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ABSTRACT. Let M be a smooth closed spin manifold. The higher index theorem
computes the pairing between the group cohomology of w1 (M) and the Chern char-
acter of the “higher” index of a Dirac-type operator on M. Using superconnections,
we give a heat equation proof of this theorem on the level of differential forms on a
noncommutative base space. As a consequence, we obtain a new proof of the Novikov
conjecture for hyperbolic groups.

I. Introduction

Let M be a smooth closed connected spin manifold. Let V be a Hermitian
vector bundle on M. If M is even-dimensional, the Atiyah-Singer index theorem
identifies the topological expression [, A(M)ACh(V) with the index of the Dirac-
type operator acting on L?-sections of the bundle S(M) ® V, where S(M) is the
spinor bundle on M[ASIII].

When M is not simply-connected, one can refine the index theorem to take
the fundamental group into account. Let I' denote the fundamenta}vgroup of M.
Let v : M — BT be the classifying map for the universal cover M of M. For
[n] € H*(BT; C), higher index theory attempts to identify [, AM)ACK(V) Av* ]
with an analytic expression. The main topological and geometric applications of
higher index theory are to Novikov’s conjecture on homotopy-invariants of non-
simply-connected manifolds [No|, and to questions of the existence of positive-
scalar-curvature metrics on M [Ro].

In order to motivate the statement of the higher index theorem, let us first recall
how Lusztig used the index theorem for families of operators to prove a higher
index theorem in the case of I' = Z¥ [Lu]. Let T* = Hom(I',U(1)) be the dual
group to I' and let Ly be the flat unitary line bundle over M whose holonomy
is specified by # € T*. Consider the product fibration M — M x TF — T*.
Suppose for simplicity that M is even-dimensional; then there is a bundle H over
T* of Zs-graded Hilbert spaces, where Hy, the fiber over # € T*, consists of the
L?-sections of S(M) ® V ® Ly. There is also a family Q of vertical Dirac-type
operators parametrized by T*, where Qg acts on Hy. The analytic index Index(Q)
of the family of elliptic operators, as defined in [ASIV], lies in K°(T*). An element
[n] of the group cohomology H*(Z¥;C) gives a homology class 7, € H,(T*;C),
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against which the Chern character Ch(Index(Q)) € H*(T*;C) can be paired. The
families index theorem [ASIV] then implies

/ Ch(Index(Q)) = const. (1) /M A(M) A ChV) A v*[n), (%)

giving the desired analytic interpretation of the right-hand-side. The purpose of
[Lu] was to apply (*) to the Novikov conjecture.

In order to extend these methods to nonabelian I', let us note some algebraic
properties of the above construction. The algebra of continuous functions C(T*)
acts on the vector space C(H) of continuous sections of H by multiplication. Upon
performing Fourier transform over T, C(H) maps to a certain subspace of the
L?-sections of the pullback bundle S (]Tj )®V on M, this subspace thus being a
C(T*)-Hilbert module in the sense of [Kas].

The generalization of Lusztig’s method to nonabelian I' is based on a “fibration”
M — P — B which exists only morally, where B is a noncommutative space whose
“algebra of continuous functions” is taken to be the algebra A = C;T", the reduced
group C*-algebra [Co3]. (When I' = Z* A = C(T*).) Mishchenko and Kasparov
define a Hilbert A-module of L?-sections of S(M ) ® V, upon which a Dirac-type
operator D acts. The analytic index of D lies in “K 9(B)”, or more precisely in
Ko(A) [Mi, Kas]. The Mishchenko-Fomenko index theorem identifies the analytic
index with a topological index [MF].

In order to pair these indices with the group cohomology of I', one needs addi-
tional structure on B. Let °° be a dense subalgebra of A containing CI" which
is stable under the holomorphic functional calculus of A [Col]. (For example, if
I' = ZF, one can take B> to be C>(T*).) Then Ko(A) = Ko(B>). One can

think of the image of Index(D) under this isomorphism as being a “smoothing” of
Index(D).
One can then use the fact that Ko(5B°°) pairs with the cyclic cohomology

HC*(B°) of B> [Col] to extract numbers from Index(D). In loose but more

familiar terms, the Chern character Ch(Index(D)) lies in the “cohomology” of B.
More precisely, it lies in the cyclic homology group HC,(%8°) [Col, Ka]. One then
wants to define a “homology class” of B which one can pair with Ch(Index(D)).
The correct notion of homology for B is given by the (periodic) cyclic cohomology
of B, In particular, given a group cocycle n € Z!(I';C), one obtains an cyclic
cocycle 7, € ZC!(CT) (eqn. (62)). If 7, extends to an element of ZC!($B>) then

Proposition 6.3 of [CM] gives
< Ch(Index(D)), Ty > = const.(l)/ E(M) ANCh(V) Av*[n). (%)
M

The special case when [ = 0 is the L% index theorem [At].

An equivalent and more concrete description of the above “fibration” is given
by a vector bundle £ over M whose fibers are finitely-generated right projective
B-modules for an appropriate algebra B [Mi]. We will use this latter description
in making things precise, although we will move back and forth freely between the
two pictures.
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In another direction, using Quillen’s theory of superconnections [Q], Bismut gave
a heat equation proof of the Atiyah-Singer families index theorem on the level of
differential forms on the base space [Bi]. Equation (*) is a consequence.

Analogously, we wish to give a heat equation proof of (**). Our original purpose
was to study higher versions of spectral invariants, such as the eta invariant [Lol].
These higher eta invariants should enter into a higher index theorem for manifolds
with boundary. However, it turned out to be necessary to first understand the case
of closed manifolds, i.e. equation (**), in terms of superconections. This is what
we present here.

As in [Bi], we wish to produce an explicit differential form on B which represents
Ch(Index(D)). First, one needs to know what a form on the noncommutative space
B should mean. A differential complex €0, (8) was defined in [Ka], and its homology
can be identified with a subspace of the cyclic homology of the relevant algebra B.
In Section IT we briefly review this theory. In this section we also consider integral
operators on sections of £ and define their traces and supertraces.

In the case at hand, the relevant vector bundles £ come from a flat B-bundle over
M. There is some choice in exactly which subalgebra % of A is taken. In Section
IIT we consider a subalgebra B¢ of A consisting of elements whose coefficients
decay faster than any exponential in a word-length metric. If I' = Z then B¢ is
isomorphic to the restrictions of holomorphic functions on C — 0 to the unit circle,
and so B is like an algebra of “analytic” functions on B. (The technical reason for
the appearance of this algebra is the existence of finite-propagation-speed estimates
for heat kernels on M.) The smooth sections I'**(£¥) of the corresponding vector
bundle £“ are shown to correspond to smooth sections of S (1\7 ) ® V with rapid
decay. Using this description, we make the trace of Section II more explicit.

