Optimal transport in Riemannian geometry

Otto, Otto-Villani, McCann, J.L.-Villani, Sturm

(ロ) (同) (三) (三) (三) (○) (○)

Optimal transport in Ricci flow

J.L., McCann-Topping, Topping

Perelman's reduced volume

Riemannian optimal transport

Optimal transport for Ricci flow

Monotonicity of the reduced volume

M a compact, connected *n*-dimensional manifold.

Say (M, g(t)) is a Ricci flow solution, i.e. $\frac{dg}{dt} = -2$ Ric.

M a compact, connected *n*-dimensional manifold.

Say
$$(M, g(t))$$
 is a Ricci flow solution, i.e. $\frac{dg}{dt} = -2$ Ric.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Fix t_0 and put $\tau = t_0 - t$. Then $\frac{dg}{d\tau} = 2$ Ric.

An important tool : monotonic quantities.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Definition \mathcal{L} -length $\mathcal{L}(\gamma) = \int_0^{\overline{\tau}} \sqrt{\tau} \left(|\dot{\gamma}|^2_{g(\tau)} + R(\gamma(\tau), \tau) \right) d\tau.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Definition \mathcal{L} -length $\mathcal{L}(\gamma) = \int_0^{\overline{\tau}} \sqrt{\tau} \left(|\dot{\gamma}|^2_{g(\tau)} + R(\gamma(\tau), \tau) \right) d\tau.$

Definition reduced distance Given $q \in M$, put $\overline{L}(q,\overline{\tau}) = \inf\{\mathcal{L}(\gamma) : \gamma(0) = p, \gamma(\overline{\tau}) = q\}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Definition \mathcal{L} -length $\mathcal{L}(\gamma) = \int_0^{\overline{\tau}} \sqrt{\tau} \left(|\dot{\gamma}|^2_{g(\tau)} + R(\gamma(\tau), \tau) \right) d\tau.$

Definition reduced distance Given $q \in M$, put $\overline{L}(q,\overline{\tau}) = \inf\{\mathcal{L}(\gamma) : \gamma(0) = p, \gamma(\overline{\tau}) = q\}.$

Put
$$I(q,\overline{\tau}) = \frac{\overline{L}(q,\overline{\tau})}{2\sqrt{\overline{\tau}}}$$
.

Definition \mathcal{L} -length $\mathcal{L}(\gamma) = \int_0^{\overline{\tau}} \sqrt{\tau} \left(|\dot{\gamma}|^2_{g(\tau)} + R(\gamma(\tau), \tau) \right) d\tau.$

Definition reduced distance Given $q \in M$, put $\overline{L}(q,\overline{\tau}) = \inf\{\mathcal{L}(\gamma) : \gamma(0) = p, \gamma(\overline{\tau}) = q\}.$

Put
$$I(q,\overline{\tau}) = \frac{\overline{L}(q,\overline{\tau})}{2\sqrt{\overline{\tau}}}$$
.

Definition reduced volume $\widetilde{V}(\overline{\tau}) = \overline{\tau}^{-\frac{n}{2}} \int_{M} e^{-l(q,\overline{\tau})} \operatorname{dvol}(q).$

Theorem (Perelman) \tilde{V} is nonincreasing in $\bar{\tau}$, i.e. nondecreasing in t.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem (Perelman) \tilde{V} is nonincreasing in $\bar{\tau}$, i.e. nondecreasing in t.

An "entropy" functional for Ricci flow.

The only assumption : g(t) satisfies the Ricci flow equation.

Main application : Perelman's "no local collapsing" theorem.

Put $\overline{M} = M \times S^N \times \mathbb{R}^+$.

Here *N* is a free parameter and τ is the coordinate on \mathbb{R}^+ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Put $\overline{M} = M \times S^N \times \mathbb{R}^+$.

Here *N* is a free parameter and τ is the coordinate on \mathbb{R}^+ . Put

$$\overline{g} = g(au) + au g_{\mathcal{S}^{N}} + \left(rac{N}{2 au} + R
ight) d au^{2},$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

where g_{S^N} has constant sectional curvature $\frac{1}{2N}$.

