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Ricci flow

M a compact, connected n-dimensional manifold.

Say (M, g(t)) is a Ricci flow solution, i.e. dg
dt = − 2 Ric.

Fix t0 and put τ = t0 − t . Then dg
dτ = 2 Ric.

An important tool : monotonic quantities.
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Reduced volume

Fix p ∈ M. Say γ : [0, τ ] → M is a smooth curve with γ(0) = p.
(The graph of γ goes “backward in time”.)

Definition
L-length L(γ) =

∫ τ
0
√

τ
(
|γ̇|2g(τ) + R(γ(τ), τ)

)
dτ .

Definition
reduced distance Given q ∈ M, put
L(q, τ) = inf{L(γ) : γ(0) = p, γ(τ) = q}.

Put l(q, τ) = L(q,τ)

2
√

τ
.

Definition
reduced volume Ṽ (τ) = τ−

n
2

∫
M e− l(q,τ) dvol(q).
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n
2

∫
M e− l(q,τ) dvol(q).



Reduced volume

Fix p ∈ M. Say γ : [0, τ ] → M is a smooth curve with γ(0) = p.
(The graph of γ goes “backward in time”.)

Definition
L-length L(γ) =

∫ τ
0
√

τ
(
|γ̇|2g(τ) + R(γ(τ), τ)

)
dτ .

Definition
reduced distance Given q ∈ M, put
L(q, τ) = inf{L(γ) : γ(0) = p, γ(τ) = q}.

Put l(q, τ) = L(q,τ)

2
√

τ
.

Definition
reduced volume Ṽ (τ) = τ−
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Monotonicity of the reduced volume

Theorem
(Perelman) Ṽ is nonincreasing in τ , i.e. nondecreasing in t.

An “entropy” functional for Ricci flow.

The only assumption : g(t) satisfies the Ricci flow equation.

Main application : Perelman’s “no local collapsing” theorem.
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Perelman’s heuristic derivation

Put M = M × SN × R+.

Here N is a free parameter and τ is the coordinate on R+.

Put

g = g(τ) + τgSN +

(
N
2τ

+ R
)

dτ2,

where gSN has constant sectional curvature 1
2N .

Fact : As N →∞, Ric(M) = O
(
N−1).

Bishop-Gromov : r− dim vol(Br (p)) is nonincreasing in r if
Ric ≥ 0.

Apply formally to M and take N →∞. Get monotonicity of Ṽ .
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Heuristic relation to optimal transport

We know how to characterize nonnegative Ricci curvature
using optimal transport. Apply to M and translate down to M.

This should give an optimal transport problem on M with which
we can derive the monotonicity of Ṽ .
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Optimal transport

(M, g) a compact Riemannian manifold

P(M) = Borel probability measures on M

P∞(M) = {ρ dvolM : ρ ∈ C∞(M), ρ > 0,
∫

M ρ dvolM = 1}.

Transport problem Given µ0, µ1 ∈ P(M), we want to move µ0 to
µ1 most efficiently.
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Wasserstein metric

Say the cost to transport a unit of mass from x to y is d(x , y)2.

Definition
Wasserstein metric W2 on P(M)

W2(µ0, µ1)
2 = infΠ

∫
M×M d(x , y)2 dΠ(x , y),

where Π ∈ P(M ×M), (p0)∗Π = µ0, (p1)∗Π = µ1.

(A minimizer always exists.)
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Displacement interpolation

The transport is done along geodesics in M.

Take a snapshot of the mass at each time t ∈ [0, 1], get a
1-parameter family of measures {µt}t∈[0,1].



Eulerian formulation

Variational problem for {µt}t∈[0,1]

(Benamou-Brenier)

Say c : [0, 1] → P∞(M) is a smooth curve.

Write c(t) = ρ(t) dvolM .

Fact : We can solve

∂ρ

∂t
= −

∑
i

∇i(ρ∇iφ)

for φ ≡ φ(t) ∈ C∞(M).

Here φ is unique up to an additive constant.
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Energy of a curve of measures

From {ρ(t)}t∈[0,1], we got {φ(t)}t∈[0,1].

Definition
E(c) = 1

2

∫ 1
0

∫
M |∇φ|2 ρ dvolM dt .

Theorem
Otto-Westdickenberg

1
2

W2(µ0, µ1)
2 = inf{E(c) : c(0) = µ0, c(1) = µ1}.

Note : the infimum may not be achieved. A minimizing c is a
smooth displacement interpolation.
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Euler-Lagrange equations

The Euler-Lagrange equation for the functional E is

Hamilton-Jacobi equation

∂φ

∂t
= − 1

2
|∇φ|2.

We also had

Conservation equation

∂ρ

∂t
= −

∑
i

∇i(ρ∇iφ).

These are the equations for optimal tranport and can be solved
explicitly.
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Entropy

Definition
E : P∞(M) → R is given by

E(ρ dvolM) =

∫
M

ρ ln ρ dvolM .

Proposition
Otto-Villani Along a smooth displacement interpolation c,

d2

dt2E(c(t)) =

∫
M

[
|Hess φ|2 + Ric(∇φ,∇φ)

]
ρ dvolM .
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Synthetic Ricci curvature

Corollary
If RicM ≥ 0 then E is convex along smooth displacement
interpolations in P∞(M).

Theorem
Cordero-Erausquin-McCann-Schmuckenschläger If RicM ≥ 0
then E is convex along displacement interpolations in P(M).

