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Abstract. Let M be a smooth closed spin manifold. The higher index theorem
computes the pairing between the group cohomology of π1(M) and the Chern char-
acter of the “higher” index of a Dirac-type operator on M. Using superconnections,
we give a heat equation proof of this theorem on the level of differential forms on a
noncommutative base space. As a consequence, we obtain a new proof of the Novikov
conjecture for hyperbolic groups.

I. Introduction

Let M be a smooth closed connected spin manifold. Let V be a Hermitian
vector bundle on M . If M is even-dimensional, the Atiyah-Singer index theorem

identifies the topological expression
∫

M Â(M)∧Ch(V ) with the index of the Dirac-

type operator acting on L2-sections of the bundle S(M) ⊗ V , where S(M) is the
spinor bundle on M [ASIII].

When M is not simply-connected, one can refine the index theorem to take
the fundamental group into account. Let Γ denote the fundamental group of M .

Let ν : M → BΓ be the classifying map for the universal cover M̃ of M . For

[η] ∈ H∗(BΓ; C), higher index theory attempts to identify
∫

M
Â(M)∧Ch(V )∧ν∗[η]

with an analytic expression. The main topological and geometric applications of
higher index theory are to Novikov’s conjecture on homotopy-invariants of non-
simply-connected manifolds [No], and to questions of the existence of positive-
scalar-curvature metrics on M [Ro].

In order to motivate the statement of the higher index theorem, let us first recall
how Lusztig used the index theorem for families of operators to prove a higher
index theorem in the case of Γ = Zk [Lu]. Let T k = Hom(Γ, U(1)) be the dual
group to Γ and let Lθ be the flat unitary line bundle over M whose holonomy
is specified by θ ∈ T k. Consider the product fibration M → M × T k → T k.
Suppose for simplicity that M is even-dimensional; then there is a bundle H over
T k of Z2-graded Hilbert spaces, where Hθ, the fiber over θ ∈ T k, consists of the
L2-sections of S(M) ⊗ V ⊗ Lθ. There is also a family Q of vertical Dirac-type
operators parametrized by T k, where Qθ acts on Hθ. The analytic index Index(Q)
of the family of elliptic operators, as defined in [ASIV], lies in K0(T k). An element
[η] of the group cohomology H`(Zk; C) gives a homology class τη ∈ H`(T

k; C),
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against which the Chern character Ch(Index(Q)) ∈ H∗(T k; C) can be paired. The
families index theorem [ASIV] then implies

∫

τη

Ch(Index(Q)) = const.(l)

∫

M

Â(M) ∧Ch(V ) ∧ ν∗[η], (∗)

giving the desired analytic interpretation of the right-hand-side. The purpose of
[Lu] was to apply (*) to the Novikov conjecture.

In order to extend these methods to nonabelian Γ, let us note some algebraic
properties of the above construction. The algebra of continuous functions C(T k)
acts on the vector space C(H) of continuous sections of H by multiplication. Upon
performing Fourier transform over T k, C(H) maps to a certain subspace of the

L2-sections of the pullback bundle S(M̃) ⊗ Ṽ on M̃ , this subspace thus being a
C(T k)-Hilbert module in the sense of [Kas].

The generalization of Lusztig’s method to nonabelian Γ is based on a “fibration”
M → P → B which exists only morally, where B is a noncommutative space whose
“algebra of continuous functions” is taken to be the algebra Λ = C∗

r Γ, the reduced
group C∗-algebra [Co3]. (When Γ = Z

k,Λ ∼= C(T k).) Mishchenko and Kasparov

define a Hilbert Λ-module of L2-sections of S(M̃) ⊗ Ṽ , upon which a Dirac-type

operator D̃ acts. The analytic index of D̃ lies in “K0(B)”, or more precisely in
K0(Λ) [Mi, Kas]. The Mishchenko-Fomenko index theorem identifies the analytic
index with a topological index [MF].

In order to pair these indices with the group cohomology of Γ, one needs addi-
tional structure on B. Let B∞ be a dense subalgebra of Λ containing CΓ which
is stable under the holomorphic functional calculus of Λ [Co1]. (For example, if
Γ = Zk, one can take B∞ to be C∞(T k).) Then K0(Λ) ∼= K0(B

∞). One can

think of the image of Index(D̃) under this isomorphism as being a “smoothing” of

Index(D̃).
One can then use the fact that K0(B

∞) pairs with the cyclic cohomology

HC∗(B∞) of B∞ [Co1] to extract numbers from Index(D̃). In loose but more

familiar terms, the Chern character Ch(Index(D̃)) lies in the “cohomology” of B.
More precisely, it lies in the cyclic homology group HC∗(B

∞) [Co1, Ka]. One then

wants to define a “homology class” of B which one can pair with Ch(Index(D̃)).
The correct notion of homology for B is given by the (periodic) cyclic cohomology
of B∞. In particular, given a group cocycle η ∈ Z l(Γ; C), one obtains an cyclic
cocycle τη ∈ ZCl(CΓ) (eqn. (62)). If τη extends to an element of ZCl(B∞) then
Proposition 6.3 of [CM] gives

< Ch(Index(D̃)), τη > = const.(l)

∫

M

Â(M) ∧ Ch(V ) ∧ ν∗[η]. (∗∗)

The special case when l = 0 is the L2-index theorem [At].
An equivalent and more concrete description of the above “fibration” is given

by a vector bundle E over M whose fibers are finitely-generated right projective
B-modules for an appropriate algebra B [Mi]. We will use this latter description
in making things precise, although we will move back and forth freely between the
two pictures.
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In another direction, using Quillen’s theory of superconnections [Q], Bismut gave
a heat equation proof of the Atiyah-Singer families index theorem on the level of
differential forms on the base space [Bi]. Equation (*) is a consequence.

Analogously, we wish to give a heat equation proof of (**). Our original purpose
was to study higher versions of spectral invariants, such as the eta invariant [Lo1].
These higher eta invariants should enter into a higher index theorem for manifolds
with boundary. However, it turned out to be necessary to first understand the case
of closed manifolds, i.e. equation (**), in terms of superconections. This is what
we present here.

As in [Bi], we wish to produce an explicit differential form on B which represents

Ch(Index(D̃)). First, one needs to know what a form on the noncommutative space
B should mean. A differential complex Ω∗(B) was defined in [Ka], and its homology
can be identified with a subspace of the cyclic homology of the relevant algebra B.
In Section II we briefly review this theory. In this section we also consider integral
operators on sections of E and define their traces and supertraces.

In the case at hand, the relevant vector bundles E come from a flat B-bundle over
M . There is some choice in exactly which subalgebra B of Λ is taken. In Section
III we consider a subalgebra Bω of Λ consisting of elements whose coefficients
decay faster than any exponential in a word-length metric. If Γ = Z then Bω is
isomorphic to the restrictions of holomorphic functions on C − 0 to the unit circle,
and so Bω is like an algebra of “analytic” functions on B. (The technical reason for
the appearance of this algebra is the existence of finite-propagation-speed estimates

for heat kernels on M̃ .) The smooth sections Γ∞(Eω) of the corresponding vector

bundle Eω are shown to correspond to smooth sections of S(M̃) ⊗ Ṽ with rapid
decay. Using this description, we make the trace of Section II more explicit.

By construction, the vector space of smooth sections of Eω is a right Bω-module.
Let ∇ : Γ∞(Eω) → Γ∞(Eω ⊗Bω Ω1(B

ω)) be a connection on Eω . This is, in a sense,
a connection in the vertical direction of Eω, when thought of as a vector bundle over
M . Let Q be the Dirac-type operator on Γ∞(Eω). Applying Quillen’s formalism
[Q], for any β, s > 0, the Chern character of Eω is defined to be

chβ,s(E
ω) = STR exp(−β(∇ + sQ)2) ∈ Ω∗(B

ω). (∗ ∗ ∗)

To make this expression useful, one needs an explicit description of a connection on
Eω. In Section IV we show that the simplest such connection comes from a function

h ∈ C∞
0 (M̃) with the property that the sum of the translates of h is 1. Then (***)

is a well-defined closed element of Ω∗(B
ω), and its homology class is independent

of s.
Given a group cocycle η ∈ Z l(Γ; C), if the corresponding cyclic cocycle τη ∈

ZCl(CΓ) extends to an element of ZCl(Bω) then the pairing

< chβ,s(E
ω), τη > ∈ C (∗ ∗ ∗∗)

is well-defined and independent of s. As usual with heat equation approaches to
index theory, the s→ 0 limit of (****) becomes the integral of a local expression on
M . In Section V we compute this limit. (The local analysis is easier than in [Bi],
as there is no need to use a Levi-Civita superconnection.) The limit must involve
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ν∗[η], and it may seem strange that this could become a local expression on M , but
this is where the choice of h enters. In Proposition 12 we find

lim
s→0

< chβ,s(E
ω), τη > = β l/2/(l!)

