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1. Introduction

We discuss two spectral invariants of Riemannian manifolds. The first, the
eta-invariant η, was introduced by Atiyah, Patodi and Singer in order to
prove an index theorem for manifolds with boundary [1]. The second, the
analytic torsion T , was introduced by Ray and Singer as an analytic analog
of the Reidemeister torsion [15]. In the first part of this paper we define
the invariants and give examples of how they arise.

The two invariants η and T , especially T , have been somewhat mysterious
in nature. They have the flavor of being “secondary” invariants. In recent
years much progress has been made in making this precise, in showing how
η and T arise via transgression from “primary” invariants. To do this one
must look at the invariants not of a single manifold, but of a family of
manifolds. In the second part of this paper we explain the work of Bismut
and Cheeger on eta-forms [6] and the work of Bismut and Lott on analytic
torsion forms [8].

2. Eta-Invariant

Let Z be an odd-dimensional closed (= boundaryless compact) Rieman-
nian spin manifold. Let E be a Hermitian vector bundle on Z and let ∇E
be a connection on E which is compatible with the Hermitian metric. If S
denotes the spinor bundle on Z, there is an essentially self-adjoint Dirac-
type operator D acting on smooth sections of S ⊗ E.

Example 1 : Take Z = S1, parametrized by θ ∈ [0, 2π). Give Z the spin
structure so that spinors on Z are periodic functions. Take E = S1 × C
with the connection∇E = dθ(∂θ+ia), where a ∈ R. Then D = −i(∂θ+ia).
The eigenfunctions of D are {eikθ}k∈Z and the eigenvalues are {k+ a}k∈Z.
End of Example 1
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Question : Does D have more positive or negative eigenvalues?

To give meaning to this question, first let T be a self-adjoint invertible
N ×N matrix with eigenvalues {λk}Nk=1. Then the answer to the question
for T is given by

N∑
k=1

sign(λk) = Tr(sign(T )) = Tr(T (T 2)−1/2) = Tr(T
2√
π

∫ ∞
0

e−s
2T 2

ds).

Returning to the Dirac-type operator, this motivates the following defi-
nition.

Definition 1 η(D) = 2√
π

∫∞
0

Tr(De−s
2D2

)ds.

It is a nontrivial fact that the above integral converges [7, 4]. The above
definition of η(D) is equivalent to that of Atiyah-Patodi-Singer[1].

Return to Example 1 : Using the Poisson summation formula, one
finds

η(D) =
2√
π

∫ ∞
0

∑
k∈Z

(k + a)e−s
2(k+a)2

ds =
∑
m6=0

− i

πm
e2πiam

=
{

0 if a ∈ Z
1− 2a if a ∈ (0, 1). (2.1)

In particular, η(D) is 1-periodic in a. This is a reflection of the fact that
the connection dθ(∂θ + i(a+ 1)) is gauge-equivalent to dθ(∂θ + ia), and so
the spectrum of D is 1-periodic in a.

We also see that as a goes from slightly negative to slightly positive,
η(D) jumps by 2. This is because as a passes through zero, an eigenvalue
of D goes from negative to positive. Recalling that η(D) is formally the
number of + eigenvalues minus the number of − eigenvalues, such a jump
is expected. End of Return to Example 1

In general, if D(ε) is a smooth 1-parameter family of Dirac-type oper-
ators then η(D(ε)) varies smoothly in ε, except for jumps coming from
eigenvalues of D(ε) crossing zero.

Example 2 : Think of Z as the space in a static spacetime M which
is isometrically R × Z. Let ψ be a spinor field on M . Its electric
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current is Jµ = eψγµψ, where we take e < 0. The spinor Hamilto-
nian is of the form H = −iγ0γj∇j , plus possible mass terms. We now
second-quantize ψ and ask for the electric charge of the vacuum state
〈Q〉 =

∫
Z
e〈ψ(x)γ0ψ(x)〉dvol(x).

Claim : 〈Q〉 = − 1
2eη(H).

“Pf.” : If we think of filling the Dirac sea, the charge of the vacuum will
be

〈Q〉= e (# of - energy states of H)

=
1
2
e [[(# of + energy states of H) + (# of - energy states of H)]

− [(# of + energy states of H)− (# of - energy states of H)]] .