Fact : As $N \to \infty$, $\operatorname{Ric}(\overline{M}) = O(N^{-1})$.

Put $\overline{M} = M \times S^N \times \mathbb{R}^+$.

Here *N* is a free parameter and τ is the coordinate on \mathbb{R}^+ .

Put

$$\overline{g} = g(au) + au g_{S^N} + \left(rac{N}{2 au} + R
ight) d au^2,$$

where g_{S^N} has constant sectional curvature $\frac{1}{2N}$.

Fact : As $N \to \infty$, $\operatorname{Ric}(\overline{M}) = O(N^{-1})$.

Bishop-Gromov : $r^{-\dim} \operatorname{vol}(B_r(p))$ is nonincreasing in r if Ric ≥ 0 .

Apply formally to \overline{M} and take $N \to \infty$. Get monotonicity of V.

We know how to characterize nonnegative Ricci curvature using optimal transport. Apply to \overline{M} and translate down to M.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

We know how to characterize nonnegative Ricci curvature using optimal transport. Apply to \overline{M} and translate down to M.

This should give an optimal transport problem on *M* with which we can derive the monotonicity of \widetilde{V} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Perelman's reduced volume

Riemannian optimal transport

Optimal transport for Ricci flow

Monotonicity of the reduced volume

(M,g) a compact Riemannian manifold

P(M) = Borel probability measures on M

 $P^{\infty}(M) = \{ \rho \operatorname{dvol}_{M} : \rho \in C^{\infty}(M), \rho > 0, \int_{M} \rho \operatorname{dvol}_{M} = 1 \}.$

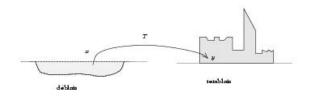
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

(M,g) a compact Riemannian manifold

P(M) = Borel probability measures on M

$$\boldsymbol{P}^{\infty}(\boldsymbol{M}) = \{ \rho \, \operatorname{dvol}_{\boldsymbol{M}} : \rho \in \boldsymbol{C}^{\infty}(\boldsymbol{M}), \, \rho > \boldsymbol{0}, \, \int_{\boldsymbol{M}} \rho \, \operatorname{dvol}_{\boldsymbol{M}} = 1 \}.$$

Transport problem Given $\mu_0, \mu_1 \in P(M)$, we want to move μ_0 to μ_1 most efficiently.



◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Say the cost to transport a unit of mass from x to y is $d(x, y)^2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Say the cost to transport a unit of mass from x to y is $d(x, y)^2$.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Definition Wasserstein metric W_2 on P(M)

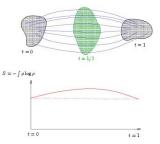
$$W_2(\mu_0,\mu_1)^2 = \inf_{\Pi} \int_{M \times M} d(x,y)^2 d\Pi(x,y),$$

where $\Pi \in P(M \times M)$, $(p_0)_*\Pi = \mu_0$, $(p_1)_*\Pi = \mu_1$.

(A minimizer always exists.)

Displacement interpolation

The transport is done along geodesics in *M*.



Take a snapshot of the mass at each time $t \in [0, 1]$, get a 1-parameter family of measures $\{\mu_t\}_{t \in [0, 1]}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Variational problem for $\{\mu_t\}_{t \in [0,1]}$ (Benamou-Brenier)

Say $c : [0, 1] \rightarrow P^{\infty}(M)$ is a smooth curve.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Write $c(t) = \rho(t) \operatorname{dvol}_M$.

Variational problem for $\{\mu_t\}_{t \in [0,1]}$ (Benamou-Brenier)

Say $c : [0, 1] \rightarrow P^{\infty}(M)$ is a smooth curve.

Write $c(t) = \rho(t) \operatorname{dvol}_M$.

Fact : We can solve

$$\frac{\partial \rho}{\partial t} = -\sum_{i} \nabla^{i} (\rho \nabla_{i} \phi)$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

for $\phi \equiv \phi(t) \in C^{\infty}(M)$.

Here ϕ is unique up to an additive constant.

From $\{\rho(t)\}_{t\in[0,1]}$, we got $\{\phi(t)\}_{t\in[0,1]}$.