∫

M

Â(M) ∧Ch(V ) ∧ ω,

where ω is a closed l-form on M whose pullback to M̃ is given by

π∗ω =
∑

R∗
g1
dh ∧ . . . ∧R∗

gl
dh η(e, g1, . . . , gl) ∈ Λl(M̃).

We then show that ω represents ν∗[η] ∈ H l(M ; C).
It remains to show that

< chβ,s(E
ω), τη > = < Chβ(Index(D̃)), τη > . (∗ ∗ ∗ ∗ ∗)

For this, we find it necessary to work with the algebra B∞ and assume that τη
extends to a cyclic cocycle of B∞. In Section VI we sketch a proof of (*****). We

reduce to the case of invertible D̃, and then use a trick of [Bi] to show the equality.
This completes the proof of (**).

One application of (**) is to the Novikov conjecture. Taking D̃ to be the signa-
ture operator, the right-hand-side of (**) becomes const.(l)

∫
M
L(M)∧ν∗[η], where

L(M) ∈ H∗(M ; C) is the Hirzebruch L-polynomial. The Novikov conjecture states
that this “higher” signature is an (orientation-preserving) homotopy invariant of

M . One can show that Index(D̃) ∈ K0(Λ) is a homotopy invariant of M [Mi, Kas,
HS]. If the group Γ is such that one can apply (**) then the validity of the Novikov
conjecture follows. In particular, in [CM] it was shown that if Γ is hyperbolic in the
sense of Gromov [GH] then (**) applies. Thus our proof of (**) gives a new proof
of the validity of the Novikov conjecture for hyperbolic groups. One can also apply
(**) to find obstructions to the existence of positive-scalar-curvature metrics on M

[Ro]. If one takes D̃ to be the pure Dirac operator then if M has positive scalar

curvature, Index(D̃) vanishes. Thus if the group Γ is such that one can apply (**),∫
M Â(M) ∧ ν∗[η] is an obstruction to the existence of a positive-scalar-curvature

metric on M.
In [Lo1] a bivariant Chern character was proposed in the case of finitely-generated

projective modules. The obstacle to defining a bivariant Chern character for more
general projective modules was the lack of a good trace theory for Hilbert modules.
In the present case there is such a trace. The smooth sections of E∞ = Eω ⊗Bω B∞

form a (C∞(M), B∞)-bivariant module, and the pairing < chβ,s, τη > of the
bivariant Chern character with τη is a cocycle in the space C∗

ε (C∞(M)) of entire
cyclic cochains [Co2]. In Section VII we compute the s→ 0 limit of < chβ,s, τη >.

Heat equation methods were also used in the paper of Connes and Moscovici
[CM] to attack the Novikov conjecture, and it is worth comparing the two ap-
proaches. One difference is that we use heat kernels to form the Chern character
of a superconnection as in (***), whereas in [CM] the heat kernels are used to
form an idempotent matrix over an algebra of smoothing operators [CM, Section
2]. Theorem 5.4 of [CM] is similar to our Corollary 2, but is stronger in that it is
a statement about CΓ, whereas Corollary 2 is a statement about Bω . We believe
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that there is some point to taking a superconnection approach to these questions,
as there should be interesting extensions.

This paper is an extension of [Lo1], in which the finite-dimensional analog was
worked out. An exposition of the Mischenko-Fomenko theorem and related results
appears in [Hi].

I wish to thank Dan Burghelea and Jeff Cheeger for useful suggestions, and Henri
Moscovici for helpful discussions.

II. Algebraic Preliminaries

Let B be a Fréchet locallym-convex algebra with unit, i.e. the projective limit of
a sequence of Banach algebras with unit [Mal]. We first define a graded differential

algebra (GDA) Ω̂∗(B). This will be an appropriate completion of

Ω∗(B) =

∞⊕

k=0

Ωk(B), (1)

the universal GDA of B [Co1, Ka]. As a vector space, Ωk(B) is given by

Ωk(B) = B ⊗ (⊗k(B/C)). (2)

As a GDA, Ω∗(B) is generated by B and dB with the relations

d1 = 0, d2 = 0, d(ωkω`) = (dωk)ω` + (−1)kωk(dω`) (3)

for ωk ∈ Ωk(B), ω` ∈ Ω`(B). It will be convenient to write an element ωk of Ωk(B)
as a finite sum

∑
b0db1 . . . dbk. Recall that the homology of the differential complex

Ω∗(B) = Ω∗(B)/[Ω∗(B),Ω∗(B)] is isomorphic to a subspace of the reduced cyclic
homology of B [Ka]. (This statement must be modified in degree zero, for which
we refer to [Ka].)

Let Θ∗(B) denote the GDA

Θ∗(B) =
∞⊕

k=0

(⊗k+1B), (4)

with the product given by

(b0 ⊗ b1 ⊗ . . .⊗ bk)(c0 ⊗ c1 ⊗ . . .⊗ c`) = b0 ⊗ b1 ⊗ . . .⊗ bkc0 ⊗ c1 ⊗ . . .⊗ c` (5)

and the differential given by

d(b0 ⊗ b1 ⊗ . . .⊗ bk) =1 ⊗ b0 ⊗ b1 ⊗ . . .⊗ bk − b0 ⊗ 1 ⊗ b1 ⊗ . . .⊗ bk + . . .+

(−1)k+1b0 ⊗ b1 ⊗ . . .⊗ bk ⊗ 1.
(6)

Give Θk(B) the projective tensor product topology, with closure Θ̂k(B). Let

Θ̂∗(B) =
∞∏

k=0

Θ̂k(B) (7)
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denote the completion of Θ∗(B) in the product topology.

Prop. 1: Θ̂∗(B) is a Fréchet GDA.

There is a natural embedding e of Ω∗(B), as a graded differential algebra, in

Θ̂∗(B), with
e(b) = b, e(db) = 1 ⊗ b− b⊗ 1. (8)

Let Ω̂∗(B) denote the closure of e(Ω∗(B)) in Θ̂∗(B).

Cor. 1: Ω̂∗(B) is a Fréchet GDA.

Define Ω̂∗(B) to be Ω̂∗(B)/[Ω̂∗(B), Ω̂∗(B)]. Let H∗(B) denote the homology of

the differential complex Ω̂∗(B).

Let E be a Fréchet space which is a (continuous) right B-module. If F is a
Fréchet space which is a (continuous) left B-module, let E⊗̂F be the projective
topological tensor product of E and F. Let H be the closure in E⊗̂F of

span{eb⊗ f − e⊗ bf : e ∈ E, f ∈ F, b ∈ B}. (9)

We put E⊗̂BF to be the Fréchet space (E⊗̂F)/H.

With this definition, E⊗̂BΩ̂k(B) is isomorphic to the closure of the algebraic

tensor product E⊗B Ωk(B) ⊂ E⊗B (⊗k+1B) = E⊗ (⊗kB) in E⊗̂(⊗̂
k
(B)), where

the latter has the projective tensor product topology.
For the rest of this section, we assume that E is a finitely generated right pro-

jective B-module. Let F be a Fréchet B-bimodule. Then there is a trace

Tr : HomB(E,E⊗̂BF) → F/[B,F]. (10)

To define Tr, write E as eBn, with e a projector in Mn(B). Then an operator T ∈
HomB(E,E⊗̂BF) = HomB(eBn, eFn) can be represented by a matrix T ∈Mn(F)
satisfying eT = Te = T . Put

Tr(T ) =

n∑

i=1

Tii (mod [B,F] ). (11)

This is independent of the choices made. (We quotient by the closure of [B,F] to
ensure that the trace takes value in a Fréchet space.)

Lemma 1: Suppose that E and E′ are finitely generated right projective B-modules
and F is a Fréchet algebra containing B. Given T ∈ HomB(E,E′⊗̂BF) and T ′ ∈
HomB(E′,E⊗̂BF), let T ′T ∈ HomB(E,E⊗̂BF) and TT ′ ∈ HomB(E′,E′⊗̂BF) be

the induced products. Then Tr(T ′T ) = Tr(TT ′) ∈ F/[F,F].

We omit the proof.

In the case that E is Z2-graded by an operator ΓE ∈ EndB(E) satisfying Γ2
E = 1,

we can extend the trace to a supertrace by Trs(T ) = Tr(ΓET ).
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Let M be a closed connected oriented smooth Riemannian manifold. Let E be
a smooth B-vector bundle on M with fibers isomorphic to E. This means that
if E is defined using charts {Uα}, then a transition function is a smooth map
φαβ : Uα ∩ Uβ → EndB(E). We will denote the fiber over m ∈ M by Em. If F is

a Fréchet algebra containing B, let E⊗̂BF denote the B-vector bundle with fibers
(E⊗̂BF)m = Em⊗̂BF and transition functions φαβ⊗̂BIdF ∈ EndB(E⊗̂BF). Let
Γ∞(E) denote the right B-module of smooth sections of E .