After regularization, one can show that this formal expression becomes
1
2e [0− η(H)], giving the claim. One can also give a rigorous proof of the
claim [12]. End of Example 2

We now give the motivation of Atiyah-Patodi-Singer to define the eta-
invariant. Let us first recall the statement of the Atiyah-Singer index theo-
rem. Let X be an even-dimensional closed Riemannian spin manifold and
let E be a Hermitian vector bundle on X. If ∇E is a compatible connection
on E with curvature FE , its Chern form is

Ch
(
∇E
)

= Tr
(
e−

FE

2πi

)
∈ Ωeven(X). (2.2)

The Chern class of E is Ch(E) = [Ch
(
∇E
)
] ∈ Heven(X; R). We denote the

A-hat form of ∇TX by Â(∇TX) ∈ Ω4∗(X) and we let Â(TX) ∈ H4∗(X; R)
be its cohomology class [4].

Theorem 1 [2]

Index(DX) =
∫
X

Â(∇TX) ∧ Ch
(
∇E
)

=
(
Â(TX) ∪ Ch(E)

)
[X].

(2.3)

Suppose now that X has a boundary Z, that X is isometrically a product
near Z and that ∇E has a product structure near Z. The integral in (2.3)
still makes sense but has no topological meaning. Atiyah-Patodi-Singer
found that one must add the eta-invariant of Z in order to obtain an index
theorem. Put ξ = 1

2 [η(DZ) + dim(Ker(DZ))].



Eta and Torsion 5

Theorem 2 [1]

Index(DX) =
∫
X

Â(∇TX) ∧ Ch
(
∇E
)
− ξ. (2.4)

Here DX is defined using certain boundary conditions.

Example 3 : Take X to be topologically [0, 1] × Z. Let {g(ε)}ε∈[0,1]

be a 1-parameter family of metrics on Z with g′(0) = g′(1) = 0. Give X
the metric dε2 + g(ε). Let E be a Hermitian vector bundle on Z and let
{∇(ε)}ε∈[0,1] be a 1-parameter family of compatible connections on E with
∇′(0) = ∇′(1) = 0. Let E be the pulled-back Hermitian vector bundle on
X, with the connection ∇E = dε ∂ε +∇(ε). Then Theorem 2 gives

Index(DX) =
∫

[0,1]

∫
Z

Â(∇TX) ∧ Ch
(
∇E
)
− (ξ1 − ξ0). (2.5)

As the index is an integer, by varying g(1) and ∇(1), we obtain a variation
formula for ξ (mod Z). In the case that dim(Ker(DZ(ε))) is constant in ε,
we obtain an equation in Ω1([0, 1]) :

dε ∂εξ =
∫
Z

Â(∇TX) ∧ Ch
(
∇E
)
. (2.6)

End of Example 3

3. Analytic Torsion

Let Z be a closed manifold, let E be a complex vector bundle on Z and let
∇E be a flat connection on E. If Ω∗(Z;E) denotes the forms on Z with
value in E, we have the exterior derivative d : Ω∗(Z;E) → Ω∗+1(Z;E).
Let us now add a Riemannian metric gTZ to Z and a Hermitian metric hE

to E (we do not assume that ∇E is compatible with hE !) Then there is an
inner product on Ω∗(Z;E) :

〈ω1, ω2〉 =
∫
Z

〈ω1 ∧ ∗ω2〉hE (3.1)

and we obtain the adjoint operator d∗ : Ω∗+1(Z;E) → Ω∗(Z;E). The
Laplacian on p-forms 4p is the restriction of d∗d+dd∗ to Ωp(Z;E). Recall
that by Hodge theory, Ker(4p) ∼= Hp(Z;E). This gives an inner product
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to Hp(Z;E) and hence also a volume form volHp . Let 4′p be the projection
of 4p to Ωp(Z;E)/Ker(4p).

Recall the zeta-function definition of the determinant :

ln det4′p = − d

ds

∣∣∣∣
s=0

Tr (4′p)−s. (3.2)

We can now define the analytic torsion.

Definition 2 [15] T =
∑∞
p=0(−1)p p ln det4′p.

It turns out that T is almost topological, meaning almost independent of
gTZ and hE . This is achieved by the funny factors in the definition. More
precisely, let gTZ(ε) and hE(ε) be smooth 1-parameter families in ε.

Theorem 3 [15, 14, 9]

dT

dε
= −

dim(Z)∑
p=0

(−1)p
dvolHp
dε

/
volHp +

∫
Z

(local stuff on Z). (3.3)

One can give a precise description of (local stuff on Z) [9]; this will also
follow from Theorem 8. If dim(Z) is odd then the local stuff vanishes.