By construction, the vector space of smooth sections of £“ is a right B“-module.
Let V : T°(E¥) — T'°(E¥ ®pw Q1(BY)) be a connection on £¥. This is, in a sense,
a connection in the vertical direction of £, when thought of as a vector bundle over
M. Let @ be the Dirac-type operator on I'*(£“). Applying Quillen’s formalism
[Q], for any /3, s > 0, the Chern character of £ is defined to be

chp s(£¥) = STR exp(—B(V + 5Q)?) € Q. (B%). (s % %)

To make this expression useful, one needs an explicit description of a connection on
E¥. In Section IV we show that the simplest such connection comes from a function
he Cg"(ﬁ ) with the property that the sum of the translates of h is 1. Then (***)
is a well-defined closed element of Q. ($“), and its homology class is independent
of s.

Given a group cocycle n € Z!(I';C), if the corresponding cyclic cocycle Ty €
ZC'(CT') extends to an element of ZC!(9B“) then the pairing

<chgs(E¥), 17 >€C (% * k)

is well-defined and independent of s. As usual with heat equation approaches to
index theory, the s — 0 limit of (****) becomes the integral of a local expression on
M. In Section V we compute this limit. (The local analysis is easier than in [Bi],
as there is no need to use a Levi-Civita superconnection.) The limit must involve
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v*[n], and it may seem strange that this could become a local expression on M, but
this is where the choice of h enters. In Proposition 12 we find

lim < chy(E9).7 > = 51/2/(1!)/ AM) A Ch(V) Aw,
§— M
where w is a closed [-form on M whose pullback to M is given by

™ w = ZR;ldh/\ ARy dhn(e, g1, .. q1) € AZ(M).

We then show that w represents v*[n] € H'(M;C).
It remains to show that

<chgs(EY),my > =< Chﬁ(lndex(ﬁ)),rn > . (¢ % % % )

For this, we find it necessary to work with the algebra B°° and assume that 7,
extends to a cyclic cocycle of B°°. In Section VI we sketch a proof of (¥*****). We
reduce to the case of invertible D, and then use a trick of [Bi] to show the equality.
This completes the proof of (**).

One application of (**) is to the Novikov conjecture. Taking D to be the signa-
ture operator, the right-hand-side of (**) becomes const.(l) [,, L(M)Av*[n], where
L(M) € H*(M;C) is the Hirzebruch L-polynomial. The Novikov conjecture states
that this “higher” signature is an (orientation-preserving) homotopy invariant of
M. One can show that Index(D) € Ko(A) is a homotopy invariant of M [Mi, Kas,
HS]. If the group I is such that one can apply (**) then the validity of the Novikov
conjecture follows. In particular, in [CM] it was shown that if T is hyperbolic in the
sense of Gromov [GH] then (**) applies. Thus our proof of (**) gives a new proof
of the validity of the Novikov conjecture for hyperbolic groups. One can also apply
(**) to find obstructions to the existence of positive-scalar-curvature metrics on M
[Ro]. If one takes D to be the pure Dirac operator then if M has positive scalar
curvature, Index(ﬁ) vanishes. Thus if the group I is such that one can apply (**),
Jus A\(M ) A v*[n] is an obstruction to the existence of a positive-scalar-curvature
metric on M.

In [Lo1] a bivariant Chern character was proposed in the case of finitely-generated
projective modules. The obstacle to defining a bivariant Chern character for more
general projective modules was the lack of a good trace theory for Hilbert modules.
In the present case there is such a trace. The smooth sections of £° = £“ @gw B>
form a (C*°(M), B°°)-bivariant module, and the pairing < chg,, 7, > of the
bivariant Chern character with 7, is a cocycle in the space C}(C*(M)) of entire
cyclic cochains [Co2]. In Section VII we compute the s — 0 limit of < chg s, 7, >.

Heat equation methods were also used in the paper of Connes and Moscovici
[CM] to attack the Novikov conjecture, and it is worth comparing the two ap-
proaches. One difference is that we use heat kernels to form the Chern character
of a superconnection as in (***), whereas in [CM] the heat kernels are used to
form an idempotent matrix over an algebra of smoothing operators [CM, Section
2]. Theorem 5.4 of [CM] is similar to our Corollary 2, but is stronger in that it is
a statement about CI', whereas Corollary 2 is a statement about 8“. We believe
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that there is some point to taking a superconnection approach to these questions,
as there should be interesting extensions.

This paper is an extension of [Lol], in which the finite-dimensional analog was
worked out. An exposition of the Mischenko-Fomenko theorem and related results
appears in [Hi].

I wish to thank Dan Burghelea and Jeff Cheeger for useful suggestions, and Henri
Moscovici for helpful discussions.

I1. Algebraic Preliminaries

Let B be a Fréchet locally m-convex algebra with unit, i.e. the projective limit of
a sequence of Banach algebras with unit [Mal]. We first define a graded differential
algebra (GDA) Q. (). This will be an appropriate completion of

Q.(B) = P u(B), (1)
k=0

the universal GDA of B [Col, Ka]. As a vector space, Qx(B) is given by
Q1(%B) = B © (2"(B/C)). (2)
As a GDA, Q,(B) is generated by B and dB with the relations
dl =0,d* = 0, d(wywe) = (dwy)we + (—1)"wy,(dwe) (3)

for wi, € Qi (B),wr € Qp(B). It will be convenient to write an element wy, of Q2 (B)
as a finite sum bodb; . .. dbg. Recall that the homology of the differential complex
Q. (B) = Qu(B)/[Q(B), Q.(B)] is isomorphic to a subspace of the reduced cyclic
homology of B [Ka|. (This statement must be modified in degree zero, for which
we refer to [Kal.)

Let ©.(B) denote the GDA

o0

0.(B) = P (@), (4)

k=0

with the product given by
(b0®b1®...®bk)(00®01®...®Cg):b0®b1®...®bk00®01®...®Cz (5)

and the differential given by

dby @b ®@...0b) =1Rby Qb1 ®...Qb, —by@1Qb1 ... Qb+ ...+
(D) @b ® ... @b ® 1.

Give O (B) the projective tensor product topology, with closure (:)k(%). Let

6.(8) = [[ 6x(®) (7)
k=0
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denote the completion of ©,(8B) in the product topology.

Prop. 1: (:)*(%) is a Fréchet GDA.

There is a natural embedding ¢ of Q,(%B), as a graded differential algebra, in
0.(B), with
e(b) =b,e(db) =10b—-b®1. (8)

Let Q. (B) denote the closure of ¢(£2,(B)) in O, (B).

Cor. 1: (AZ*(%) is a Fréchet GDA.

Define 6*(%) to be ﬁ*(%)/[ﬁ*(%), ﬁ*(%)] Let H,(B) denote the homology of

the differential complex (2, (B).

Let € be a Fréchet space which is a (continuous) right %B-module. If § is a
Fréchet space which is a (continuous) left B-module, let ERF be the projective
topological tensor product of € and §. Let $ be the closure in ERF of

span{eb @ f —e®@bf :e € & f € §F,b € B} 9)

We put & F to be the Fréchet space (E&F)/$.