Defn. : Let Hom∞
B (E , E⊗̂BF) be the algebra of integral operators

T : Γ∞(E) → Γ∞(E⊗̂BF) with smooth kernels T (m1,m2) ∈ HomB(Em2
, Em1

⊗̂BF).
That is, for s ∈ Γ∞(E),

(Ts)(m1) =

∫

M

T (m1,m2)s(m2)dvol(m2) ∈ Em1
⊗̂BF. (12)

Defn. : For T ∈ Hom∞
B (E , E⊗̂BF),

TR(T ) =

∫

M

Tr(T (m,m))dvol(m) ∈ F/[F,F]. (13)

Prop. 2: TR is a trace.
Pf. We have

(TT ′)(m,m′) =

∫

M

T (m,m′′) T ′(m′′,m′) dvol(m′′). (14)

Then

TR(TT ′) =

∫

M

Tr(T (m,m′′) T ′(m′′,m)) dvol(m′′)dvol(m) =

∫

M

Tr(T ′(m′′,m) T (m,m′′)) dvol(m)dvol(m′′) = TR(T ′T ). �

(15)

If the fibers of E are Z2-graded, we can extend TR to a supertrace STR on
Hom∞

B (E , E⊗̂BF) by

STR(T ) =

∫

M

Trs(T (m,m)) dvol(m) ∈ F/[F,F]. (16)

III. Bω-Bundles

Let Γ be a finitely-generated discrete group and let ‖ ◦ ‖ be a right-invariant
word-length metric on Γ. For q ∈ Z, define the Hilbert space

`2,q(Γ) = {f : Γ → C : | f |2q =
∑

g

exp(2q ‖ g ‖) | f(g) |2<∞} (17)

and let Bω be the vector space

Bω =
⋂

q

`2,q(Γ). (18)
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Lemma 2:

Bω = {f : Γ → C : for all q ∈ Z, sup
g

(exp(q ‖ g ‖) | f(g) |) <∞}

Pf. If f ∈ Bω then for all q ∈ Z, exp(2q ‖ g ‖) | f(g) |2 is bounded in g, and so
exp(q ‖ g ‖) | f(g) | is bounded in g. Suppose that f : Γ → C is such that for all
r ∈ Z,

sup
g

(exp(r ‖ g ‖) | f(g) |) = Cr <∞.

Then
∑

g exp(2q ‖ g ‖) | f(g) |2 ≤ C2
r

∑
g exp(2(q − r) ‖ g ‖). As Γ has at most

exponential growth, by taking r large enough we can ensure that the last sum is
finite. �

Prop. 3: Bω is independent of the choice of ‖ ◦ ‖, and is an algebra with unit
under convolution.
Pf. As all word-length metrics are quasi-isometric [GH], the independence follows.
If T ∈ Bω and f ∈ `2,q(Γ), we will show that

| T ∗ f |q ≤ const.(q, T ) | f |q . (19)

If we then take both T and f in Bω, the proposition will follow.
Let fh denote f(h). Then

|
∑

h

Tgh−1fh |2 ≤

(
∑

h

exp(−q ‖ h ‖) | Tgh−1 |1/2| Tgh−1 |1/2 exp(q ‖ h ‖) | fh |

)2

≤

(
∑

h

exp(−2q ‖ h ‖) | Tgh−1 |) (
∑

h′

| Tgh′−1 | exp(2q ‖ h′ ‖) | fh′ |2).

(20)

Thus

| T ∗ f |2q =
∑

g

exp(2q ‖ g ‖) |
∑

h

Tgh−1fh |2 ≤

∑

g

(
∑

h

exp(2q(‖ g ‖ − ‖ h ‖)) | Tgh−1 |) (
∑

h′

| Tgh′−1 | exp(2q ‖ h′ ‖) | fh′ |2) ≤

∑

g

(
∑

h

exp(2q ‖ gh−1 ‖) | Tgh−1 |) (
∑

h′

| Tgh′−1 | exp(2q ‖ h′ ‖) | fh′ |2) ≤

(
∑

k

exp(2q ‖ k ‖) | Tk |) (
∑

`

| T` |) (
∑

h′

exp(2q ‖ h′ ‖) | fh′ |2) =

(
∑

k

exp(2q ‖ k ‖) | Tk |) (
∑

`

| T` |) | f |2q . �

(21)
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Let Λ denote the reduced group C∗-algebra of Γ, namely the completion of
CΓ with respect to the operator norm on B(`2(Γ)), where CΓ acts on `2(Γ) by
convolution.

There is a Fréchet topology on Bω coming from its definition as a projective limit
of Hilbert spaces. There is also a description of Bω as a Fréchet locally m-convex
algebra. Namely, put

P = {T ∈ Λ : for all q ∈ Z, T acts as a bounded operator by convolution on

`2,q(Γ)}.
(22)

By its definition, P is equipped with a sequence of norms.

Prop. 4: As topological vector spaces, Bω = P .
Pf. By the proof of Proposition 3, Bω injects continuously into P . Applying an
element T of P to the element e ∈

⋂
q `

2,q(Γ) gives a continous injection of P into
Bω. These two maps are clearly inverses of each other. �

It follows that Bω has a holomorphic functional calculus.
Note: Bω is generally not holomorphically closed in Λ. For example, if Γ = Z

then an element T of Bω can be identified with its Fourier transform T =
∑
Tgz

g,
a holomorphic function on C− 0. This identification gives Bω ∼= H(C− 0). On the
other hand, in this case Λ ∼= C(S1). Taking for example T = z ∈ H(C−0) ⊂ C(S1),
the spectrum of T in C(S1) consists of the unit circle. If f is the holomorphic
function defined on a neighborhood of the unit circle by f(w) = (w − 2)−1, f(T ) is
well-defined in C(S1), but does not lie in H(C − 0).

Let Γ denote the fundamental group of M . Let M̃ denote the universal cover

of M , on which g ∈ Γ acts on the right by Rg ∈ Diff(M̃ ). Denote the covering

map by π : M̃ → M . As Γ acts on Bω on the left, we can form M̃ ×Γ Bω, a flat
Bω-bundle overM . Let E be a Hermitian vector bundle with Hermitian connection
on M and let Ẽ be the pullback of E to M̃ , with the pulled-back connection. Let

R∗
g ∈ Aut(Ẽ) denote the action of g ∈ Γ on Ẽ.

Defn. : Eω = (M̃ ×Γ Bω) ⊗ E, a Bω-bundle over M .

Fix a base point x0 ∈ M̃ .

Prop. 5: There is an isomorphism

L : Γ∞(Eω) → {f ∈ C∞(M̃, Ẽ): for all q ∈ Z and all multi-indices α,

sup
x

(exp(qd(x0, x)) | ∇
αf(x) |) <∞}.

Pf. By the construction of Eω,Γ∞(Eω) consists of the Γ-equivariant elements of

C∞(M̃, Ẽ ⊗ Bω). Writing s ∈ Γ∞(Eω) as
∑

g sgg with sg ∈ C∞(M̃, Ẽ), the
equivariance means that

R∗
γγs = s for all γ ∈ Γ. (23)
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This becomes
∑

g(R
∗
γsg)γg =

∑
g sγgγg, and so R∗

γsg = sγg for all γ, g ∈ Γ. Thus

sg = R∗
gs1, and so s =

∑
g

(
R∗

gs1
)
g.

Let L be the map which takes s to s1. We will show that L is the desired

isomorphism. First, if m̃ ∈ M̃ then

s(m̃) =
∑

g

(R∗
gs1)(m̃) g ∈ Ẽem ⊗ Bω . (24)

Thus for all q ∈ Z, supg (exp(q ‖ g ‖) | s1(m̃g) |) <∞. By the smoothness of s, we

have such an estimate uniformly for m̃ lying within a fundamental domain of M̃

containing x0. As M̃ is quasi-isometric to Γ [GH], there are constants A > 0 and

B ≥ 0 such that for all x ∈ M̃ and g ∈ Γ,

A−1 ‖ g ‖ −B ≤ d(xg−1, x) ≤ A ‖ g ‖ + B. (25)

Then

exp(qd(x0, x)) | s1(x) | ≤

exp(qd(x0, xg
−1)) exp(qd(xg−1, x)) | s1(xg

−1g) | ≤

const. exp(qd(x0, xg
−1)) exp(qA ‖ g ‖) | s1(xg

−1g) | .

(26)

By choosing g so that xg−1 lies within a fundamental domain containing x0, we
obtain from (26) that exp(qd(x0, x)) | s1(x) | is uniformly bounded in x. The same
argument applies to the covariant derivatives of s1.