From $\{\rho(t)\}_{t\in[0,1]}$, we got $\{\phi(t)\}_{t\in[0,1]}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

$$E(c) = \frac{1}{2} \int_0^1 \int_M |\nabla \phi|^2 \rho \, \operatorname{dvol}_M \, dt.$$

From $\{\rho(t)\}_{t\in[0,1]}$, we got $\{\phi(t)\}_{t\in[0,1]}$.

Definition $E(c) = \frac{1}{2} \int_0^1 \int_M |\nabla \phi|^2 \rho \, \operatorname{dvol}_M \, dt.$

Theorem Otto-Westdickenberg

$$\frac{1}{2} W_2(\mu_0, \mu_1)^2 = \inf\{E(c) : c(0) = \mu_0, c(1) = \mu_1\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

From $\{\rho(t)\}_{t\in[0,1]}$, we got $\{\phi(t)\}_{t\in[0,1]}$.

Definition

$$E(c) = \frac{1}{2} \int_0^1 \int_M |\nabla \phi|^2 \rho \, \operatorname{dvol}_M \, dt.$$

Theorem Otto-Westdickenberg

$$\frac{1}{2} W_2(\mu_0,\mu_1)^2 = \inf\{E(c) : c(0) = \mu_0, c(1) = \mu_1\}.$$

Note : the infimum may not be achieved. A minimizing *c* is a smooth displacement interpolation.

Euler-Lagrange equations

The Euler-Lagrange equation for the functional E is

Hamilton-Jacobi equation

$$\frac{\partial \phi}{\partial t} = -\frac{1}{2} |\nabla \phi|^2.$$

Euler-Lagrange equations

The Euler-Lagrange equation for the functional E is

Hamilton-Jacobi equation

$$\frac{\partial \phi}{\partial t} = -\frac{1}{2} |\nabla \phi|^2.$$

We also had

Conservation equation

$$\frac{\partial \rho}{\partial t} = -\sum_{i} \nabla^{i} (\rho \nabla_{i} \phi).$$

These are the equations for optimal tranport and can be solved explicitly.

Entropy

 $\begin{array}{l} \text{Definition} \\ \mathcal{E} \ : \ \mathcal{P}^{\infty}(\mathcal{M}) \to \mathbb{R} \text{ is given by} \end{array}$

$$\mathcal{E}(
ho \,\operatorname{\mathsf{dvol}}_{M}) \,=\, \int_{M}
ho \,\ln
ho \,\operatorname{\mathsf{dvol}}_{M}.$$

Definition $\mathcal{E} : P^{\infty}(M) \to \mathbb{R}$ is given by

$$\mathcal{E}(
ho \operatorname{dvol}_M) = \int_M
ho \operatorname{ln}
ho \operatorname{dvol}_M.$$

Proposition Otto-Villani Along a smooth displacement interpolation c,

$$\frac{d^2}{dt^2}\mathcal{E}(\boldsymbol{c}(t)) = \int_M \left[|\operatorname{Hess} \phi|^2 + \operatorname{Ric}(\nabla \phi, \nabla \phi) \right] \rho \, \operatorname{dvol}_M.$$

・ロト・日本・日本・日本・日本・日本

Corollary

If $\operatorname{Ric}_M \geq 0$ then \mathcal{E} is convex along smooth displacement interpolations in $P^{\infty}(M)$.

Corollary

If $\operatorname{Ric}_M \geq 0$ then \mathcal{E} is convex along smooth displacement interpolations in $P^{\infty}(M)$.

Theorem Cordero-Erausquin-McCann-Schmuckenschläger If $\operatorname{Ric}_M \ge 0$ then \mathcal{E} is convex along displacement interpolations in P(M).

Corollary

If $\operatorname{Ric}_M \geq 0$ then \mathcal{E} is convex along smooth displacement interpolations in $P^{\infty}(M)$.

Theorem Cordero-Erausquin-McCann-Schmuckenschläger If $\operatorname{Ric}_M \ge 0$ then \mathcal{E} is convex along displacement interpolations in P(M).

