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Optimal transport in Riemannian geometry

Otto, Otto-Villani, McCann, J.L.-Villani, Sturm

Optimal transport in Ricci flow

J.L., McCann-Topping, Topping



Optimal Transport and Perelman’s Reduced Volume

Perelman’s reduced volume



M a compact, connected n-dimensional manifold.

Say (M, g(1)) is a Ricci flow solution, i.e. % = — 2 Ric.



M a compact, connected n-dimensional manifold.
Say (M, g(1)) is a Ricci flow solution, i.e. % = — 2 Ric.
Fix ty and put 7 = fy — t. Then % = 2 Ric.

An important tool : monotonic quantities.
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—

Put(q.7) = %

S5

Definition N
reduced volume V(7) = 772 [,, e~ (@7) dvol(q).
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Monotonicity of the reduced volume

Theorem
(Perelman) V is nonincreasing in 7, i.e. nondecreasing in t.

An “entropy” functional for Ricci flow.
The only assumption : g(t) satisfies the Ricci flow equation.

Main application : Perelman’s “no local collapsing” theorem.
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Perelman’s heuristic derivation

Put M =M x SN x R*,
Here N is a free parameter and 7 is the coordinate on R™.

Put

N
g=9(7)+7gsn + (27 + F.’) dr?,

where ggv has constant sectional curvature 5.
Fact : As N — oo, Ric(M) = O (N77).

Bishop-Gromov : r= 9™ vol(B,(p)) is nonincreasing in r if
Ric > 0.

Apply formally to M and take N — co. Get monotonicity of V.
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using optimal transport. Apply to M and translate down to M.



Heuristic relation to optimal transport

We know how to characterize nonnegative Ricci curvature
using optimal transport. Apply to M and translate down to M.

This should give an optimal transport problem on M with which
we can derive the monotonicity of V.
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(M, g) a compact Riemannian manifold
P(M) = Borel probability measures on M
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Optimal transport

(M, g) a compact Riemannian manifold
P(M) = Borel probability measures on M
P>(M) = {p dvoly : pe C®(M), p>0, [,p dvoly = 1}.

Transport problem Given pg, u1 € P(M), we want to move g to
11 most efficiently.




Wasserstein metric

Say the cost to transport a unit of mass from x to y is d(x, y)2.



Wasserstein metric

Say the cost to transport a unit of mass from x to y is d(x, y)2.

Definition
Wasserstein metric W, on P(M)

WZ(//“Oa A )2 = infl-l fMXM d(X7 .y)2 dn(va)’

where I € P(M x M), (po)«I1 = o, (p1)« = 1.

(A minimizer always exists.)



Displacement interpolation

The transport is done along geodesics in M.

Take a snapshot of the mass at each time t € [0, 1], get a
1-parameter family of measures {t}c(o,1]-



Eulerian formulation

Variational problem for {,U/t}te[OJ]
(Benamou-Brenier)

Say ¢ : [0,1] — P*>(M) is a smooth curve.

Write c(t) = p(t) dvoly.



Eulerian formulation

Variational problem for {/M}te[o,ﬂ
(Benamou-Brenier)

Say ¢ : [0,1] — P*>(M) is a smooth curve.
Write c(t) = p(t) dvoly.

Fact : We can solve
op Zvi v

for ¢ = ¢(t) € C*(M).

Here ¢ is unique up to an additive constant.
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Energy of a curve of measures

From {p(t)}tcqo,1], we got {&(1)}teqo,1]-

Definition
E(c) = 1 [ [y [Vo[? p dvoly dt.

Theorem
Otto-Westdickenberg

2 Walyio,m)? = Inf{E(e) : c(0) = o, c(1) = 1},

Note : the infimum may not be achieved. A minimizing cis a
smooth displacement interpolation.



Euler-Lagrange equations

The Euler-Lagrange equation for the functional E is

Hamilton-Jacobi equation

o

ot

1 2
= —§|V¢|.