Now suppose that f ∈ C∞(M̃, Ẽ) is such that for all q ∈ Z and all multi-indices
α,

sup
x

(exp(qd(x0, x)) | ∇
αf(x) |) <∞. (27)

Put L′(f) =
∑

g(R
∗
gf) g. We must show that L′(f) ∈ Γ∞(Eω). It will then follow

that L′ is an inverse to L.
By construction, L′(f) is Γ-equivariant. Let {Vα} be a collection of charts on

M over which E is trivialized. Then we can reduce to the case that E is a trivial
C-bundle and f ∈ C∞(Vα ×Γ,C), with the above decay conditions. It is enough to
show that when restricted to Vα × {e},

∑
g(R

∗
gf) g represents a smooth map from

Vα to Bω. For m̃ ∈ Vα × {e},

(
∑

(R∗
gf) g) (m̃) =

∑
f(m̃g) g, (28)

and so for all q ∈ Z,

exp(q ‖ g ‖) | f(m̃g) | ≤

const. exp(qAd(m̃, m̃g)) | f(m̃g) | ≤

const. exp(qAd(m̃, x0)) exp(qAd(x0, m̃g)) | f(m̃g) | ≤

const. sup
x

(exp(qAd(x0, x)) | f(x) |) <∞.

(29)
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Thus
∑

g(R
∗
gf) g is a map from Vα to Bω. Doing the same estimates using covariant

derivatives gives the smoothness. �

Prop. 6: The algebra End∞Bω(Eω) ≡ Hom∞
Bω(Eω , Eω) is isomorphic to the algebra

of Γ-invariant integral operators T on L2(M̃, Ẽ) with smooth kernels T (x, y) ∈

Hom(Ẽy, Ẽx) such that for all q ∈ Z and multi-indices α and β,

sup
x,y

(
exp(qd(x, y)) | ∇α

x∇
β
yT (x, y) |

)
<∞.

We omit the proof, which is similar to that of Proposition 5.

Let φ ∈ C∞
0 (M̃) be such that

∑

g

R∗
gφ = 1. (30)

Let tr denote the local trace on End(Ẽx).

Note : We now have defined three traces: tr is the trace on End(Ẽx), T r is the
trace on EndBω (Eω

m) and TR is the trace on End∞Bω (Eω). If E is Z2-graded, the
corresponding supertraces are denoted trs, T rs and STR.

Prop. 7: Representing an element T ∈ End∞
Bω (Eω) by an operator

T̃ ∈ B(L2(M̃, Ẽ)) as in Proposition 6, its trace is given by

TR(T ) =
∑

g

[

∫

fM

φ(x) tr((R∗
g T̃ )(x, x)) dvol(x)] g (mod [Bω,Bω] ) (31)

=
∑

g

[

∫

fM

φ(x) tr(T̃ (xg, x)) dvol(x)] g (mod [Bω,Bω ] ) (32)

Pf. The proof is a matter of unraveling the isomorphisms of Propositions 5 and 6.
Let {Vα} be a collection of charts on M over which E is trivialized. Then we can
reduce to the case that E is a trivial C-bundle. We have π−1(Vα) ∼= Vα × Γ. For
m̃1, m̃2 ∈ Vα × {e}, we can use isomorphisms to represent

T (m1,m2) ∈ Hom∞
Bω(Eω

m2
, Eω

m1
) ∼= HomBω (Bω,Bω) ∼= Bω (33)

by
∑

g T̃ (m̃1g, m̃2) g. Then



12 JOHN LOTT

∫

Vα

Tr(T (m,m)) dvol(m) =

∫

Vα

∑

g

T̃ (mg,m) g dvol(m) (mod [Bω,Bω ] ) =

∫

Vα

∑

g

∑

γ

φ(mγ) T̃ (mgγ,mγ) g dvol(m) (mod [Bω ,Bω] ) =

∫

Vα

∑

g

∑

γ

φ(mγ) T̃ (mγγ−1gγ,mγ) g dvol(m) (mod [Bω ,Bω] ) =

∫

Vα

∑

g

∑

γ

φ(mγ) T̃ (mγg,mγ) γgγ−1 dvol(m) (mod [Bω ,Bω] ) =

∫

Vα

∑

g

∑

γ

φ(mγ) T̃ (mγg,mγ) (g + [γg, γ−1]) dvol(m) (mod [Bω ,Bω] ) =

∫

Vα

∑

γ

∑

g

φ(mγ) T̃ (mγg,mγ) g dvol(m) (mod [Bω ,Bω] ) =

∫

π−1(Vα)

∑

g

φ(x) T̃ (xg, x) g dvol(x) (mod [Bω,Bω ] ).

(34)
Using a partition of unity subordinate to {Vα} and adding the contributions of the
various charts gives (31). �

We now give the extension of the previous propositions to form-valued sections

of Eω. With the notation of Section II, put Fω = Ω̂∗(B
ω). As in Proposition 5, we

can represent an element f of Γ∞(Eω⊗̂BωFω) of degree k as
∑
fg1...gk

dg1 . . . dgk,

with each fg1...gk
∈ C∞(M̃, Ẽ) a smooth rapidly decreasing section of Ẽ. As in

Proposition 6, we can represent an element K of Hom∞
Bω (Eω, Eω⊗̂BωFω) of degree

k by smooth rapidly decreasing kernels Kg1...gk
(x, y) ∈ Hom(Ẽy, Ẽx) such that

K =
∑
Kg1...gk

dg1 . . . dgk is Γ-invariant. Then for f ∈ Γ∞(Eω) we have

(Kf)(x) =
∑∫

fM

Kg1...gk
(x, y) f(y) dvol(y) dg1 . . . dgk. (35)

As in Proposition 7, we have

TR(K) =
∑∫

fM

φ(x) tr(Kg1...gk
(xg0, x)) dvol(x) g0dg1 . . . dgk

(mod [Ω̂∗(Bω), Ω̂∗(Bω)] ).

(36)

IV. The Chern Character

Now suppose in addition that Mn is even-dimensional and spin. Let S be the
Z2-graded spinor bundle on M , with the Levi-Civita connection, and let V be a
Hermitian bundle on M with Hermitian connection. Take E to be S ⊗ V . Let Q

denote the self-adjoint extension of the Dirac-type operator acting on C∞
0 (M̃, Ẽ)

[At]. In terms of a local framing of the tangent bundle,



SUPERCONNECTIONS AND HIGHER INDEX THEORY 13

Q = −i

n∑

µ=1

γµDµ, (37)

with the Dirac matrices {γµ}n
µ=1 satisfying

γµγν + γνγµ = 2δµν . (38)

Prop. 8: For T > 0, e−TQ2

∈ End∞
Bω(Eω).

Pf. First, e−TQ2

is a Γ-invariant operator. By elliptic regularity, e−TQ2

(x, y) is
smooth. PutN = [n/4]+1. Let ε be a fixed sufficiently small number. If d(x, y) > ε,
put R = d(x, y) − ε. By the finite-propagation-speed estimates of [CGT], we have
the estimate [Lo2]

| (Q2ke−TQ2

Q2`)(x, y) |≤

const.(R2/T )−1/2[R−2(k+`) +R−2(k+`)−4N+

R2(k+`)T−2(k+`) +R2(k+`)+4NT−2(k+`)−4N ] e−R2/4T .

(39)

The requisite bounds on the covariant derivatives of e−TQ2

(x, y) follow by standard
methods. Then the proposition follows from Proposition 6. �

Note: In the “fibration” picture, the fact that e−TQ2

commutes with Bω means
that it corresponds to a family of vertical operators.

Let h ∈ C∞
0 (M̃) be such that

∑

g

R∗
gh = 1. (40)

Given f ∈ Γ∞(Eω), considering it as an element of C∞(M̃, Ẽ) by Proposition 5,
define its covariant derivative to be

∇gf = h R∗
gf ∈ C∞(M̃, Ẽ). (41)

Note that C∞(M) acts on sections of Γ∞(Eω⊗̂BωFω) by multiplication.

Prop.9:

∇f =
∑

g

∇gf ⊗̂Bωdg

defines a connection

∇ : Γ∞(Eω) → Γ∞(Eω⊗̂Bω Ω̂1(B
ω)) (42)

which commutes with the action of C∞(M).

Pf. We first show that ∇ formally commutes with the action of C∞(M). Given

α ∈ C∞(M), α acts on C∞(M̃, Ẽ) by multiplication by π∗(α). Then
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∇(α · f) = ∇(π∗(α)f) =
∑

g

h R∗
g(π

∗(α)f) ⊗̂Bωdg =

∑

g

h π∗(α) R∗
gf ⊗̂Bωdg = α · ∇f.