J.L.-Villani, Sturm One can take convexity of \mathcal{E} (along displacement interpolations) as a definition of "nonnegative Ricci curvature" for a metric-measure space.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Perelman's reduced volume

Riemannian optimal transport

Optimal transport for Ricci flow

Monotonicity of the reduced volume

Can we do something similar for the Ricci flow?

Motivation : Satisfying Ric = 0 in the Riemannian case is like satisfying the Ricci flow equation in the spacetime case.

Optimal transport in a Ricci flow spacetime was first considered by Topping.

(ロ) (同) (三) (三) (三) (○) (○)

Can we do something similar for the Ricci flow?

Motivation : Satisfying Ric = 0 in the Riemannian case is like satisfying the Ricci flow equation in the spacetime case.

Optimal transport in a Ricci flow spacetime was first considered by Topping.

Note : The Ricci flow equation

$$\frac{dg}{dt} = -2$$
 Ric

implies

$$\frac{\mathrm{dvol}_M}{\mathrm{d}t} = -R \, \mathrm{dvol}_M.$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

E_0 functional

Assume hereafter that (M, g(t)) satisfies the Ricci flow equation.

Given $c : [t_0, t_1] \rightarrow P^{\infty}(M)$, write $c(t) = \rho(t) \operatorname{dvol}_M$. Solve

$$rac{\partial
ho}{\partial t} = -\sum_i
abla^i (
ho
abla_i \phi) + R
ho$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

for $\phi \equiv \phi(t) \in C^{\infty}(M)$.

E_0 functional

Assume hereafter that (M, g(t)) satisfies the Ricci flow equation.

Given $c : [t_0, t_1] \rightarrow P^{\infty}(M)$, write $c(t) = \rho(t) \operatorname{dvol}_M$. Solve

$$\frac{\partial \rho}{\partial t} = -\sum_{i} \nabla^{i} (\rho \nabla_{i} \phi) + R \rho$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for
$$\phi \equiv \phi(t) \in C^{\infty}(M)$$
.

Definition $E_0(c) = \frac{1}{2} \int_{t_0}^{t_1} \int_M (|\nabla \phi|^2 + R) \rho \operatorname{dvol}_M dt$

E_0 functional

Assume hereafter that (M, g(t)) satisfies the Ricci flow equation.

Given $c : [t_0, t_1] \rightarrow P^{\infty}(M)$, write $c(t) = \rho(t) \operatorname{dvol}_M$. Solve

$$\frac{\partial \rho}{\partial t} = -\sum_{i} \nabla^{i} (\rho \nabla_{i} \phi) + \boldsymbol{R} \rho$$

for
$$\phi \equiv \phi(t) \in C^{\infty}(M)$$
.

Definition $E_0(c) = \frac{1}{2} \int_{t_0}^{t_1} \int_M (|\nabla \phi|^2 + R) \rho \operatorname{dvol}_M dt$

Euler-Lagrange equation for E_0 :

$$\frac{\partial \phi}{\partial t} = -\frac{1}{2} |\nabla \phi|^2 + \frac{1}{2} R.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

If c satisfies the Euler-Lagrange equation then

$$rac{d^2}{dt^2}\int_M (
ho\,\ln
ho\,-\,\phi\,
ho)\,\,{
m dvol}_M\,=\,\int_M |\operatorname{Ric}-\operatorname{Hess}\phi|^2\,
ho\,\,{
m dvol}_M\,.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

If c satisfies the Euler-Lagrange equation then

$$rac{d^2}{dt^2}\int_M (
ho\,\ln
ho\,-\,\phi\,
ho)\,\,{
m dvol}_M\,=\,\int_M |\operatorname{Ric}-\operatorname{Hess}\phi|^2\,
ho\,\,{
m dvol}_M\,.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Corollary If c satisfies the Euler-Lagrange equation then $\int_{M} (\rho \ln \rho - \phi \rho) \operatorname{dvol}_{M}$ is convex in t. Say we want to transport a measure μ_0 (at time t_0) to a measure μ_1 (at time t_1).