Euler-Lagrange equations

The Euler-Lagrange equation for the functional E is

Hamilton-Jacobi equation
dp 1 2
We also had
Conservation equation

dp i
3 = —ZV(PV@)-

These are the equations for optimal tranport and can be solved
explicitly.
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Definition
& : P*(M) — Ris given by

£(p dvoly) = / pInp dvoly,.
M

Proposition
Otto-Villani Along a smooth displacement interpolation c,
d2

Laelelt) = /M [|Hess o2 + Ric(V,V6)| » dvoly.
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Synthetic Ricci curvature

Corollary

IfRicy > 0 then & is convex along smooth displacement
interpolations in P>°(M).

Theorem
Cordero-Erausquin-McCann-Schmuckenschlédger If Ricy; > 0
then & is convex along displacement interpolations in P(M).

J.L.-Villani, Sturm One can take convexity of £ (along
displacement interpolations) as a definition of “nonnegative
Ricci curvature” for a metric-measure space.
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Can we do something similar for the Ricci flow?

Motivation : Satisfying Ric = 0 in the Riemannian case is like
satisfying the Ricci flow equation in the spacetime case.

Optimal transport in a Ricci flow spacetime was first considered
by Topping.



Can we do something similar for the Ricci flow?

Motivation : Satisfying Ric = 0 in the Riemannian case is like
satisfying the Ricci flow equation in the spacetime case.

Optimal transport in a Ricci flow spacetime was first considered
by Topping.

Note : The Ricci flow equation

dg ,
9 — 2 Ric
implies
dvoly,
at

= — R dvoly.



Eo functional

Assume hereafter that (M, g(t)) satisfies the Ricci flow
equation.

Given ¢ : [fy, 1] — P>°(M), write c(t) = p(t) dvoly. Solve
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i

for ¢ = ¢(t) € C*(M).



Eo functional

Assume hereafter that (M, g(t)) satisfies the Ricci flow
equation.

Given c : [fy, 1] — P>(M), write c(t) = p(t) dvoly,. Solve
o ,
{7[; = —ZV'(W@) + Rp
for o = ¢(t) € C*(M).

Definition
Eo(c) = 3 [ Ju (V82 + R) p dvoly dt



Eo functional

Assume hereafter that (M, g(t)) satisfies the Ricci flow
equation.

Given ¢ : [fy, 1] — P>°(M), write c(t) = p(t) dvoly. Solve
op _ i
5 = —ZV(W@) + Rp
for ¢ = ¢(t) € C*(M).
Definition
Eo(c) = 3 [ Ju (V82 + R) p dvoly dt

Euler-Lagrange equation for Ey :

o A 5o 1
5 = §|V¢y+§H.



Convexity statement

Proposition
If ¢ satisfies the Euler-Lagrange equation then

2
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Convexity statement

Proposition
If ¢ satisfies the Euler-Lagrange equation then

d2

dt2/ (pInp — ¢p) dvoly = / | Ric — Hess ¢/ p dvoly,.
M M

Corollary
If ¢ satisfies the Euler-Lagrange equation then
Ju(pInp — ¢ p) dvoly is convex in t.



Corresponding optimal transport problem

Say we want to transport a measure g (at time ) to a
measure p4 (at time t;).

Take the cost to transport a unit of mass from p to g to be

min{Lo() : v(t) = p,v(t1) = q},
where

b
Lo(v) = % /t <H|§(t) + R(’)’(t),t)) dt.

There is a corresponding notion of optimal transport,
displacement interpolation, etc.



Convexity result

Theorem
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Convexity result

Theorem

Ju(p Inp — ¢ p) dvoly is convex along a displacement
interpolation between absolutely continuous measures
to, 1 € P(M).

The proof uses results of Bernard-Buffoni/Topping for optimal
transport problems with a time-dependent cost.
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E functional

Fix to and put 7 = fy — t. The Ricci flow equation is

d ,
4 = 2 Ric.

Given ¢ : [r9, 4] — P>°(M), write ¢(7) = p(7) dvoly. Solve
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i

forp = ¢(7) € C*(M).



E functional

Fix to and put 7 = fy — t. The Ricci flow equation is

dg .
4 = 2 Ric.

Given ¢ : [r9, 1] — P>(M), write ¢(7) = p(7) dvoly,. Solve
8p = ZV(pV¢) — Rp
forp = ¢(7) € C*(M).