(43)

Thus ∇ acts fiberwise on the vector bundle Eω. To make this explicit, as in the
proof of Proposition 5 we can consider the element s of Γ∞(Eω) corresponding to f

to be a sum s =
∑
sg g, where sg ∈ C∞(M̃, Ẽ) and sg = R∗

gf . Then ∇s becomes

∑

g,k

R∗
g(hR

∗
kf) gdk =

∑

g,k

R∗
gh (R∗

gkf) gdk =
∑

g,k

R∗
gh sgk gdk. (44)

Applied to a point m̃ ∈ M̃ , we have

∇(
∑

g

sg(m̃) g) =
∑

g,k

h(m̃g) sgk(m̃) gdk. (45)

Let

∇m : Eω
m → Eω

m ⊗̂Bω Ω̂1(B
ω) (46)

be the restriction of ∇ to the fiber Eω
m

∼= Em ⊗ Bω over m = π(m̃). Then ∇m can
be represented by

∇m(
∑

g

tg g) =
∑

g,k

h(m̃g) tgk gdk, (47)

where tg ∈ Ẽem.
By hypothesis, t =

∑
g tg g ∈ Eω

m
∼= Em ⊗ Bω . We must show that ∇m(t) is in

Eω
m⊗̂Bω Ω̂1(B

ω) ∼= Em ⊗ Ω̂1(B
ω).

As in Section II, let us think of Em ⊗ Ω̂1(B
ω) as embedded in Em ⊗ Bω⊗̂Bω .

Then ∇m(t) is formally represented as

∇m(t) =
∑

g,k

h(m̃g) tgk g(1 ⊗ k − k ⊗ 1) =

∑

g,k

h(m̃g) tgk g ⊗ k −
∑

g,k

h(m̃g) tgk gk ⊗ 1 =

∑

g,k

h(m̃g) tgk g ⊗ k −
∑

g,k

h(m̃g) tk k ⊗ 1 =

(
∑

g

h(m̃g)g ⊗
∑

k

tgk k

)
− t⊗ 1 =
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(
∑

g

h(m̃g)g ⊗ (g−1t)

)
− t⊗ 1. (48)

As h has compact support, the g-sum in
∑

g h(m̃g)g⊗(g−1t) is finite, and it follows

that (48) makes sense in Em ⊗ Bω⊗̂Bω .
We now show that ∇m is a connection. If γ ∈ Γ,

∇m(tγ) = ∇m(
∑

g

tg gγ) = ∇m(
∑

g

tgγ−1 g) =

∑

g,k

h(m̃g) tgkγ−1 gdk =
∑

g,k

h(m̃g) tgk gd(kγ) =

∑

g,k

h(m̃g) tgk g(dk)γ +
∑

g,k

h(m̃g) tgk gkdγ =

∇m(t)γ +
∑

g,k

h(m̃g) tk kdγ = ∇m(t)γ + tdγ. (49)

Then
∇m(tb) = (∇mt)b+ t⊗̂Bωdb (50)

for any b ∈ Bω.
As h is smooth, it follows that ∇ is also a connection. �

Note : There is a strong relationship between the connections ∇ considered here
and the partially flat connections of [Ka, Chapitre 4].

Define the superconnection

Ds = ∇ + sQ ∈ Hom∞(Eω, Eω⊗̂Bω Ω̂∗(B
ω)) (51)

.
Then D2

s ∈ Hom∞
Bω(Eω , Eω⊗̂Bω Ω̂∗(B

ω)) is given by

D2
s = s2Q2 + s(∇Q+Q∇) + ∇2. (52)

Here ∇Q+Q∇ is given explicitly by

(∇Q+Q∇)(f) =
∑

g

(∂h) R∗
gf⊗̂Bωdg, (53)

where f ∈ C∞(M̃, Ẽ) and

∂h = [Q, h] = −i
∑

µ

γµ∂µh, (54)

and ∇2 is given by

∇2(f) =
∑

g

∑

g′

h R∗
gh R

∗
gg′f⊗̂Bωdgdg′. (55)
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Put
P = − (s(∇Q+Q∇) + ∇2), (56)

and for β > 0 define

exp(−βD2
s) ∈ Hom∞

Bω(Eω , Eω⊗̂Bω Ω̂∗(B
ω)) (57)

to be

exp(−βD2
s) = exp(−βs2Q2) +

∫ β

0

exp(−u1s
2Q2)P exp(−(β − u1)s

2Q2) du1 +

∫ β

0

∫ u1

0

exp(−u1s
2Q2)P exp(−u2s

2Q2)P exp(−(β − u1 − u2)s
2Q2) du2du1 + . . .

(58)
As only a finite number of terms of the expansion of (58) contribute to the degree-k
component of exp(−βD2

s), it is clear that (58) converges.

Defn. : For s > 0, the Chern character chβ,s(E
ω) ∈ Ω̂even(Bω) is given by

chβ,s(E
ω) = STR exp(−βD2

s). (59)

Prop. 10: chβ,s(E
ω) is closed.

We omit the proof, which is straightforward.

Prop. 11: The class of chβ,s(E
ω) in H∗(B

ω) is independent of s ∈ (0,∞).
Pf. Formally,

d

ds
chβ,s(E

ω) = d(−β STR Qe−βD2
s ). (60)

It is straightforward to check that this equation is valid. Then if s1, s2 ∈ (0,∞),

chβ,s1
(Eω) − chβ,s2

(Eω) = d(−β

∫ s1

s2

STR Qe−βD2
sds). � (61)

Let η be an antisymmetric left-invariant (unnormalized) group k-cocycle. Then
η defines a cyclic k-cocycle τη on CΓ by

τη(g0, . . . , gk) = η(g0, g0g1, g0g1g2, . . . , g0g1 . . . gk) if g0g1 . . . gk = e

τη(g0, . . . , gk) = 0 if g0g1 . . . gk 6= e [Co1].
(62)

Suppose that there are constants C and D so that

| τη(g0, . . . , gk) | ≤ C exp(D(‖ g0 ‖ + . . .+ ‖ gk ‖)) (63).

Then τη extends to a k-cocycle on Bω and so can be paired with chβ,s. By Propo-
sition 11, the pairing < chβ,s(E

ω), τη > is independent of s.

V. Small-Time Limit

Prop. 12:
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lim
s→0

< chβ,s(E
ω), τη > = β k/2/(k!)

∫

M

Â(M) ∧ Ch(V ) ∧ ω, (64)

where ω is the closed k-form on M given by

π∗ω =
∑

R∗
g1
dh ∧ . . . ∧R∗

gk
dh η(e, g1, . . . , gk) ∈ Λk(M̃). (65)

Pf. First, let us consider the contribution to < chβ,s, τη > coming from the term

(−1)k

∫ β

0

. . .

∫ uk−1

0

exp(−u1s
2Q2)s(∇Q+Q∇) exp(−u2s

2Q2)

s(∇Q+Q∇) . . . s(∇Q+Q∇) exp(−(β − u1 − . . .− uk)s2Q2) duk . . . du1

(66)

of exp(−βD2
s). Written out explicitly, this will be

∑
(−1)k

∫ β

0

. . .

∫ uk−1

0

∫

fM

φ(x0) trs[R
∗
g0

exp(−u1s
2Q2)s(∂h)R∗

g1

exp(−u2s
2Q2)s(∂h)R∗

g2
. . . s(∂h)R∗

gk
exp(−(β − u1 − . . .− uk)s2Q2)](x0, x0)

dvol(x0)duk . . . du1 τη(g0, . . . , gk) =

(67)
∑

(−1)k

∫ β

0

. . .

∫ uk−1

0

∫

fM

φ(x0) trs[exp(−u1s
2Q2) sR∗

g0
(∂h)

exp(−u2s
2Q2) sR∗

g0g1
(∂h) . . . sR∗

g0...gk−1
(∂h) exp(−(β − u1 − . . .− uk)s2Q2)

R∗
g0...gk

](x0, x0) dvol(x0)duk . . . du1 τη(g0, . . . , gk) =

(68)
∑

(−1)k

∫ β

0

. . .

∫ uk−1

0

∫

fM

. . .

∫

fM

φ(x0) trs[exp(−u1s
2Q2)(x0, x1)

s(∂h)(x1g0) exp(−u2s
2Q2)(x1, x2) s(∂h)(x2g0g1) . . . s(∂h)(xkg0g1 . . . gk−1)

exp(−(β − u1 − . . .− uk)s2Q2)(xkg0g1 . . . gk, x0)] dvol(xk) . . . dvol(x0)

duk . . . du1 τη(g0, . . . , gk).