With this definition, ¢®ep, (®B) is isomorphic to the closure of the algebraic
tensor product € ®g Q2 (B) C € @y (RFF1B) = E¢® (FB) in @@(@k(%)), where
the latter has the projective tensor product topology.

For the rest of this section, we assume that € is a finitely generated right pro-
jective B-module. Let § be a Fréchet B-bimodule. Then there is a trace

Tr: Home (€, €2x3) — §/[B, 3. (10)

To define T'r, write € as eB", with e a projector in M,,(*8). Then an operator T' €
Homg (€, @@%5) = Homg (eB™, e§"™) can be represented by a matrix T' € M,,(F)
satisfying eT'=Te =T. Put

Tr(T) = ZTM (mod [B,3]). (11)

This is independent of the choices made. (We quotient by the closure of [B,§] to
ensure that the trace takes value in a Fréchet space.)

Lemma 1: Suppose that € and ¢ are finitely generated right projective 8B-modules
and § is a Fréchet algebra containing B. Given T' € Homgy (€, @'@%S) and 7" €
Homg (€, E293F), let T'T € Homep (€, ERxF) and TT' € Homp (¢, & ®@xF) be
the induced products. Then Tr(T'T) = Tr(TT') € §/[3, ).

We omit the proof.

In the case that € is Zg-graded by an operator I'e € Endg (€) satisfying I‘% =1,
we can extend the trace to a supertrace by Trs(T) = Tr(TeT).
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Let M be a closed connected oriented smooth Riemannian manifold. Let £ be
a smooth B-vector bundle on M with fibers isomorphic to €. This means that
if £ is defined using charts {U,}, then a transition function is a smooth map
¢ap : Ua NUg — Endyg(€). We will denote the fiber over m € M by &,,. If § is
a Fréchet algebra containing B, let EQsF denote the B-vector bundle with fibers
(E@%T)m = En@nF and transition functions Qbaﬂ@&BIdg € Endy(¢®uF). Let
I'>°(£) denote the right B-module of smooth sections of £.

Defn. : Let Homy(E, E&»F) be the algebra of integral operators
T : () — I'°(E@xF) with smooth kernels T'(my, mo) € Homp (Emys Em, OnF).
That is, for s € T'°(E),

(Ts)(mq) = /M T(my,ms)s(ms)dvol(ms) € Epm, @nF. (12)

Defn. : For T € Hom$ (€, E2%F),

TR(T) = /M Tr(T(m, m))dvol(m) € 3/[5.3). (13)
Prop. 2: TR is a trace.
Pf. We have
(TT"(m,m') = /M T(m,m") T'(m"”,m") dvol(m”). (14)
Then
TR(TT') :/ Tr(T(m,m") T'(m",m)) dvol(m")dvol(m) =
M

/M Tr(T'(m”,m) T(m,m")) dvol(m)dvol(m") = TR(T'T). O
(15)

If the fibers of £ are Zs-graded, we can extend T'R to a supertrace STR on
Hom (£,E®%7F) by

STR(T) = /M Try(T(m, m)) dvol(m) € §/[5,3]. (16)

I1I. B“-Bundles

Let T be a finitely-generated discrete group and let || o || be a right-invariant
word-length metric on I'. For ¢ € Z, define the Hilbert space

CAT)={f:T—C:[f2=> exp2qlgl)|flg) > <o} (17)
g
and let B be the vector space

BY =) >9D). (18)



8 JOHN LOTT

Lemma 2:

BY={f:T—C: forall g€ Zsup(exp(q | gl)|flg)]) <oo}
g

Pf. If f € B* then for all ¢ € Z,exp(2q || g ||) | f(g9) |* is bounded in g, and so
exp(q |l g ) | f(g) | is bounded in g. Suppose that f : I' — C is such that for all
r ez,

Sup (exp(r (g ll)[f(g)]) =Cp <oo.

Then 35 exp(2q [ g [I) | f(9) 2 < C2 3 exp(2(g—7) [ g []). As T has at most

exponential growth, by taking r large enough we can ensure that the last sum is
finite. O

Prop. 3: B¢ is independent of the choice of || o ||, and is an algebra with unit
under convolution.

Pf. As all word-length metrics are quasi-isometric [GH], the independence follows.
If T € B and f € ¢(*9(T), we will show that

| T flq < const.(¢,T) [ flq - (19)

If we then take both T and f in B“, the proposition will follow.
Let fp, denote f(h). Then

|Z h—1.fn |2

2
<ZeXp(—q IR A | Tyns V2] Tyns |2 expla [ (1) | f I> < (20)
h
QD exp(=2¢ [ ) [ Tgn-1 ) Q_ | Tppms Lexp(2a || B 1) | fur ).
h h'

Thus

| Txfl3 = ZQXP2(1||9H|Z oh—1 fn |2
S exp2all g =112 | Ty ) (5 o sl 41D e ) <
g

Zzequl\ghllll ZI =1 L exp(2q | W) | fur 1) <

g

ZeXp2QH/€II ) [T [) ( ZITZI ZGXP2Q||hIH)|fh’|):

ZGXPQQ|“€H|Tk Z|Te |f|2 O
k
(21)
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Let A denote the reduced group C*-algebra of I', namely the completion of
CT with respect to the operator norm on B(¢%(T)), where CI" acts on ¢*(I') by
convolution.

There is a Fréchet topology on 28 coming from its definition as a projective limit
of Hilbert spaces. There is also a description of 8% as a Fréchet locally m-convex
algebra. Namely, put

P={T € A:forall g €Z,T acts as a bounded operator by convolution on
291},

By its definition, P is equipped with a sequence of norms.

Prop. 4: As topological vector spaces, B = P.

Pf. By the proof of Proposition 3, 8% injects continuously into P. Applying an
element T of P to the element e € (), ¢24(T") gives a continous injection of P into
B«. These two maps are clearly inverses of each other. [

It follows that B has a holomorphic functional calculus.

Note: 98¢ is generally not holomorphically closed in A. For example, if I' = Z
then an element T' of B¢ can be identified with its Fourier transform T'= ) T 29,
a holomorphic function on C — 0. This identification gives B« = H(C —0). On the
other hand, in this case A = C'(S*?). Taking for example T' = z € H(C—0) C C(S!),
the spectrum of T' in C(S!) consists of the unit circle. If f is the holomorphic
function defined on a neighborhood of the unit circle by f(w) = (w —2)~%, f(T) is
well-defined in C(S'), but does not lie in H(C — 0).

Let T" denote the fundamental group of M. Let M denote the universal cover
of M, on which g € T' acts on the right by R, € Diff(M). Denote the covering

map by 7 : M — M. As T acts on B on the left, we can form M xr BY, a flat
B“-bundle over M. Let E be a Hermitian vector bundle with Hermitian connection
on M and let E be the pullback of £ to M, with the pulled-back connection. Let

R} € Aut(E) denote the action of g € T on E.