Take the cost to transport a unit of mass from p to q to be

$$\min\{\mathcal{L}_0(\gamma) : \gamma(t_0) = \boldsymbol{p}, \gamma(t_1) = \boldsymbol{q}\},\$$

where

$$\mathcal{L}_{0}(\gamma) = \frac{1}{2} \int_{t_{0}}^{t_{1}} \left(|\dot{\gamma}|^{2}_{g(t)} + R(\gamma(t), t) \right) dt.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

There is a corresponding notion of optimal transport, displacement interpolation, etc.

Theorem

 $\int_{M} (\rho \ln \rho - \phi \rho) \operatorname{dvol}_{M} \text{ is convex along a displacement} \\ \text{interpolation between absolutely continuous measures} \\ \mu_{0}, \mu_{1} \in P(M).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Theorem $\int_{M} (\rho \ln \rho - \phi \rho) \operatorname{dvol}_{M} \text{ is convex along a displacement}$ interpolation between absolutely continuous measures $\mu_{0}, \mu_{1} \in P(M).$

The proof uses results of Bernard-Buffoni/Topping for optimal transport problems with a time-dependent cost.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Fix t_0 and put $\tau = t_0 - t$. The Ricci flow equation is

$$\frac{dg}{d\tau} = 2$$
 Ric.

Fix t_0 and put $\tau = t_0 - t$. The Ricci flow equation is

$$\frac{dg}{d au} = 2$$
 Ric.

Given $c : [\tau_0, \tau_1] \rightarrow P^{\infty}(M)$, write $c(\tau) = \rho(\tau) \operatorname{dvol}_M$. Solve

$$rac{\partial
ho}{\partial au} \,=\, -\sum_i
abla^i (
ho
abla_i \phi) \,-\, R\,
ho$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for $\phi = \phi(\tau) \in C^{\infty}(M)$.

Fix t_0 and put $\tau = t_0 - t$. The Ricci flow equation is

$$rac{dg}{d au} = 2$$
 Ric.

Given $c : [\tau_0, \tau_1] \rightarrow P^{\infty}(M)$, write $c(\tau) = \rho(\tau) \operatorname{dvol}_M$. Solve

$$rac{\partial
ho}{\partial au} = -\sum_i
abla^i (
ho
abla_i \phi) - R
ho$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for
$$\phi = \phi(\tau) \in C^{\infty}(M)$$
.

Definition $E_{-}(c) = \int_{\tau_0}^{\tau_1} \int_M \sqrt{\tau} \left(|\nabla \phi|^2 + R \right) \rho \operatorname{dvol}_M d\tau$

Fix t_0 and put $\tau = t_0 - t$. The Ricci flow equation is

$$rac{dg}{d au} = 2$$
 Ric.

Given $c : [\tau_0, \tau_1] \rightarrow P^{\infty}(M)$, write $c(\tau) = \rho(\tau) \operatorname{dvol}_M$. Solve

$$rac{\partial
ho}{\partial au} = -\sum_i
abla^i (
ho
abla_i \phi) - R
ho$$

for
$$\phi = \phi(\tau) \in C^{\infty}(M)$$
.

Definition $E_{-}(c) = \int_{\tau_0}^{\tau_1} \int_M \sqrt{\tau} \left(|\nabla \phi|^2 + R \right) \rho \operatorname{dvol}_M d\tau$

Euler-Lagrange equation for E_- :

$$\frac{\partial \phi}{\partial \tau} = -\frac{1}{2} |\nabla \phi|^2 + \frac{1}{2} R - \frac{1}{2\tau} \phi.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

If c satisfies the Euler-Lagrange equation then

$$\left(\tau^{\frac{3}{2}} \frac{d}{d\tau}\right)^{2} \left(\int_{M} (\rho \ln \rho + \phi \rho) \operatorname{dvol}_{M} + \frac{n}{2} \ln \tau\right) = \tau^{3} \int_{M} \left|\operatorname{Ric} + \operatorname{Hess} \phi - \frac{g}{2\tau}\right|^{2} \rho \operatorname{dvol}_{M}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

If c satisfies the Euler-Lagrange equation then

$$\left(\tau^{\frac{3}{2}} \frac{d}{d\tau}\right)^{2} \left(\int_{M} (\rho \ln \rho + \phi \rho) \operatorname{dvol}_{M} + \frac{n}{2} \ln \tau\right) = \tau^{3} \int_{M} \left|\operatorname{Ric} + \operatorname{Hess} \phi - \frac{g}{2\tau}\right|^{2} \rho \operatorname{dvol}_{M}.$$