(69)

Because for small s the heat kernels are concentrated near the diagonal, the only
terms which will survive in the s → 0 limit will have g0 . . . gk = e. Furthermore,

the s → 0 limit reduces to a question of local asymptotics on M̃ . By the Getzler
calculus [G], (69) equals (2π)−n

∫
T fM

trs(σP )s−1dxdξ, where P denotes the operator
appearing in (69), σP is its symbol in the Getzler calculus and (σP )s−1 is the
rescaled symbol. A straightforward calculation gives that in the limit s → 0, this
becomes

∑
(−1)kβ−k/2(

∫ β

0

. . .

∫ uk−1

0

duk . . . du1)

∫

fM

φ(x) Â(x) ∧ Ch(Ṽ )(x)∧

dh(xg0) ∧ . . . ∧ dh(xg0 . . . gk−1) η(g0, g0g1, g0g1g2, . . . , g0g1 . . . gk−1, e) =

(70)

∑
(−1)kβ k/2/(k!)

∫

fM

φ Â(M̃) ∧ Ch(Ṽ ) ∧R∗
g0
dh ∧ . . . ∧R∗

g0...gk−1
dh

η(g0, g0g1, g0g1g2, . . . , g0 . . . gk−1, e) =

(71)
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β k/2/(k!)

∫

fM

φ Â(M̃) ∧ Ch(Ṽ ) ∧ ω̃, (72)

where ω̃ ∈ Λk(M̃) is given by

ω̃ =
∑

R∗
g1
dh ∧ . . . ∧R∗

gk
dh η(e, g1, . . . , gk). (73)

Now let us consider the contribution to < chβ,s, τη > coming from a term of
exp(−βD2

s) which contains a ∇2, such as, for example,

(−1)k

∫ β

0

. . .

∫ uk−1

0

exp(−u1s
2Q2) ∇2 exp(−u2s

2Q2) s(∇Q+Q∇) . . .

s(∇Q+Q∇) exp(−(β − u1 − . . .− uk)s2Q2) duk . . . du1.

(74)

Written out explicitly, this gives

∑
(−1)k

∫ β

0

. . .

∫ uk−1

0

∫

fM

. . .

∫

fM

φ(x0) trs[exp(−u1s
2Q2)(x0, x1)

h(x1g0)h(x1g0g1) exp(−u2s
2Q2)(x1, x2) s(∂h)(x2g0g1g

′
1) . . .

s(∂h)(xkg0g1g
′
1g2 . . . gk−1) exp(−(β − u1 − . . .− uk)s2Q2)

(xkg0g1g
′
1g2 . . . gk, x0)]dvol(xk) . . . dvol(x0)duk . . . du1τη(g0, g1, g

′
1, g2, . . . , gk).

(75)
By the Getzler calculus, in the s→ 0 limit, (75) becomes

∑
(−1)kβ−(k−1)/2(

∫ β

0

. . .

∫ uk−1

0

duk . . . du1)

∫

fM

φ(x) Â(x)Ch(Ṽ )(x)

h(xg0)h(xg0g1)dh(xg0g1g
′
1) ∧ . . . ∧ dh(xg0g1g

′
1g2 . . . gk−1)

η(g0, g0g1, g0g1g
′
1, . . . , g0g1g

′
1g2 . . . gk−1, e) =

(76)

∑
(−1)kβ(k+1)/2/(k!)

∫

fM

φ Â(M̃) ∧ Ch(Ṽ ) ∧R∗
g0
h ∧R∗

g0g1
h ∧R∗

g0g1g′
1
dh ∧ . . .

∧R∗
g0g1g′

1
g2...gk−1

dh η(g0, g0g1, g0g1g
′
1, . . . , g0g1g

′
1g2 . . . gk−1, e) =

(77)

± β(k+1)/2/(k!)

∫

fM

φ Â(M̃) ∧Ch(Ṽ ) ∧ ω̃′, (78)

where ω̃′ ∈ Λk(M̃) is given by

ω̃′ =
∑

R∗
g1
h ∧R∗

g′
1
h ∧ . . . ∧R∗

gk
dh η(e, g1, g

′
1, g2, . . . , gk). (79)

As η(e, g1, g
′
1, g2, . . . , gk) is antisymmetric in g1 and g′1 , it follows that ω̃′ vanishes.

The same argument shows that all of the terms involving ∇2 vanish. �

Lemma 3: The form ω̃ of (73) is a closed Γ-invariant form on M̃ .
Pf. ω̃ is clearly closed. For all γ ∈ Γ, we have
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R∗
γω̃ =

∑
R∗

γg1
dh ∧ . . . ∧R∗

γgk
dh η(e, g1, . . . , gk) =

∑
R∗

g1
dh ∧ . . . ∧R∗

gk
dh η(e, γ−1g1, . . . , γ

−1gk) =
∑

R∗
g1
dh ∧ . . . ∧R∗

gk
dh η(γ, g1, . . . , gk).

(80)

From the cocycle condition, this equals

∑
R∗

g1
dh ∧ . . . ∧R∗

gk
dh [η(e, g1, . . . , gk) − η(e, γ, g2, . . . , gk) + . . .+

(−1)kη(e, γ, g1, . . . , gk−1)].
(81)

.
But for all r,

∑
R∗

g1
dh ∧ . . . ∧R∗

gk
dh η(e, γ, g1, . . . , ĝr, . . . , gk) =

± (
∑

gr

R∗
gr
dh) ∧

∑
R∗

g1
dh ∧ . . . ∧R∗

gr−1
dh ∧R∗

gr+1
dh∧

. . . ∧R∗
gk
dh η(e, γ, g1, . . . , ĝr, . . . , gk)

(82)

and ∑

gr

R∗
gr
dh = d(

∑

gr

R∗
gr
h) = d(1) = 0. (83)

Thus only the first term of (81) contributes, and so

R∗
γω̃ =

∑
R∗

g1
dh ∧ . . . ∧R∗

gk
dh η(e, g1, . . . , gk) = ω̃. � (84)

End of Pf. of Prop. 12: From Lemma 3, there is a closed form ω on M such
that ω̃ = π∗(ω). Then

∫

fM

φ Â(M̃) ∧ Ch(Ṽ ) ∧ ω̃ =

∫

M

Â(M) ∧Ch(V ) ∧ ω. � (85)

We now wish to show that the cohomology class of the closed form ω̃ is the
pullback to M of the cohomology class [η] on BΓ. To do so, it is convenient to first
relax the smoothness conditions on ω̃.

Let h be a Lipschitz function on M̃ of compact support with

∑

g

R∗
gh = 1. (86)

As the distributional derivatives of a Lipschitz function are L∞-functions, it makes
sense to define ω̃h by

ω̃h =
∑

R∗
g1
dh ∧ . . . ∧R∗

gk
dh η(e, g1, . . . , gk), (87)
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a closed Γ-invariant L∞ k-form on M̃ , and let ωh ∈ Λk(M) be such that π∗ωh = ω̃h.
It is known that one can compute the de Rham cohomology of M using flat forms
(i.e. L∞-forms τ such that dτ is also L∞) [Te].

Lemma 4: The cohomology class of ωh is independent of h.
Pf. Let h′ be another choice for h. Then

ω̃h − ω̃h′ =
∑

[R∗
g1
d(h− h′) ∧ . . . ∧R∗

gk
dh+ . . .+

R∗
g1
dh′ ∧ . . . ∧R∗

gk
d(h− h′)] η(e, g1, . . . , gk). (88)

Put
σ̃r =

∑
R∗

g1
dh′ ∧ . . . R∗

gr
(h− h′) ∧ . . . ∧R∗

gk
dh η(e, g1, . . . , gk), (89)

a flat (k − 1)-form on M̃ . Then

ω̃h − ω̃h′ = d(

k∑

r=1

(−1)r+1σ̃r). (90)

Furthermore, for all γ ∈ Γ,

R∗
γ σ̃r =

∑
R∗

g1
dh′ ∧ . . . R∗

gr
(h− h′) ∧ . . . ∧R∗

gk
dh η(γ, g1, . . . , gk) =

∑
R∗

g1
dh′ ∧ . . . R∗

gr
(h− h′) ∧ . . . ∧R∗

gk
dh [η(e, g1, . . . , gk)−

η(e, γ, g2, . . . , gk) + . . .+ (−1)kη(e, γ, g1, . . . , gk−1)].