Defn. : &Y = (M xr B%) ® E, a B“-bundle over M.
Fix a base point xy € M.

Prop. 5: There is an isomorphism

L:T>EY)—-{fe COO(M, E): for all ¢ € Z and all multi-indices «,

sup (exp(gd(zo, 2)) | VEf(2) [) < oo}

Pf. By the construction of £¥,T>°(£¥) consists of the I'-equivariant elements of
C(M,E ® B¥). Writing s € I'°(E¥) as )  sqg with s, € C(M, E), the
equivariance means that

Rivys=sforally €l (23)
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This becomes Zg(Rfysg)’yg = Zg Svg79, and so R} sg = sy4 for all 7,g € I'. Thus
sg = Rys1, and so s = 3, (R;sl) g.

Let L be the map which takes s to s;. We will show that L is the desired
isomorphism. First, if m € M then

s(i) = (Rys1)(m) g € Bz @ B (24)

g
Thus for all ¢ € Z,sup, (exp(q || g [|) | s1(mg) |) < oc. By the smoothness of s, we
have such an estimate uniformly for m lying within a fundamental domain of M

containing zg. As M is quasi-isometric to I' [GH], there are constants A > 0 and
B > 0 such that for all x € M and g € T,

A g||-B<d(zg',z) <Al gl +B. (25)
Then

exp(qd(zo,)) | s1(z) | <
exp(qd(zo, zg™ ")) exp(qd(zg ™", x)) | s1(zg'g) | < (26)
const. exp(qd(zo,zg~ ")) exp(qA || g |I) | s1(zg™"g) | -

By choosing g so that zg~! lies within a fundamental domain containing zq, we
obtain from (26) that exp(qd(xo,)) | s1(z) | is uniformly bounded in z. The same
argument applies to the covariant derivatives of si.

Now suppose that f € CO"(M , E) is such that for all ¢ € Z and all multi-indices
Q,

sup (exp(gd(xo,x)) | V¥ f(z) |) < oo. (27)

Put L'(f) = >, (R;f) 9. We must show that L'(f) € I'*°(£). It will then follow
that L’ is an inverse to L.

By construction, L'(f) is I'-equivariant. Let {V,} be a collection of charts on
M over which FE is trivialized. Then we can reduce to the case that E is a trivial
C-bundle and f € C*(V,, xI',C), with the above decay conditions. It is enough to
show that when restricted to Vo x {e}, > (R;f) g represents a smooth map from
V, to B«. For m € V, x {e},

S (Ry) ) () = S £iig) g. (28)

and so for all ¢ € Z,

exp(q [l g )| f(mg) | <
const. exp(qA d(in, mig)) | f(iig) | <
const. exp(¢Ad(fi, 20)) exp(gAd(wo, ig)) | f(iig) | < (29)

const.sgp (exp(qAd(zo,x)) | f(z)]) < 0.
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Thus > g(R; f) gis amap from V,, to B“. Doing the same estimates using covariant
derivatives gives the smoothness. [J

Prop. 6: The algebra Endg. (£¥) = Homg.. (€¥,EY) is isomorphic to the algebra

of T-invariant integral operators T on L2(M, E) with smooth kernels T(z,y) €
Hom(E,, E;) such that for all ¢ € Z and multi-indices « and S,

sup (exp(gd(z,y)) | VeV T(x,y) |) < oo.

z,y

We omit the proof, which is similar to that of Proposition 5.

Let ¢ € C§°(M) be such that
> Rip=1. (30)
g

Let ¢r denote the local trace on End(E,).

Note : We now have defined three traces: ¢r is the trace on End(FE,),Tr is the
trace on Endg.(EY) and TR is the trace on Endyg. (£¥). If E is Zy-graded, the
corresponding supertraces are denoted trs, Trs and STR.

Prop. 7: Representing an element T' € Endg. (£*) by an operator

T € B(L2(M, E)) as in Proposition 6, its trace is given by

TR(T) = Z [/1\7 o(x) tr((R;T)(x,x)) dvol(x)] g (mod [B«,B«]) (31)

= Z [/M () tr(f(xg,x)) dvol(x)] g (mod [B«,B«]) (32)

Pf. The proof is a matter of unraveling the isomorphisms of Propositions 5 and 6.
Let {V,} be a collection of charts on M over which FE is trivialized. Then we can
reduce to the case that E is a trivial C-bundle. We have 7=1(V,,) 2 V,, x I'. For
my, Mg € Vi, x {e}, we can use isomorphisms to represent

T(mq1,me) € Homg. (&

mao?

Em,) = Homgo (B, BY) = B (33)

by Y, T(ifv1g,2) g. Then
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/ Tr(T(m,m)) dvol(m) =
/v Zf(mg, m) g dvol(m) (mod [B«,B“]) =

“ g

/ Z Z o(m) T(mgy,mv) g dvol(m)  (mod [B=,B%]) =

/ ZZ¢ my) T(myy gy, my) g dvol(m)  (mod [B=,B]) =

/Va > ; d(my) T(myg,my) vgy~ " dvol(m)  (mod [BY,B%]) =

/ § ; é(m) T(myvg,m7) (g + [vg,7Y]) dvol(m)  (mod [B, B]) =

/VZZ¢WW (mryg,my) g dvol(m)  (mod [B«, B]) =

/ ) Z(b T(zg, ) g dvol(z) (mod [B«,B«]).

(34)
Using a partition of unity subordinate to {V,} and adding the contributions of the
various charts gives (31). O

We now give the extension of the previous propositions to form-valued sections
of £, With the notation of Section II, put § = €, (B). As in Proposition 5, we
can represent an element f of F“(E“@&Bwsw) of degree k as Y fq,.. 9edg1 - - - dgr,
with each fg,. 4, € C* (M E) a smooth rapidly decreasing section of E. As in
Proposition 6, we can represent an element K of Homy., (€%, EYDpeFY) of degree
k by smooth rapidly decreasing kernels K, g, (z,y) € Hom(Ey,Egc) such that
K=K, dg; . ..dgg is T-invariant. Then for f € T°>°(E¥) we have

1---Gk
=3 [ Kov ) F0) dool(y) don .. d. (35)
As in Proposition 7, we have

= Z /1\7 d(x) tr(Kg, . g, (xg0,x)) dvol(x) godg: . ..dg

(mod [Q. (B«), Q.. (B)]).

(36)

IV. The Chern Character

Now suppose in addition that M™ is even-dimensional and spin. Let S be the
Zo-graded spinor bundle on M, with the Levi-Civita connection, and let V be a
Hermitian bundle on M with Hermitian connection. Take E to be S ® V. Let Q
denote the self-adjoint extension of the Dirac-type operator acting on C§° (M E)
[At]. In terms of a local framing of the tangent bundle,
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Q=—i) 7Dy, (37)
p=1
with the Dirac matrices {y#}}}_; satisfying

VA Ayt =20 (38)

Prop. 8: For T >0, ¢~ 79" ¢ Endf. (E¥).