Corollary 1 If dim(Z) is odd and H∗(Z;E) = 0 then T is topological.

If, in addition, E has a covariantly-constant volume form, then T equals
the classical Reidemeister torsion, a topological invariant of simplicial com-
plexes [10, 13, 14].

Example 4 : Taking Z, E and ∇E as in Example 1, one has that
H∗(Z;E) = 0 iff a 6∈ Z. Then T = − ln |1− e2πia|2.
End of Example 4

Example 5 : Suppose that dim(Z) = 3 and ∇E is compatible with
hE . Given B ∈ Ω1(Z;E), we define the Chern-Simons action by I(B) =
1
2

∫
Z
〈B ∧ dB〉hE . Suppose that H∗(Z;E) = 0. Then one can show that the

path integral
∫
eiI(B)DB equals e−T/4 [16]. (We are neglecting a possible

phase). Note that the path integral is formally independent of any choice
of Riemannian metric gTZ . This gives some explanation of the topological
nature of T . Of course, to really define the path integral one must choose
a Riemannian metric. End of Example 5



Eta and Torsion 7

4. Eta-Forms

We now explain how the eta-invariant arises from the Atiyah-Singer families
index theorem. Let us first recall what this theorem says. Let Z be an
even-dimensional closed spin manifold. Let π : M → B be a smooth fiber
bundle with fiber Z. We can think of M as being a family of copies of Z,
parameterized by B. Let TZ be the bundle of tangents to the fibers, a real
vector bundle on M of dimension dim(Z) with Â(TZ) ∈ H4∗(M ; R).

Let E be a Hermitian vector bundle on M with compatible connection
∇E and Chern class Ch(E) ∈ Heven(M ; R). We assume that the fibers
Zb = π−1(b) have Riemannian metrics gTZ . For each point b ∈ B, we
define D(b), a Dirac-type operator on Zb, using E|Zb . Its kernel Ker(D(b))
is a Z2-graded vector space. We assume that these vector spaces vary
smoothly in b, so as to form a Z2-graded vector bundle Ker(D) on B.
Then there is the following identity in Heven(B;R) :

Theorem 4 [3] Ch(Ker(D)+)− Ch(Ker(D)−) =
∫
Z
Â(TZ) ∪ Ch(E).

If B is a point then we recover Theorem 1.
Suppose that we want a differential-form version of Theorem 4. We first

need connections on TZ and Ker(D). It turns out that these come from
choosing a horizontal distribution THM , meaning a subbundle of TM so
that TM = TZ⊕THM [5, 4]. It follows immediately from Theorem 4 that

Ch
(
∇Ker(D)+

)
− Ch

(
∇Ker(D)−

)
≡
∫
Z
Â
(
∇TZ

)
∧ Ch

(
∇E
)

mod Im(d)

and the question is whether one can do better. One can, and in [6, 11]
a differential form η̃ ∈ Ωodd(B) is analytically constructed so that one has
the following identity in Ωeven(B) :

Theorem 5 [6, 11]

dη̃ =
∫
Z

Â
(
∇TZ

)
∧ Ch

(
∇E
)
−
[
Ch
(
∇Ker(D)+

)
− Ch

(
∇Ker(D)−

)]
.

(4.1)

The degree-2 part of Theorem 5 is related to the nonabelian chiral anomaly.
If instead dim(Z) is odd, we assume that Ker(D) is an (ungraded) vector

bundle on B. Then there is an analytically constructed differential form
η̃ ∈ Ωeven(B) such that

Theorem 6 [6, 11] dη̃ =
∫
Z
Â
(
∇TZ

)
∧ Ch

(
∇E
)
.
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The degree-0 part η̃[0] ∈ Ω0(B) of η̃ is one half of the function on B
which assigns to b the eta-invariant η(D(b)) of the fiber Zb. One sees that
(2.6) is equivalent to Theorem 6 in the case when B = R.

The moral of the story is that the eta-invariant arises from writing a
topological theorem, Theorem 4, in terms of explicit differential form rep-
resentatives.

5. Analytic Torsion Forms

We now wish to give a similar interpretation for the analytic torsion, show-
ing that it arises from writing a topological theorem in terms of differential
forms. The topological theorem in question is an index theorem for flat
vector bundles. We must first define certain characteristic classes of flat
vector bundles.