(91)

As

∑

g

R∗
gdh =

∑

g

R∗
gdh

′ =
∑

g

R∗
g(h− h′) = 0, (92)

it follows that σ̃r is Γ-invariant. Then ω − ω′ = dσ, where σ ∈ Λk−1(M) is such
that

π∗σ =
k∑

r=1

(−1)r+1σ̃r . � (93)

Let X be the simplicial complex whose ordered cochain complex is the standard
complex of Γ [Br]. The k-simplices of X are (k + 1)-tuples of distinct elements of
Γ. We will take Γ to act on the right on X. Then the simplicial complex X/Γ is
a model for BΓ. For a vertex v, let bv denote the barycentric coordinate (on a
simplex containing v) corresponding to v. Let j be the continuous piecewise linear
function on X given by

j(x) = 0 if x ∈ [g0, . . . , gk] and g0 6= e, . . . , gk 6= e

be if x ∈ [g0, . . . , gk] and gi = e for some i.
(94)

Lemma 5:
∑

g R
∗
gj = 1.
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Pf. Suppose that x ∈ [g0, . . . , gk]. Then

∑

g

(R∗
gj)(x) =

∑

g

j(xg) =
k∑

i=0

j(xg−1
i ) =

k∑

i=0

be(xg
−1
i ) =

k∑

i=0

bgi
(x) = 1. � (95)

Let ω̃j be the polynomial form on X , with coefficients in C, given by

ω̃j =
∑

R∗
g1
dj ∧ . . . ∧R∗

gk
dj η(e, g1, . . . , gk). (96)

Let ωj be the polynomial form on X/Γ such that ω̃j = π∗ωj .
We define a k-cocycle η̃ ∈ Ck(X ; C) by putting

< η̃, [γ0, γ1, . . . , γk] > = η(γ−1
0 , . . . , γ−1

k ). (97)

By the left invariance of the group cocycle η, η̃ is right-invariant on X. With abuse
of notation, let η denote the corresponding simplicial cocycle on X/Γ.

Prop. 13: As elements of Hk(X/Γ; C), [ωj] = [η].
Pf. Let A denote the de Rham map from polynomial forms on X to C∗(X). Then

(Aωj)[γ0, . . . , γk] =
∑

η(e, g1, . . . , gk) < R∗
g1
dj ∧ . . . ∧R∗

gk
dj, [γ0, . . . , γk] > =

∑
η(e, γ−1

i1
, . . . , γ−1

ik
) < Rγi1

−1
∗dj ∧ . . . ∧Rγik

−1
∗dj, [γ0, . . . , γk] >,

(98)

where i1, . . . , ik ∈ {0, 1, . . . , k}. Now (98) equals

∑
η(e, γ−1

i1
, . . . , γ−1

ik
) < dbγi1

∧ . . . ∧ dbγik
, [γ0, . . . , γk] > . (99)

A simple calculation gives that (99) in turn equals

k∑

r=0

(−1)r+1η(e, γ−1
0 , . . . , γ̂r

−1, . . . , γ−1
k ) = η(γ−1

0 , . . . , γ−1
k ). (100)

Thus A(ωj) is the cochain η. As the de Rham map is an isomorphism on complex
cohomology [GM], the proposition follows. �

Let ν be the canonical (up to homotopy) map ν : M → BΓ classifying the

universal cover M̃ , with lift ν̃ : M̃ → EΓ.

Prop. 14: As elements of H∗(M,C), [ω] = ν∗([η]).
Pf. Let us triangulate M . Upon subdivision, we can homotop ν to be a simplicial
map. Then with h = ν̃∗j, we have ωh = ν∗ωj. Thus as elements of H∗(M,C),

[ωh] = [ν∗ωj] = ν∗[ωj] = ν∗[η]. (101)

By Lemma 4, [ωh] is independent of the particular choice of h, and the proposition
follows. �
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Cor. 2: For all s > 0,

< chβ,s(E
ω), τη > = β k/2/(k!)

∫

M

Â(M) ∧ Ch(V ) ∧ ν∗([η]). (102)

Note: One can equally well pair chβ,s(E
ω) with any element of HC∗(Bω). Modulo

growth conditions, there is a way of producing an element τ ∈ HCk(Bω) from a
conjugacy class < x > of Γ and a k-cocycle of the group Γx/{x}, where Γx is the
centralizer of x in Γ and {x} is the subgroup generated by x [Bu]. (The cocycle (62)
comes from the special case when < x > = < e >). However, the cyclic cohomology
classes corresponding to < x > 6= < e > will pair with chβ,s(E

ω) to give zero. The
reason is that a cyclic k-cocycle τ based on < x > will have τ(g0, . . . , gk) = 0 if
g0g1 . . . gk 6∈< x >. However, by the proof of Proposition 12, in the s → 0 limit
one sees that the terms with g0g1 . . . gk 6= e do not contribute to < chβ,s(E

ω), τ >.

VI. Reduction to the Index Bundle

We first review some of the results of [MF]. Recall that Λ is the reduced group
C∗-algebra of Γ. Let E denote the Z2-graded Λ-bundle over M given by E =

(M̃ ×Γ Λ) ⊗ E. The L2-sections Γ0(E) of E form a right Λ-Hilbert module. The

Dirac-type operator D̃ is an odd densely-defined unbounded operator on Γ0(E).
One can find finitely-generated right projective Λ-Hilbert submodules F± of Γ0(E±)

and complementary Λ-Hilbert modules G± ⊂ Γ0(E±) such that D̃ is diagonal with

respect to the decomposition Γ0(E±) = G± ⊕ F±, and writing D̃ = D̃G ⊕ D̃F , in

addition D̃G : G± → G∓ is invertible. By definition, the index of D̃ is

Index(D̃) ≡ [F+] − [F−] ∈ K0(Λ); (103)

this is independent of the choice of F±.
Now suppose that B∞ is a densely-defined subalgebra of Λ which is stable with

respect to the holomorphic functional calculus on Λ, and Bω ⊂ B∞ ⊂ Λ. A stan-
dard result in K-theory is that K0(Λ) ∼= K0(B

∞) [Bo, Appendice]. There is a

Chern character Chβ from K0(B
∞) to HC∗(Bω) , the reduced cyclic homology of

B∞ [Ka]. Let η be a group k-cocycle on CΓ which extends to an element τη of
the cyclic cohomology of B∞. By the explicit formula (62), τη is a reduced cyclic
cohomology class if k > 0.

We will sketch a proof of the following proposition. Many of the details are as
in [Bi].

Prop. 15:

< Chβ(Index(D̃)), τη > = β k/2/(k!)

∫

M

Â(M) ∧ Ch(V ) ∧ ν∗([η]).

Pf. Define E∞ to be (M̃ ×Γ B∞) ⊗ E. An examination of the proof of [MF]
shows that F± and G± can be chosen to be of the form F± = F± ⊗B∞ Λ and
G± = G± ⊗B∞ Λ, where F± and G± are subspaces of Γ∞(E∞). (This uses the fact
that B∞ is stable with respect to the holomorphic functional calculus in Λ.) Write

D̃F± and D̃G± for the restrictions of D̃ to F± and G± respectively. Put
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H± = G± ⊕F± ⊕F∓. (104)

For α ∈ C, define R±
α : H± → H∓ by

R±
α =



D̃G± 0 0

0 D̃F± α
0 α 0


 (105)

We have that D̃G± is invertible. Put

S±
α =

(
D̃F± α
α 0

)
(106)

and let

S±
α ⊗B∞ Λ : F± ⊕ F∓ → F∓ ⊕ F± (107)

be the extension to a bounded operator on finitely-generated Hilbert Λ-modules.

As D̃F is a bounded operator, it follows that S±
α ⊗B∞ Λ is invertible for α large.

Then the fact that B∞ is stable under the holomorphic functional calculus in Λ
implies that S±

α is also invertible for α large. Thus R±
α is invertible for α large.

We define exp(−TR2
α) by the Duhamel expansion in α. As Rα differs from D̃ ⊕ 0

by a finite-rank operator in the sense of [Kas], there is no problem in showing that
exp(−TR2

α) is well-defined.
Extend the Bω-connection ∇ on Eω to a B∞-connection on

E∞ = Eω ⊗Bω B∞. (108)

Let ∇F be a B∞-connection on F and let

∇′ = ∇⊕∇F (109)

be the sum connection on H. Define the Chern character

chβ,s,α(H) = STR exp(−β(∇′ + sRα)2) ∈ Ω̂(B∞) (110)

by a Duhamel expansion in ∇′. For α = 0, we have

chβ,s,0(H) = chβ,s(E
∞) − STR exp(−β∇2

F ). (111)

Now STR exp(−β∇2
F ) ∈ Ω̂(B∞) represents Chβ([F ]) [Ka]. If we can show that

chβ,s,0(H) is zero in H∗(B
∞) then we will have that as classes in H∗(B

∞),

chβ,s(E
∞) = STR exp(−β∇2

F ) = Chβ([F ]) = Chβ(Index(D̃)), (112)

and the proposition will follow.
A standard homotopy argument shows that the class of chβ,s,α(H) in H∗(B

∞)
is independent of α. Take α large enough that Rα is invertible.
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We define a pseudodifferential calculus as in [MF], except that the symbol σ(m, ξ)
will take value in EndB∞(E∞

m ). Then Rα is an elliptic first-order ψdo. (In terms
of the “fibration” picture, it corresponds to a smooth family of elliptic first-order
vertical ψdo’s.) As in the usual calculus of ψdo’s, Rα has a parametrix Pα, an order
-1 ψdo, such that

I −RαPα = K1α and I − PαRα = K2α, (113)

where K1α and K2α are smoothing operators. It follows that

(Rα)−1 = Pα +K2α(Rα)−1 (114)

is also an order -1 ψdo.
Define a connection ∇′′

H− on H− by

∇′′
H− = (R−

α )−1 ∇′
H+ R−

α (115)

and define ∇′′ to be ∇′
H+ ⊕∇′′

H− . Then

∇′′
H+ −∇′

H+ = 0 (116)

and
∇′′

H− −∇′
H− = (R−

α )−1
(
∇′

H+ R−
α −R−

α ∇′
H+

)
(117)

is an order -1 operator. We have a homotopy of connections on H from ∇′ to
∇′′ given by ∇′ + u(∇′′ − ∇′), u ∈ [0, 1]. It follows as in [Bi, Prop. 2.10] that
chβ,s,α(H) = STR exp(−β(∇′ + sRα)2) represents the same class in H∗(B

∞) as
STR exp(−β(∇′′ + sRα)2).