Pf. First, e-7@” is a T-invariant operator. By elliptic regularity, e~ 7@ (z,y) is
smooth. Put N = [n/4] + 1. Let € be a fixed sufficiently small number. If d(x,y) > e,
put R = d(z,y) — e. By the finite-propagation-speed estimates of [CGT], we have
the estimate [Lo2]

(@ TVQ)(w,y) |<
const.(RQ/T)_l/Q[R—Q(’Hf) 4+ R2k+O—AN (39)

RQ(k+£)T72(k+Z)+R2(k+£)+4NT72(k+Z)74N] 67R2/4T'

The requisite bounds on the covariant derivatives of e=7@”(z, y) follow by standard
methods. Then the proposition follows from Proposition 6. O

Note: In the “fibration” picture, the fact that e~TQ" commutes with B¢ means
that it corresponds to a family of vertical operators.

Let h € C§°(M) be such that
> Rih=1. (40)
g

Given f € I'*°(€Y), considering it as an element of C"O(M7 E) by Proposition 5,
define its covariant derivative to be

Vof =h R.f € C*(M,E). (41)
Note that C°°(M) acts on sections of I'*°(£“®p.F*) by multiplication.

Prop.9:
Vf= ngf Rpedg
g

defines a connection
V :T2(EY) — I®(E% R 1 (BY)) (42)

which commutes with the action of C*°(M).

Pf. We first show that V formally commutes with the action of C*°(M). Given
a € C®(M), a acts on C°(M, E) by multiplication by 7*(«). Then
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Via-f)=V(r*(a)f) =Y _h Rj(r*(a)f) Spedg =
! (43)
> ha*(a) Rjf @medg=a-Vf.

Thus V acts fiberwise on the vector bundle £“. To make this explicit, as in the
proof of Proposition 5 we can consider the element s of I'*°(£%) corresponding to f
to be a sum s = ) s, g, where s, € C*°(M, E) and s, = R} f. Then Vs becomes

> Ry(hRif) gdk =Y Rih (R f) gdk = Rih sg gdk. (44)
9:k 9.k

g,k

Applied to a point m € M , we have

V(> sg() g) = h(ig) ser(i) gdk. (45)
g g,k
Let
vm : S;)l - S;)l (/g\)%“ﬁl(%w) (46)

be the restriction of V to the fiber £ = E,,, @ B over m = w(m). Then V,, can
be represented by

V(S ty 9) = S hliig) ton gk, (47)

g,k
where t, € Em
By hypothesis, t = Eg ty g € &L = E,, @ BY. We must show that V,,(¢) is in
£ Dege 01 (BY) = By @ O1(BY). R
As in Section II, let us think of E,, ® Q;(B%) as embedded in E,, ® BB,
Then V,,(t) is formally represented as

V() =Y h(ig) tg, gl@k—k®1) =
g,k

> h(ig) ter gk —>_ h(img) te, gk®1 =
g,k 9,k

> h(ig) tgr g@k— > _ h(ig) tr k@1 =

9.k g,k

(Zh(ﬁzg)g@Z tok k) —t®1 =
g k
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<Z h(mg)g ® (glt)> —t®1. (48)

g
As h has compact support, the g-sum in }_ h(mg)g® (g~1t) is finite, and it follows

that (48) makes sense in E,, @ BYOBY.
We now show that V,, is a connection. If v € T,

Vim(t7) = V(O _tg 97) = V(D _tge-1 g) =

> h(iing) tgry—r gdk =Y h(ig) ter gd(ky) =

g,k g,k
> h(img) tox g(dk)y + > h(img) ter ghdy =
g:k 9.k
V()7 + Y h(ing) ti kdy = Vo (t)y + tdy. (49)
g,k
Then
Vi (th) = (Vint)b + t@ g db (50)

for any b € B«.
As h is smooth, it follows that V is also a connection. O

Note : There is a strong relationship between the connections V considered here
and the partially flat connections of [Ka, Chapitre 4].

Define the superconnection

Dy =V + sQ € Hom™ (E¥, £° R L, (BY)) (51)

Then D2 € Homs., (E%, €9 B30 (B*)) is given by
D? =52Q? +5(VQ + QV) + V2. (52)

Here VQ + QV is given explicitly by

(VQ+QV)(f) = (9h) R} [Gedg, (53)

g

where f € COO(M, E) and
h=[Q,h] = =iy +"0uh, (54)
w

and V? is given by

V2(f)=>_Y h Rih R, f@sedgdg. (55)
9 g
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Put
P=—(s(VQ+QV)+V?), (56)

and for B > 0 define
exp(—BD?) € Homs. (£, £ Qe Q. (BY)) (57)

to be
B8
exp(—AD?) = exp(—55°Q%) + / expl(—u1 Q)P exp(— (8 — u2)5*Q?) duy +
0

B pur
/ / exp(—u152Q?)P exp(—ua2s Q)P exp(— (B — u1 — uz)s’Q?) dugduy + . ..
o Jo

(58)
As only a finite number of terms of the expansion of (58) contribute to the degree-k
component of exp(—3D?), it is clear that (58) converges.

Defn. : For s > 0, the Chern character chg s(E“) € ﬁeven(%“’) is given by

chp s(E¥) = STR exp(—BD?2). (59)

Prop. 10: chg s(£¥) is closed.

We omit the proof, which is straightforward.

Prop. 11: The class of chg s(€¥) in H.(B*) is independent of s € (0, 00).
Pf. Formally,

%chg,s(g“’) = d(—B STR Qe "P%). (60)

It is straightforward to check that this equation is valid. Then if s1, s2 € (0, 00),
s1
chg.s, (E¥) — chp s, (E¥) = d(— / STR Qe "P%ds). O (61)
So

Let 1 be an antisymmetric left-invariant (unnormalized) group k-cocycle. Then
7 defines a cyclic k-cocycle 7, on CI' by

(90, - - - 9k) = 1(go, Y091, 909192 - - - 9091 - - - 9k) if Gog1 ... g =€

. 62
Tn(90,.-- ,95) =0 if gog1...gx # e [Col]. (62)
Suppose that there are constants C' and D so that

| 70(g0s---»91) | < Cexp(D([l go [ +---+ [l gx ) (63).

Then 7, extends to a k-cocycle on B¢ and so can be paired with chg . By Propo-
sition 11, the pairing < chg s(“), 7, > is independent of s.