Corollary

If c satisfies the Euler-Lagrange equation then $\int_{\mathcal{M}} (\rho \ln \rho + \phi \rho) \operatorname{dvol}_{\mathcal{M}} + \frac{n}{2} \ln \tau \text{ is convex in } \tau^{-\frac{1}{2}}.$

・ロト・西ト・ヨト・ヨー うへぐ

Perelman's reduced volume

Riemannian optimal transport

Optimal transport for Ricci flow

Monotonicity of the reduced volume

Take $\tau_0 \rightarrow 0$, $\mu_0 = \delta_p$ and μ_1 an absolutely continuous measure.

The displacement interpolation is along \mathcal{L} -geodesics emanating from p.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

In this case, $\phi = I$.

In this case, $\int_{M} (\rho \ln \rho + \phi \rho) \operatorname{dvol}_{M} + \frac{n}{2} \ln \tau$ is nondecreasing in τ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

In this case, $\int_{M} (\rho \ln \rho + \phi \rho) \operatorname{dvol}_{M} + \frac{n}{2} \ln \tau$ is nondecreasing in τ .

Proof.

We know that it is convex in $s = \tau^{-\frac{1}{2}}$. As $s \to \infty$, i.e. as $\tau \to 0$, it approaches a constant. (Almost Euclidean situation.) So it is nonincreasing in *s*, i.e. nondecreasing in τ .

(日) (日) (日) (日) (日) (日) (日)

Trivial fact : The minimizer of

$$\int_{M} (\rho \, \ln \rho \, + \, \phi \, \rho) \, \operatorname{dvol}_{M} + \frac{n}{2} \, \ln \tau,$$

as $\rho \operatorname{dvol}_M$ ranges over absolutely continuous probability measures, is

$$-\ln\left(\tau^{-\frac{n}{2}}\int_{M}e^{-\phi}\,\operatorname{dvol}_{M}\right).$$

The minimizing measure is given by

$$\rho = \frac{e^{-\phi}}{\int_{M} e^{-\phi} \operatorname{dvol}_{M}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\widetilde{V}(\tau) = \tau^{-\frac{n}{2}} \int_{M} e^{-I} \operatorname{dvol}_{M}$$

is nonincreasing in τ .

$$\widetilde{V}(au) = au^{-rac{n}{2}} \int_{M} e^{-t} \operatorname{dvol}_{M}$$

is nonincreasing in τ .

Proof : Say $\tau' < \tau''$. Recall $\phi = I$. Take $\mu(\tau'') = \rho(\tau'') \operatorname{dvol}_M$ with

$$\rho(\tau'') = \frac{e^{-\phi(\tau'')}}{\int_M e^{-\phi(\tau'')} \operatorname{dvol}_M}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\widetilde{V}(au) = au^{-rac{n}{2}} \int_{M} e^{-t} \operatorname{dvol}_{M}$$

is nonincreasing in τ .

Proof : Say $\tau' < \tau''$. Recall $\phi = I$. Take $\mu(\tau'') = \rho(\tau'') \operatorname{dvol}_M$ with

$$ho(au'') = rac{oldsymbol{e}^{-\phi(au'')}}{\int_{oldsymbol{M}}oldsymbol{e}^{-\phi(au'')} \operatorname{dvol}_{oldsymbol{M}}}$$

Transport it to δ_{ρ} (at time zero). At the intermediate time τ' we see a measure $\mu(\tau') = \rho(\tau') \operatorname{dvol}_M$.

