + {\- u)B't'. 

> 0, de/ine CS(t) £ fi",od<i(B, <8) and T(f) e n",euc" 

C5(t) = - / TRS ( ( g ; - BJ') e"5?*"*) du (7.9) 

Definition 19. For t > 0, de/me CS(£) £ fi",od<i(.B, <8) and T(f) e fi",<a'cn(B,<B)/Im(d) by 

(7.10) 

anc? 

T ( 0 = - - f f TRS ( M T 5 ? ( t t ) ) du + / /" iz(l - u) 

TRS (iV [ 5 ; - B,
t',e-r*?M (B[ - B'^j c-<i-0*?(«)]) rfrrf^ 

+ ft/(*)//^(((i-ti)(°--i)Jvr- U T ( o 1 } 

c-rB?(u) ^ _ ^ c-( l-r)B?(«)^ ^ 

Proposition 35 . We toe dtCS(t) = -dT(t). 

Proof. There is a partially flat superconnection on 1R+ x B given by de dc + Af
h,cy One can 

then proceed as in the proofs of Propositions 9 and 14. We omit the details. • 

Definition 20. Define T e Tt''even{B^)/\m{d) by 
TOO 

T= T(t)dt. (7.11) 
Jo 

The integrand in (7.11) is integrable. For small t, this follows from the fact that 1 — (/> 
vanishes identically near t = 0, so one effectively has the difference of the torsion integrands 
of M and M'. The large-t convergence comes from the fact that T is a cochain homotopy 
equivalence, which implies that the Laplacian 

'dz T{-l)NY fdz T(-l)N\ (dz T{-l)N\fdz T(-l)N^ 
0 dz ) V 0 dz ) + V 0 dz ){0 dz 

is invertible [24, Lemma 2.5]. 
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Proposition 36. The form T is closed. Its class [T] £ H {B,*&) only depends on 
[a]G7rt(Diff(Z)). 

Proof. This follows as in Corollary 4 and Proposition 32. The only point to check is that 
any two choices of the auxiliary data are connected by a smooth 1-parameter family. This is 
obvious except, perhaps, for the choice of embedding i : Z —* RN . If i1 : Z —> M>N' is another 
choice, we can find some N" and isometric embeddings / : RN —• MA", / ' : RN ' —> RN" such 
that / o i and / ' o i' are connected by a smooth 1-parameter family of embeddings. D 

So we have an invariant 

f[T] e 0 77,(<B). (7.12) 
JB q=i+l mod 2 

q<i+l 

Because of the underlying real structures of the vector bundles involved, one can show that 
the Z/^23)-component of fB[T] vanishes unless q = i + 1 mod 4. By Hypothesis 1, for each 
[r] G H*(r, C), there is a representative r € Zq{T; C) such that ZT <E J/C*(Cr) extends to a 
continuous cyclic cocycle on 55. Then the pairing (ZT, JB[T]) € C is a numerical invariant 
of [a]€7ri(DifF(Z)). 
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