V. Small-Time Limit
Prop. 12:
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lim < chg(£9), 7y > = ﬂ’“”/(k!)/ AM) A Ch(V) Aw, (64)
S— M
where w is the closed k-form on M given by

mw=Y Ry dhA... AR} dhnle.gi, ... gr) € AF(M). (65)

Pf. First, let us consider the contribution to < chg s, 7, > coming from the term

B Uk —1
S [ [ encn R Q)s(VQ + Q) expl-uasQ?)
0 0
s(VQ+QV)...s(VQ +QV)exp(— (8 —up — ... — up)s?Q?) duy ... du;

of exp(—BD?). Written out explicitly, this will be

B Uk —1
_1)%@/0 /0 /M¢(x0) trs[ Ry, eXp(_uls2Q2)S(8h)Rgl

exp(—uQs2Q2)s(8h)R;2 ..8(0R)Ry, exp(—(B —u1 —...— ug)s2Q%)] (o, o)
dvol(zo)dug . . . dur (g0, ... ,gx) =

- - / [ otan) trfesp(-un Q) sy, (00)

exp(—u25°Q?) sRy 5, (Oh)...sRy . (Oh) exp(—=(8—u1 — ...~ ug)s2Q?)
R; . 1(zo,x0) dvol(zo)duy ... dur (g0, ... ,9k) =

/ / / / (o) trslexp(—urs 2Q%)(x0, 1)

(5h)($1go exp(—u2s’Q?) (w1, 22) s(0h)(229091) - - - s(h)(Trgogr - - - ge—1) (69)
exp(— (B —u1 — ... —u)s*Q?)(zrgog - - - G, T0)] dvol(wy) . .. dvol(z)
dug . ..dur (g0, - -, gk)-

(66)

(67)

(68)

Because for small s the heat kernels are concentrated near the diagonal, the only
terms which will survive in the s — 0 limit will have go...gx = e. Furthermore,
the s — 0 limit reduces to a question of local asymptotics on M. By the Getzler
calculus [G], (69) equals (2m) ™" [ .77 trs(0P)s-1dxdE, where P denotes the operator
appearing in (69), oP is its symbol in the Getzler calculus and (oP),-1 is the
rescaled symbol. A straightforward calculation gives that in the limit s — 0, this

becomes
—k/2
/ / - du) / o@) A ACHTI@A
dh(mgo) -Ndh(xgo ... gk—1) 1(90, 9091, 9091925 - - - 19091 - - - Jh—1,€) =
ST(=0FpE2/(RY) | ¢ AM)ACIV) AR dhA... AR} . dh o)
M

n(90, 90915 9091925 - -+ 190 - - - Gh—1,€) =
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BY2)(kY) | ¢ A(M) ACH(V) A G, (72)
M
where w € Ak(]Tj ) is given by

w—ZR* dh ... NRy dh (e, g, gk)- (73)

Now let us consider the contribution to < chg, 7, > coming from a term of
exp(—3D?) which contains a V2, such as, for example,

/ / exp(—u152Q?) V2 exp(—u2s’Q?) s(VQ +QV)...

(74)
s(VQ+ QV) exp(—(B —uy — ... —up)s’Q?) duy, ... du;.
Written out explicitly, this gives
/ / / / ¢(x0) trslexp(—u1s*Q?) (w0, 71)
h($1go)h 219091) exp(—u25°Q?)(x1,22) s(OR)(x2g0g19}) - -
s(0h) (790919192 - - - gh—1) exp(—(B —u1 — ... — uy)s*Q? )
(mkgoglglng -Gk, mo)]d’UOl(xk) e dUOl(ﬂfO)dUk e dulTn(g()a g1, gi? g2, .. 7gk)'
(75)
By the Getzler calculus, in the s — 0 limit, (75) becomes
B Uk—1 —~ ~
Z(—l)kﬁ*k*l)/?(/ . / dug ...duy) | ¢(x) A(z) Ch(V)(z)
0 0 M (76)

h(xgo)h(zgogr)dh(xgogigi) A - - - A dh(xgogigi gz - - gr—1)
1(g0, 9091, 90919/17 . 7909191192 o k—1,€) =

Z(—l)kﬁ(’cﬂ)/z/(lﬂ!)/ﬁqb AM)ANCWV) AR WA RS g RARE o dh A

gogi 909191

A RZOglgng Gk— ldh 77(9079091790919/17 s ,90919192 - Gk—1, 6) =

(77)
1 B2 (1) /M 6 AV A CR(VY AT, (78)
where &' € A*(M) is given by
&= Ry hARyhA...AR: dhn(e, g1, 91,92, - k) (79)
Asn(e, g1, 91,92, - - ,gx) is antisymmetric in g; and g} , it follows that &’ vanishes.

The same argument shows that all of the terms involving V2 vanish. [J

Lemma 3: The form @ of (73) is a closed I'-invariant form on M.
Pf. & is clearly closed. For all v € I', we have
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Y91 Yk
ZR;Idh/\.../\R;kdh nle, v rg1,... .7 tgr) = (80)
ZR;Idh Ao ARy dhon(y, 915, k)

From the cocycle condition, this equals

Riw =Y R, dhA... AR, dhn(e,gi,. .. gx) =

ZR;ldh/\.../\R;kdh n(e,g1,---,95) —nle,v, 92, ,95) + ...+

’ (81)
(_1) 77(@%91; (R 791@71)]'
But for all r,
ZR;1dh/\ o NRy dhon(e, v, 91, 5 Gry - k) =
+ () Ry dh)AY RpdhA...AR;  dh AR . dhA (82)
gr
ARy dhon(e, g1y 3Gy 5 k)
and
> R; dh=d()_R; h)=d(1)=0. (83)
gr gr
Thus only the first term of (81) contributes, and so
Riw = Ry dh ... ARy dhn(e,gi,... ,.g) =@ O (84)

End of Pf. of Prop. 12: From Lemma 3, there is a closed form w on M such
that @ = 7*(w). Then

/ ¢ AM)ACR(V) NG = / AM)ACKh(V)Aw. O (85)
M M

We now wish to show that the cohomology class of the closed form @ is the
pullback to M of the cohomology class [n] on BT'. To do so, it is convenient to first

relax the smoothness conditions on w.
Let h be a Lipschitz function on M of compact support with

> Ryh=1. (86)

As the distributional derivatives of a Lipschitz function are L*°-functions, it makes
sense to define wy, by

L~uh=ZR;dh/\.../\R;kdh nle, g1, -, 9x), (87)
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a closed I'-invariant L k-form on M, and let wy, € A*(M) be such that 7*wy, = Wy,
It is known that one can compute the de Rham cohomology of M using flat forms
(i.e. L*°-forms 7 such that dr is also L) [Te].