Then

$$\begin{split} &-\ln\left((\tau')^{-\frac{n}{2}}\int_{M}e^{-\phi(\tau')}\,\operatorname{dvol}_{M}\right)\\ &\leq \int_{M}\left[\rho(\tau')\,\ln\rho(\tau')\,+\,\phi(\tau')\,\rho(\tau')\right]\,\operatorname{dvol}_{M}+\frac{n}{2}\,\ln\tau' \end{split}$$

Then

$$- \ln\left((\tau')^{-\frac{n}{2}} \int_{M} e^{-\phi(\tau')} \operatorname{dvol}_{M}\right)$$

$$\leq \int_{M} \left[\rho(\tau') \ln \rho(\tau') + \phi(\tau') \rho(\tau')\right] \operatorname{dvol}_{M} + \frac{n}{2} \ln \tau'$$

$$\leq \int_{M} \left[\rho(\tau'') \ln \rho(\tau'') + \phi(\tau'') \rho(\tau'')\right] \operatorname{dvol}_{M} + \frac{n}{2} \ln \tau''$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Then

$$-\ln\left((\tau')^{-\frac{n}{2}}\int_{M}e^{-\phi(\tau')} \operatorname{dvol}_{M}\right)$$

$$\leq \int_{M}\left[\rho(\tau') \ln \rho(\tau') + \phi(\tau') \rho(\tau')\right] \operatorname{dvol}_{M} + \frac{n}{2} \ln \tau'$$

$$\leq \int_{M}\left[\rho(\tau'') \ln \rho(\tau'') + \phi(\tau'') \rho(\tau'')\right] \operatorname{dvol}_{M} + \frac{n}{2} \ln \tau''$$

$$= -\ln\left((\tau'')^{-\frac{n}{2}}\int_{M}e^{-\phi(\tau'')} \operatorname{dvol}_{M}\right).$$

Then

$$-\ln\left((\tau')^{-\frac{n}{2}}\int_{M}e^{-\phi(\tau')} \operatorname{dvol}_{M}\right)$$

$$\leq \int_{M}\left[\rho(\tau') \ln \rho(\tau') + \phi(\tau') \rho(\tau')\right] \operatorname{dvol}_{M} + \frac{n}{2} \ln \tau'$$

$$\leq \int_{M}\left[\rho(\tau'') \ln \rho(\tau'') + \phi(\tau'') \rho(\tau'')\right] \operatorname{dvol}_{M} + \frac{n}{2} \ln \tau''$$

$$= -\ln\left((\tau'')^{-\frac{n}{2}}\int_{M}e^{-\phi(\tau'')} \operatorname{dvol}_{M}\right).$$

End of proof

Otto, Sturm-von Renesse, Otto-Westdickenberg Suppose that a compact Riemannian manifold has Ric ≥ 0 . If $\mu_0(t)$ and $\mu_1(t)$ are two solutions of the heat flow on measures then $W_2(\mu_0(t), \mu_1(t))$ is nonincreasing in *t*.

Otto, Sturm-von Renesse, Otto-Westdickenberg Suppose that a compact Riemannian manifold has Ric ≥ 0 . If $\mu_0(t)$ and $\mu_1(t)$ are two solutions of the heat flow on measures then $W_2(\mu_0(t), \mu_1(t))$ is nonincreasing in *t*.

J.L., McCann-Topping Suppose that (M, g(t)) is a Ricci flow solution. Suppose that $\mu_0(t)$ and $\mu_1(t)$ are two solutions of the backward heat flow on measures

$$\frac{d\mu}{dt} = -\nabla_{g(t)}^2 \mu.$$

(日) (日) (日) (日) (日) (日) (日)

Then $W_2(\mu_0(t), \mu_1(t))$ is nondecreasing in *t*.

Otto, Sturm-von Renesse, Otto-Westdickenberg Suppose that a compact Riemannian manifold has Ric ≥ 0 . If $\mu_0(t)$ and $\mu_1(t)$ are two solutions of the heat flow on measures then $W_2(\mu_0(t), \mu_1(t))$ is nonincreasing in *t*.

J.L., McCann-Topping Suppose that (M, g(t)) is a Ricci flow solution. Suppose that $\mu_0(t)$ and $\mu_1(t)$ are two solutions of the backward heat flow on measures

$$\frac{d\mu}{dt} = -\nabla_{g(t)}^2 \mu.$$

Then $W_2(\mu_0(t), \mu_1(t))$ is nondecreasing in *t*.

Topping Extension to a statement about the \mathcal{L} -transport distance between μ_0 and μ_1 at distinct but related times.