We claim that if STR exp(−β(∇′′+sRα)2) is expanded in ∇′′, the terms vanish
algebraically. To see this formally, write ∇′′ + sRα in terms of the decomposition
H = H+ ⊕H− as

∇′′ + sRα =

(
∇′

H+ sR−
α

sR+
α (R−

α )−1∇′
H+R−

α

)
=

(
I 0
0 s−1(R−

α )−1

)(
∇′

H+ I
s2R−

αR
+
α ∇′

H+

)(
I 0
0 s(R−

α )

) (118)

and so formally,

STR exp(−β(∇′′ + sRα)2) = STR exp(−β

(
∇′

H+ I
s2R−

αR
+
α ∇′

H+

)2

) ∈ Ω̂∗(B
∞).

(119)
However, expanding (119) in ∇′

H+ , one finds that (119) vanishes for algebraic rea-
sons.

(To see this last point, consider an analogous statement in the finite-dimensional
case. For A,B ∈MN(C) put

M =

(
A I
B A

)
∈M2N(C). (120)
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Then det(M) = det(A2 −B) and if A2 −B is invertible,

M−1 =

(
(A2 −B)−1A −(A2 −B)−1

I −A(A2 −B)−1A A(A2 −B)−1

)
. (121)

Thus StrM−1 = 0. If λ 6∈ Spec(M), by changing A to A − λI, we obtain that
Str(M−λI)−1 = 0. Then by the functional calculus, if f is a holomorphic function
in a neighborhood of Spec(M), Strf(M) = 0.)

This formal argument can be made rigorous as in [Bi, Prop. 2.17].

Note: If M is odd-dimensional then one can use Quillen’s formalism [Q] to define
the odd Chern character

chβ,s(E
∞) = Trσ exp(−β(∇ + sQσ)2) ∈ Ω̂odd(B

∞). (122)

The operator D̃ gives an element Index (D̃) of K1(B
∞) [Kas]. Using a suspension

argument as in [BF], one can show that Proposition 15 also holds in the odd case.

Cor. 3 : [CM] If Γ is a hyperbolic group in the sense of Gromov [GH] then
for all [η] ∈ H∗(Γ; C), the higher-signature

∫
M L(M) ∧ ν∗([η]) is an (orientation-

preserving) homotopy invariant of M .
Pf. Let B∞ be the algebra

B∞ = {A ∈ Λ : ∂̃k(A) is bounded for all k ∈ N}, (123)

where ∂̃ is the operator of [CM, p. 383]. By [CM, p. 385], if [η] ∈ H∗(Γ; C) then [η]
can be represented by a group cocycle η such that τη extends to a cyclic cocycle on

B∞. Letting D̃ be the signature operator, the result of Mishchenko and Kasparov
[Mi, Kas, HS] on the homotopy invariance of

Index(D̃) ∈ K0(Λ) ∼= K0(B
∞) (124)

along with Corollary 2 implies the result. (As usual when dealing with the signature
operator, it is irrelevant whether or not M is spin.) �

VII. Bivariant Extension

Let A be the C∗-algebra C(M). Then (Γ0(E), D̃) forms an unbounded (A,Λ)
Kasparov module, and so gives an element of KK(A,Λ) [BJ]. A bivariant Chern
character chβ,s was defined in [Lo1] in the case of finite-dimensional projective mod-
ules, and it was indicated that the bivariant Chern character should be well-defined
whenever there is a good notion of trace on the Hilbert modules. Such is the case
here. The bivariant Chern character is a combination of Quillen’s superconnection
Chern character [Q] and the entire cyclic cocycle of [JLO]. In the setup of Section
IV, given η ∈ Zk(Γ; C) such that τη pairs with B∞, there is a corresponding entire
cyclic cocycle < chβ,s, τη >∈ C∗

ε (C∞(M)). It is given explicitly as follows:

Defn. : For a0, . . . , am ∈ C∞(M),

< chβ,s, τη > (a0, . . . , am) = β−m/2 <

∫ β

0

. . .

∫ um−1

0

STR a0 exp(−u1D
2
s)

[Ds, a1] exp(−u2D
2
s)[Ds, a2] . . . [Ds, am] exp(−(β − u1 − . . .− um)D2

s)

dum . . . du1, τη > .

(125)
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(Note that the < chβ,s, τη > (1) of equation (125) equals the < chβ,s, τη > of
Proposition 12.)

As before, the class of < chβ,s, τη > in H∗
ε (C∞(M)) is independent of s. As in

Section V, we can take the s→ 0 limit to obtain that < chβ,s, τη > is cohomologous
to the entire cyclic cocycle < chβ,0, τη > given by

< chβ,0, τη > (a0, . . . , am) =β k/2/(k!m!)

∫

M

Â(M) ∧ Ch(V )∧

ω ∧ a0da1 ∧ da2 ∧ . . . ∧ dam.
(126)

Here ω is the differential form of (65).
If W ∈ K0(M) is represented by a projection p ∈ Mr(C

∞(M)), let Ch∗(p)
be the entire cyclic cycle of [GS]. Then we obtain that < chβ,s, τη > (Ch∗(p)) is

proportionate to
∫

M Â(M) ∧ Ch(V ) ∧ ω ∧ Ch(W ). Note that in the case of the
signature operator, the entire cyclic cohomology class of < chβ,s, τη > is not a
homotopy invariant, as otherwise one could take [η] to be a 0-group cocycle and
conclude that the rational L-class is a homotopy invariant, which is false.
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Commutatifs”, Inv. Math. 101, p. 261 (1990) and references therein

[Br] K. Brown, Cohomology of Groups, Springer-Verlag, New York (1982)

[Bu] D. Burghelea, “The Cyclic Homology of Group Rings”, Comm. Math.
Helv. 60, p. 354 (1985)

[CGT] J. Cheeger, M. Gromov and M. Taylor, “Finite Propagation Speed, Ker-
nel Estimates for Functions of the Laplace Operator and the Geometry of Complete



SUPERCONNECTIONS AND HIGHER INDEX THEORY 27

Riemannian Manifolds”, J. Diff. Geom. 17, p. 15 (1982)

[CM] A. Connes and H. Moscovici, “Cyclic Cohomology, The Novikov Conjec-
ture and Hyperbolic Groups”, Topology 29, p. 345 (1990)

[Co1] A. Connes, “Noncommutative Differential Geometry”, Publ. Math.
IHES 62, p. 41 (1985)

[Co2] A. Connes, “Entire Cyclic Cohomology of Banach Algebras and Charac-
ters of θ-Summable Fredholm Modules”, K-Theory 1, p. 519 (1988)

[Co3] A. Connes, “Cyclic Cohomology and Noncommutative Differential Ge-
ometry”, Proc. ICM 1986 at Berkeley, AMS, p. 879 (1987) and references therein

[G] E. Getzler, “Pseudodifferential Operators on Supermanifolds and the
Atiyah Singer Index Theorem”, Comm. Math. Phys. 92, p. 163 (1983)

[GH] E. Ghys and P. de la Harpe, eds., Sur les Groupes Hyperboliques d’après

Mikhael Gromov, Birkhauser, Boston (1990)

[GM] P. Griffiths and J. Morgan, Rational Homotopy Theory and Differential

Forms, Birkhauser, Boston (1981)

[GS] E. Getzler and A. Szenes, “On the Chern Character of a Theta-Summable
Fredholm Module”, J. Func. Anal. 84, p. 343 (1989)

[Hi] N. Higson, “A Primer on KK-Theory”, in Operator Theory, Operator

Algebras and Applications, Proc. Symp. Pure Math. 51, AMS, p. 239 (1990)

[HS] M. Hilsum and G. Skandalis, “Invariance par Homotopie de la Signature
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