Lemma 4: The cohomology class of wy is independent of h.
Pf. Let A’ be another choice for h. Then

Gn—@p =Y [Ryd(h—h)N... ARy dh+ ...+
Ry dh' A ... ARy d(h—h)] n(e g1, .., gk)- (88)
Put
Gr=> Ry dh'A...Ry (h=N)A...AR; dhn(egy,. .. gr), (89)

a flat (k — 1)-form on M. Then

k

On— @ =d)_(-1)"'5,). (90)

r=1

Furthermore, for all v € T,

RiG. =Y Ry dh' A...R; (h—h)A.. ARy dhn(y, 01, .. ,9k) =
S Ry dh AR (h—=N)A.. ARy dh (e, g1, ... gx)— (91)

7](%%92; R 79]@) +.o (_1)k77(677)gla N 7gk—1)]'

> Ridh =Y Rydh' =Y Rj(h—H)=0, (92)
9 9 9

it follows that &, is [-invariant. Then w — w’ = do, where o € A¥~1(M) is such
that

k
o= (-1)"*5,. O (93)
r=1

Let X be the simplicial complex whose ordered cochain complex is the standard
complex of T [Br]. The k-simplices of X are (k + 1)-tuples of distinct elements of
. We will take I to act on the right on X. Then the simplicial complex X/T" is
a model for BT'. For a vertex v, let b, denote the barycentric coordinate (on a
simplex containing v) corresponding to v. Let j be the continuous piecewise linear

function on X given by

j@)y=0ifz € [go,... ,gx) and go £ €,... , g1 £ €

94
be if © € [go,. .. ,gx] and g; = e for some 1. (94)

Lemma 5: } Rjj=1.
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Pf. Suppose that = € [go, ... ,gx]. Then

k k k

D (R @) =Y ilwg) = dwg ') = be(wg; ) =D by () =1. O (95)

7 i=0 i=0 i=0
Let @; be the polynomial form on X, with coefficients in C, given by

By =Y RidjiA.. ARy djnle,gi ... gx). (96)
Let w; be the polynomial form on X/T" such that &; = 7*w;.
We define a k-cocycle 77 € C*(X;C) by putting
<77)[70;717"'7’7k]>:n(70_1)"-a’Y]g_l)' (97)

By the left invariance of the group cocycle 7,7 is right-invariant on X. With abuse
of notation, let i denote the corresponding simplicial cocycle on X/T.

Prop. 13: As elements of H*(X/I';C), [w;] = [n].

Pf. Let A denote the de Rham map from polynomial forms on X to C*(X). Then
(ij)h/@a e 7776] =
Zn(e,gl, v gk) < Ry dj AN AR djs o,k > = (98)
277(67%:17 o < Ry, —"dj Ao ARy 7 [yos -] >

where i1,... ,i; € {0,1,...,k}. Now (98) equals

Zn(e,’y{ll,... ,%;1) < dby,, A...Ndbsy, , Yoy« s Yk] > - (99)
A simple calculation gives that (99) in turn equals

k

S e ) = gD, (100)
=0

Thus A(w;) is the cochain 1. As the de Rham map is an isomorphism on complex
cohomology [GM], the proposition follows. O

Let v be the canonical (up to homotopy) map v : M — BT classifying the
universal cover M, with lift v : M — ET.

Prop. 14: As elements of H*(M,C), [w] = v*([n]).
Pf. Let us triangulate M. Upon subdivision, we can homotop v to be a simplicial
map. Then with h = 7*j, we have wj, = v*w;. Thus as elements of H*(M,C),

[wr] = [V wj] = v*[w,] = v*[n]. (101)

By Lemma 4, [wp] is independent of the particular choice of h, and the proposition
follows. 0O



22 JOHN LOTT

Cor. 2: For all s > 0,
< chgs(EY),my > = ﬁk/Q/(k!) /M A\(M) AN Ch(V) Av*([n)). (102)

Note: One can equally well pair chg s(£“) with any element of HC*(8“). Modulo
growth conditions, there is a way of producing an element 7 € HC®(8%) from a
conjugacy class < z > of " and a k-cocycle of the group I';,/{z}, where T'; is the
centralizer of z in I" and {z} is the subgroup generated by  [Bu]. (The cocycle (62)
comes from the special case when < > = < e >). However, the cyclic cohomology
classes corresponding to < x > # < e > will pair with chg ;(€¥) to give zero. The
reason is that a cyclic k-cocycle 7 based on < x > will have 7(go,... ,gx) = 0 if
9091 - - - gk €< = >. However, by the proof of Proposition 12, in the s — 0 limit
one sees that the terms with gogi ... gr # e do not contribute to < chg s(E“), T >.

VI. Reduction to the Index Bundle

We first review some of the results of [MF]. Recall that A is the reduced group
C*-algebra of I Let £ denote the Zy-graded A-bundle over M given by £ =
(M xr A) ® E. The L?-sections I'°(€) of £ form a right A-Hilbert module. The
Dirac-type operator D is an odd densely-defined unbounded operator on I'(&).
One can find finitely-generated right projective A-Hilbert submodules F'* of I'°(£7)
and complementary A-Hilbert modules G* C I'°(€¥) such that D is diagonal with
respect to the decomposition (%) = G* @ F*, and writing D = D¢ @ Dy, in
addition D¢ : G — GT is invertible. By definition, the index of Dis

Index(D) = [F*] — [F~] € Ko(A); (103)
this is independent of the choice of F*.

Now suppose that 2B>° is a densely-defined subalgebra of A which is stable with
respect to the holomorphic functional calculus on A, and B“ C B> C A. A stan-
dard result in K-theory is that Ko(A) & Ko(B>°) [Bo, Appendice]. There is a
Chern character Chg from Ko(B>°) to HC.(B%) , the reduced cyclic homology of
B> [Ka]. Let n be a group k-cocycle on CI' which extends to an element 7, of
the cyclic cohomology of B°°. By the explicit formula (62), 7, is a reduced cyclic
cohomology class if k > 0.

We will sketch a proof of the following proposition. Many of the details are as
in [Bi].

Prop. 15:

< Chg(Index(D)), 7, > = 8%2/(k)) [ AM) A CR(V) A v*([n]).
M
Pf. Define £° to be (M xp B>) ® E. An examination of the proof of [MF]
shows that F'* and GF can be chosen to be of the form F* = F* @que A and
G* = GF @p A, where F* and G* are subspaces of I'*°(£>). (This uses the fact
that B is stable with respect to the holomorphic functional calculus in A.) Write
Dy+ and Dg= for the restrictions of D to F* and G* respectively. Put
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HE =gt o Fto FT. (104)
For o € C, define RE : H* — HT by

Dg= 0 0
RE=| 0 Dz «a (105)
0 « 0

We have that Egi is invertible. Put

-+ _ E}'i « 1
si= (" ) (106
and let
St @pe A: FE @ FT - FT @ F* (107)

be the extension to a bounded operator on finitely-generated Hilbert A-modules.
As Dp is a bounded operator, it follows that ST ®gp- A is invertible for « large.
Then the fact that 2°° is stable under the holomorphic functional calculus in A
implies that S is also invertible for o large. Thus RZ is invertible for o large.
We define exp(—TR2) by the Duhamel expansion in o.. As R, differs from D & 0
by a finite-rank operator in the sense of [Kas], there is no problem in showing that
exp(—TR?2) is well-defined.
Extend the B“-connection V on £% to a B>-connection on

E® =&Y Qpw B> (108)
Let V£ be a 9B°°-connection on F and let

V' =VaVsr (109)

be the sum connection on H. Define the Chern character
chpsa(M) = STR exp(—B(V + sRa)?) € Q(B>) (110)
by a Duhamel expansion in V’. For o = 0, we have

chp.s,0(H) = chg s(E%°) — STR exp(—ﬂV%_—). (111)

Now STR exp(—3V%) € 6(9300) represents Chg([F]) [Ka]. If we can show that
chg.s.0(H) is zero in H,(B°°) then we will have that as classes in H,(B>),

ch.«(EX) = STR exp(—BV%) = Chg([F]) = Chs(Index(D)), (112)
and the proposition will follow.