J.L.-Villani, Sturm One can take convexity of E (along
displacement interpolations) as a definition of “nonnegative
Ricci curvature” for a metric-measure space.
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Question

Can we do something similar for the Ricci flow?

Motivation : Satisfying Ric = 0 in the Riemannian case is like
satisfying the Ricci flow equation in the spacetime case.

Optimal transport in a Ricci flow spacetime was first considered
by Topping.

Note : The Ricci flow equation

dg
dt

= − 2 Ric

implies
dvolM

dt
= − R dvolM .
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E0 functional

Assume hereafter that (M, g(t)) satisfies the Ricci flow
equation.

Given c : [t0, t1] → P∞(M), write c(t) = ρ(t) dvolM . Solve

∂ρ

∂t
= −

∑
i

∇i(ρ∇iφ) + R ρ

for φ ≡ φ(t) ∈ C∞(M).

Definition
E0(c) = 1

2

∫ t1
t0

∫
M

(
|∇φ|2 + R

)
ρ dvolM dt

Euler-Lagrange equation for E0 :

∂φ

∂t
= − 1

2
|∇φ|2 +

1
2

R.
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Convexity statement

Proposition
If c satisfies the Euler-Lagrange equation then

d2

dt2

∫
M

(ρ ln ρ − φ ρ) dvolM =

∫
M
|Ric−Hess φ|2 ρ dvolM .

Corollary
If c satisfies the Euler-Lagrange equation then∫

M (ρ ln ρ − φ ρ) dvolM is convex in t.
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Corresponding optimal transport problem

Say we want to transport a measure µ0 (at time t0) to a
measure µ1 (at time t1).

Take the cost to transport a unit of mass from p to q to be

min{L0(γ) : γ(t0) = p, γ(t1) = q},

where

L0(γ) =
1
2

∫ t1

t0

(
|γ̇|2g(t) + R(γ(t), t)

)
dt .

There is a corresponding notion of optimal transport,
displacement interpolation, etc.



Convexity result

Theorem∫
M (ρ ln ρ − φ ρ) dvolM is convex along a displacement

interpolation between absolutely continuous measures
µ0, µ1 ∈ P(M).

The proof uses results of Bernard-Buffoni/Topping for optimal
transport problems with a time-dependent cost.
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E− functional

Fix t0 and put τ = t0 − t . The Ricci flow equation is

dg
dτ

= 2 Ric .

Given c : [τ0, τ1] → P∞(M), write c(τ) = ρ(τ) dvolM . Solve

∂ρ

∂τ
= −

∑
i

∇i(ρ∇iφ) − R ρ

for φ = φ(τ) ∈ C∞(M).

Definition
E−(c) =

∫ τ1
τ0

∫
M
√

τ
(
|∇φ|2 + R

)
ρ dvolM dτ

Euler-Lagrange equation for E− :

∂φ

∂τ
= − 1

2
|∇φ|2 +

1
2

R − 1
2τ

φ.
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Convexity statement

Proposition
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3
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d
dτ

)2 (∫
M

(ρ ln ρ + φ ρ) dvolM +
n
2

ln τ

)
=

τ3
∫

M

∣∣∣Ric + Hess φ− g
2τ

∣∣∣2 ρ dvolM .

Corollary
If c satisfies the Euler-Lagrange equation then∫

M (ρ ln ρ + φ ρ) dvolM + n
2 ln τ is convex in τ−

1
2 .
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The transport problem

Take τ0 → 0, µ0 = δp and µ1 an absolutely continuous measure.

The displacement interpolation is along L-geodesics emanating
from p.

In this case, φ = l .



From convexity to monotonicity

Proposition
In this case,

∫
M (ρ ln ρ + φ ρ) dvolM + n

2 ln τ is nondecreasing
in τ .

Proof.
We know that it is convex in s = τ−

1
2 . As s →∞, i.e. as τ → 0,

it approaches a constant. (Almost Euclidean situation.) So it is
nonincreasing in s, i.e. nondecreasing in τ .
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Free energy

Trivial fact : The minimizer of∫
M

(ρ ln ρ + φ ρ) dvolM +
n
2

ln τ,

as ρ dvolM ranges over absolutely continuous probability
measures, is

− ln
(

τ−
n
2

∫
M

e− φ dvolM

)
.

The minimizing measure is given by

ρ =
e−φ∫

M e− φ dvolM
.



Monotonicity of reduced volume

Proposition

Ṽ (τ) = τ−
n
2

∫
M

e− l dvolM

is nonincreasing in τ .

Proof : Say τ ′ < τ ′′. Recall φ = l . Take µ(τ ′′) = ρ(τ ′′) dvolM
with

ρ(τ ′′) =
e−φ(τ ′′)∫

M e− φ(τ ′′) dvolM
.

Transport it to δp (at time zero). At the intermediate time τ ′ we
see a measure µ(τ ′) = ρ(τ ′) dvolM .
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Optimal transport and heat flow

Otto, Sturm-von Renesse, Otto-Westdickenberg Suppose that a
compact Riemannian manifold has Ric ≥ 0. If µ0(t) and µ1(t)
are two solutions of the heat flow on measures then
W2(µ0(t), µ1(t)) is nonincreasing in t .

J.L., McCann-Topping Suppose that (M, g(t)) is a Ricci flow
solution. Suppose that µ0(t) and µ1(t) are two solutions of the
backward heat flow on measures

dµ

dt
= −∇2

g(t) µ.

Then W2(µ0(t), µ1(t)) is nondecreasing in t .

Topping Extension to a statement about the L-transport
distance between µ0 and µ1 at distinct but related times.
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