Let E be a complex vector bundle over a smooth manifold M . Let ∇E
be a flat connection on E. Choose an arbitrary Hermitian metric hE on E.
Let {ei}dim(E)

i=1 be a local covariantly-constant basis of E. Then locally, we
can write hE as a matrix-valued function hEij on M . Put ω = (hE)−1dhE .
Then ω is a globally-defined element of Ω1(M ; End(E)).

Definition 3 For k odd, k > 0, define ck(E, hE) ∈ Ωk(M) by

ck(E, hE) = (2πi)−(k−1)/2 2−k Tr
(
ωk
)
. (5.1)

Lemma 1 The form ck(E, hE) is closed. Its de Rham cohomology class
ck(E) ∈ Hk(M ; R) is independent of hE.

The classes ck(E) are the characteristic classes of flat vector bundles that
we need. In algebraic K-theory, they are known as the Borel classes. One
can think of ck(E, hE) as a Chern-Weil-type representative of ck(E).

Example 6 : If k = 1 then c1(E, hE) = 1
2Tr

(
(hE)−1dhE

)
is locally

1
2d
(
ln dethE

)
. So c1(E) vanishes iff E admits a covariantly-constant vol-

ume form. The higher ck-classes do not have such a simple characterization,
but they all represent obstructions to E admitting a covariantly-constant
Hermitian metric. End of Example 6

Now let Z be a closed manifold. Let π : M → B be a smooth fiber
bundle with fiber Z. Let o(TZ) be the orientation bundle of TZ, a flat
real line bundle on M . Let e(TZ) ∈ Hdim(Z)(M ; o(TZ)) be the Euler class
of TZ [4].
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Let E be a complex vector bundle on M with a flat connection ∇E .
For each p ∈ [0,dim(Z)] and b ∈ B, we have a complex vector space
Hp(Zb;E|Zb). As b varies in B, these vector spaces fit together to form a
complex vector bundle Hp on B with a flat connection ∇Hp ; this last fact
uses the global flatness of E on M .

Theorem 7 [8] For k odd, k > 0, we have an identity in Hk(B; R) :

dim(Z)∑
p=0

(−1)p ck(Hp) =
∫
Z

e(TZ) ∪ ck(E). (5.2)

Theorem 7 has similarities to Theorem 4. However, there is the impor-
tant difference that Theorem 4 arises from a more general statement in
topological K-theory, whereas Theorem 7 is related to algebraic K-theory.

We now wish to give a differential form version of Theorem 7. Let us
choose Riemannian metrics gTZ on the fibers, a horizontal distribution
THM on M and a Hermitian metric hE on E. Using the fiberwise iso-
morphism Ker(4p) ∼= Hp(Zb;E|Zb), there is an induced L2 Hermitian
metric hH

p

on Hp. One can analytically construct a differential form
Tk−1 ∈ Ωk−1(B) such that the following identity holds in Ωk(B) :

Theorem 8 [8]

dTk−1 =
∫
Z

e
(
∇TZ

)
∧ ck

(
E, hE

)
−

dim(Z)∑
p=0

(−1)p ck
(
Hp, hH

p
)
.

(5.3)

In the case k = 1, one finds that T0 ∈ Ω0(B) is one half of the function
on B which assigns to b the analytic torsion T of the fiber Zb, defined using
E|Zb . The forms {Tk−1}k odd can be called analytic torsion forms.

Corollary 2 If dim(Z) is odd and H∗(Z;E|Z) = 0 then Tk−1 is closed.

Theorem 9 [8] In this case, the de Rham cohomology class [Tk−1] ∈
Hk−1(B; R) is independent of gTZ , THM and hE.

Thus in this case, we have defined topological invariants {[Tk−1]}k odd of
the smooth fiber bundle.

Example 7 : To see the relationship with the lectures of Loday, let X
be a closed manifold and let P (X) be the space of pseudo-isotopies of
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X. For k odd, k ≥ 3, represent an element α ∈ πk−2(P (X)) by a map
A : Sk−2 → P (X). Let Dk−1 be a hemisphere in Sk−1 and glue two copies
of Dk−1× [0, 1]×X along the common boundary using A, to obtain a fiber
bundle π : M → Sk−1 with fiber [0, 1] × X. Although the fiber now has
boundary, this is not a problem. (In the analysis, use differential forms on
the fibers which have absolute boundary conditions on {0}×X and relative
boundary conditions on {1}×X.) Taking E to be the trivial complex line
bundle on M , we obtain an invariant

∫
Sk−1 Tk−1 ∈ R of α. There are rea-

sons to believe that this invariant detects nontrivial rational information
of the homotopy type of P (X).
End of Example 7
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