Definition
E (c) = f IuvT (|V¢]2+ R) p dvoly dr



E functional

Fix to and put 7 = fy — t. The Ricci flow equation is

dg ,
4 = 2 Ric.

Given ¢ : [r9, 4] — P>°(M), write ¢(7) = p(7) dvoly. Solve
0
p = ZV(pV¢) — Rp
forp = ¢(7) € C*(M).
Definition
E_(c) = f Juv7 (IV9[2+ R) p dvoly dr
Euler-Lagrange equation for E_ :

9 1o 1. 1
o = Vet 3R - o0



Convexity statement

Proposition
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5 d\?
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Convexity statement

Proposition
If ¢ satisfies the Euler-Lagrange equation then

5 d\?
<Tsz> </M(p Inp + ¢p) dvoIM+ZInT> =

3 , g2
T /‘R|c+Hess¢—’ p dvoly, .
M 27'

Corollary
If ¢ satisfies the Euler-Lagrange equation then
Ju(pInp + ¢ p) dvoly + 3 InT is convex in T~ 2,



Optimal Transport and Perelman’s Reduced Volume

Monotonicity of the reduced volume



The transport problem

Take 79 — 0, 119 = dp and p4 an absolutely continuous measure.

The displacement interpolation is along £-geodesics emanating
from p.

In this case, ¢ = I.



From convexity to monotonicity

Proposition

In this case, [,,(p Inp + ¢ p) dvoly, + 3 In7 is nondecreasing
inT.



From convexity to monotonicity

Proposition
In this case, [,,(p Inp + ¢ p) dvoly, + 3 In7 is nondecreasing
inT.

Proof. 1

We know that it is convexins=7"2. As s — oo, i.e. as 7 — 0,
it approaches a constant. (Almost Euclidean situation.) So it is
nonincreasing in s, i.e. nondecreasing in 7. O



Trivial fact : The minimizer of

/ (pInp + ¢p) dvoly +Q InT,
M 2

as pdvoly, ranges over absolutely continuous probability

measures, is
—In (r‘g/ e ¢ dvoIM) .
M

The minimizing measure is given by

e ¢

p= Jye ¢ dvoly
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Monotonicity of reduced volume

Proposition

V(r) = T‘Z/ e~ ! dvoly
M

is nonincreasing in .

Proof : Say 7" < 7. Recall ¢ = I. Take u(7") = p(v") dvoly

with
e*‘ls(fn)

m”m o
p(T ) - fM e— d)(TH) dVOIM‘

Transport it to J, (at time zero). At the intermediate time 7’ we
see a measure u(t') = p(7’) dvoly.
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—In <(T')—2 / e ) dvoIM>
M
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Then
—In <(T')—2 / e ) dvoIM>
M

< [ 1ot mple) + 6(7) ()] ol + 5 In™
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Then
—In <(T')—2 / e ) dvoIM>
M

< [ 1ot mple) + 6(7) ()] ol + 5 In™

< [ 1ot mple) + 6() o] ol + 5

End of proof
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Otto, Sturm-von Renesse, Otto-Westdickenberg Suppose that a
compact Riemannian manifold has Ric > 0. If uo(t) and p1(f)
are two solutions of the heat flow on measures then
Wa(po(t), 111(t)) is nonincreasing in t.

J.L., McCann-Topping Suppose that (M, g(t)) is a Ricci flow
solution. Suppose that 1o(t) and w1 (t) are two solutions of the
backward heat flow on measures

_ 2
o =~ VK

Then Wa(uo(t), 11(t)) is nondecreasing in t.



Optimal transport and heat flow

Otto, Sturm-von Renesse, Otto-Westdickenberg Suppose that a
compact Riemannian manifold has Ric > 0. If uo(t) and p1(f)
are two solutions of the heat flow on measures then
Wa(po(t), 111(t)) is nonincreasing in t.

J.L., McCann-Topping Suppose that (M, g(t)) is a Ricci flow
solution. Suppose that 1o(t) and w1 (t) are two solutions of the
backward heat flow on measures

du 2
ot = Ve M

Then Wa(uo(t), 11(t)) is nondecreasing in t.

Topping Extension to a statement about the £-transport
distance between o and p4 at distinct but related times.
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