A standard homotopy argument shows that the class of chg s o(H) in H.(B>)
is independent of a. Take « large enough that R, is invertible.
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We define a pseudodifferential calculus as in [MF], except that the symbol o (m, &)
will take value in Endge(E). Then R, is an elliptic first-order ¢do. (In terms
of the “fibration” picture, it corresponds to a smooth family of elliptic first-order
vertical ¢do’s.) As in the usual calculus of ¥/do’s, R, has a parametrix P,, an order
-1 tdo, such that

I — RyPo =Ky and I — PyRo = Koa, (113)

where K1, and K», are smoothing operators. It follows that

(Ra) ™! = Po + Koo(Ro)™? (114)
is also an order -1 do.
Define a connection V/,_ on H~ by
Vi = (Ry) ™" Vi Ry (115)

and define V" to be V. © V7 _. Then

V;’ﬁ - V;ﬁ =0 (116)
and
VYo =V = (Ry)™" (Vs Ry — Ry Vi) (117)

is an order -1 operator. We have a homotopy of connections on H from V’ to
V" given by V' + w(V" — V'),u € [0,1]. It follows as in [Bi, Prop. 2.10] that
chgsa(H) = STR exp(—B(V' + sR,)?) represents the same class in H.(B>) as
STR exp(—B(V" + sRa)?).

We claim that if STR exp(—8(V" +sR4)?) is expanded in V", the terms vanish
algebraically. To see this formally, write V" + sR,, in terms of the decomposition
H=H'®H as

\% sR,
" — H+ (¢4 —
Vo= (T ey n )

(118)
I 0 \Y I I 0
0 s (Ry)™" ) \$*RRE Vi, ) \0 s(Ry)
and so formally,
v I\ =
STR exp(—B(V" + sRy)?) = STR exp(—B( L7, o, ) € Q,(B>).
s°R, R7 M
(119)

However, expanding (119) in V/ ., one finds that (119) vanishes for algebraic rea-
sons.

(To see this last point, consider an analogous statement in the finite-dimensional
case. For A, B € My (C) put

M — (g i) € Man(C). (120)
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Then det(M) = det(A% — B) and if A%2 — B is invertible,

-1 (A2-B)'A  —(A2-DB)"!
Vs (I— A(A?2 - B)™'A A(A% - B)—1> : (121)

Thus StrM~! = 0. If A ¢ Spec(M), by changing A to A — A\I, we obtain that
Str(M — XI)~! = 0. Then by the functional calculus, if f is a holomorphic function
in a neighborhood of Spec(M), Strf(M) = 0.)

This formal argument can be made rigorous as in [Bi, Prop. 2.17].

Note: If M is odd-dimensional then one can use Quillen’s formalism [Q] to define
the odd Chern character

chp s (E¥) = Try exp(—B(V + 5Q0)2) € Qpqa(B>). (122)

The operator D gives an element Index (D) of K;(B>) [Kas]. Using a suspension
argument as in [BF], one can show that Proposition 15 also holds in the odd case.
Cor. 3 : [CM] If T is a hyperbolic group in the sense of Gromov [GH] then
for all [n] € H*(I';C), the higher-signature [, L(M) A v*([n]) is an (orientation-
preserving) homotopy invariant of M.

Pf. Let 8 be the algebra

B ={AcA: 9*(A) is bounded for all k € N}, (123)

where 8 is the operator of [CM, p. 383]. By [CM, p. 385], if [] € H*(I';C) then [r]
can be represented by a group cocycle 7 such that 7, extends to a cyclic cocycle on
B>°. Letting D be the signature operator, the result of Mishchenko and Kasparov
[Mi, Kas, HS] on the homotopy invariance of

Index(D) € Ko(A) = Ko(B>) (124)

along with Corollary 2 implies the result. (As usual when dealing with the signature
operator, it is irrelevant whether or not M is spin.) O

VII. Bivariant Extension

Let 2 be the C*-algebra C'(M). Then (I'°(£), D) forms an unbounded (2, A)
Kasparov module, and so gives an element of KK (2, A) [BJ]. A bivariant Chern
character chg s was defined in [Lol] in the case of finite-dimensional projective mod-
ules, and it was indicated that the bivariant Chern character should be well-defined
whenever there is a good notion of trace on the Hilbert modules. Such is the case
here. The bivariant Chern character is a combination of Quillen’s superconnection
Chern character [Q] and the entire cyclic cocycle of [JLOJ. In the setup of Section
IV, given n € Z*(I'; C) such that 7, pairs with °°, there is a corresponding entire
cyclic cocycle < chg s, 7 >€ CHC™(M)). It is given explicitly as follows:

Defn. : For ag,... ,a, € C*(M),
B Um—1
< chp s,y > (a0, am) = ™2 < / . / STR ag exp(—u; D?)
0 0

[Ds, a1] exp(—uaD?)[Ds, az] . .. [Ds, am] exp(—(8 — u1 — ... — up)D?)

Ay, . .. duy, 7 > .

(125)
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(Note that the < chg s, 7, > (1) of equation (125) equals the < chg, 7, > of
Proposition 12.)

As before, the class of < chg s, 7, > in HY(C*(M)) is independent of s. As in
Section V, we can take the s — 0 limit to obtain that < chg s, 7, > is cohomologous
to the entire cyclic cocycle < chg o, T, > given by

< chpo,Ty > (a0, ... s am) =6%2/(k!m!) /M A(M) A Ch(V)A (126)

wAagda; Ndas A ... ANday,.

Here w is the differential form of (65).

If W € K°M) is represented by a projection p € M,.(C*(M)), let Ch.(p)
be the entire cyclic cycle of [GS]. Then we obtain that < chg s, 7, > (Chy(p)) is
proportionate to [, A(M) A Ch(V) Aw A Ch(W). Note that in the case of the
signature operator, the entire cyclic cohomology class of < chg,7, > is not a
homotopy invariant, as otherwise one could take [n] to be a 0-group cocycle and
conclude that the rational L-class is a homotopy invariant, which is false.
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